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Preface

Starting about 1950, our world changed forever. Global population from then until
2000 multiplied by 2.5 and technology surged forward at an unprecedented pace. For
some people these developments are a cause for great concern. Sir Martin Rees,
England’s present Astronomer Royal, thinks this pace may cause a fatal error within
a century or two. He has wagered $1000 that a single act of bio-error or bio-terror will
kill a million people before 2020. Bill Joy, co-founder of Sun Microsystems, fears that
machines will overpower us using cybertechnology that he helped create. Stephen
Hawking, renowned physicist and author of A Brief History of Time, thinks we must
colonize outer space in order to ensure survival of our species.

We are already taking measures to protect ourselves from conspicuous hazards
such as global warming and genetic engineering. Hence, the fatal one will most likely
be some bizarre combination of events that circumvents normal safeguards. For
example, mutant phytoplankton may spread across the oceans and poison the air
with toxic gasses. Or a demented trillionaire may imagine God’s command to
exterminate humanity at all cost, and with his vast resources he may succeed. The
chances of these particular hazards are minuscule, but there are hundreds more like
them, so the overall risk is considerable.

Is there a way to quantify these concerns? We could build survival habitats if a
numerical assessment justified the expense. The best numerical data to address this
question would be survival statistics for humanoid species throughout our galaxy,
especially those on Earth-like planets undergoing a technology surge. However, those
data are scarce, so what else can we do?

The obvious uninspired approach would make a huge numerical model of our
entire world and run thousands of simulations of our future, each with slightly
different inputs and random events. Statistics of the outcomes would then indicate
major threats and the probability of surviving them. Computer programs already
simulate gigantic physical systems, for example, world climate. The Club of Rome has
made and operated a huge numerical model of the world’s economy. An essential
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missing piece is a numerical model for human behavior, but even that may be available
in fifty years. If current trends continue, computer capability will have increased many
thousandfold by then!

Would such simulations yield credible estimates of the ultimate risk? Not likely.
History does not provide disasters of this magnitude to use as test cases. If it did, we
could pretend to live in an earlier time and then run the program to “predict” events
comparable to those that have actually happened. Such test runs would help us adjust
parameters in the prediction program and correct flaws. In particular, the program
must randomly inject rare events, tipping points, and extraordinary genius with some
frequency, but that frequency must be adjusted. Otherwise, the rarities occur too often
or too seldom. We might try to calibrate by using records of lesser historical disasters.
However, few if any extant reports of those early disasters include enough details to
initialize a simulation. Thes obstacles may be insurmuntable.

If we somehow get a credible simulation, it may indicate an urgent need for harsh
reforms that offend almost everybody: levy heavy taxes on consumption of natural
resources, especially fossil fuels; impose compulsory birth control; and so on. The
public reaction to this report would itself make an interesting subject for a world
simulation. One can imagine the repercussions: Special interests hire scientists to
ridicule the world model. The simulation team is branded as alarmists trying to inflate
their importance. The public is helpless because the simulation’s flow chart alone is
too complex for any individual to grasp. Even dedicated independent review teams
would struggle long and hard with the vast number of algorithms and statistics.

# # #

The subject of this book is a more immediate and practical approach to
survivability, a simple analytic model that transcends the quagmire of details. It is
so simple that you can keep your daytime job and still find time to challenge it.
Perhaps you can revise it using different sources of statistics.

The formulation relies on two measures of past survival: one for exposure to
natural hazards, and the other for man-made hazards. The first measure is comfort-
ing. Humankind has survived natural hazards for 2000 centuries. After such long
exposure, we can surely expect at least another 20 centuries, merely 1% longer. By
contrast, the second measure is worrisome. Our exposure to serious man-made haz-
ards has been a scanty half-century, which means that lack of experience leaves us
vulnerable. New hazards appear faster than we can safely adapt to recently established
ones.

# # #

A scholar normally has a duty to use extensive data in an effort to achieve
maximum accuracy. However, human survival is an ideologically sensitive subject,
and the burden of so much data might discourage constructive criticism and future
revisions by others. Besides, the more analysts tinker with data, the more they must
wrestle with personal prejudices that (consciously or not) could bias the results, and
the greater the risk that one of their sources will be discredited, or that their analysis
has (or appears to have) an ideological slant. In our curious case the reader’s
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acceptance is more important than a modest increase in accuracy. Consequently, my
analysis is simple and the input data minimal.

"Tis better to be approximate and credible than to be exact and ignored.

This tradeoff runs contrary to my training as a physicist, but that’s a whole
different scene. One gains credibility in physics when another laboratory indepen-
dently repeats and confirms one’s results. The trouble is that people won’t be repeating
the human extinction experiment. And by the time a forecast is verified, it is too late.
Hence, in this peculiar instance, I believe that a formulation that emphasizes cred-
ibility over accuracy is justified and prudent. It is also user-friendly because a revision
takes only a few sessions at a desktop computer.

The text has been written in such a way that the reader unfamiliar with
math should have little trouble in following the arguments. The mathematically
sophisticated reader can find a full development in the appendices.
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Introduction

It’s a poor sort of memory that only works backwards.
—Lewis Carroll

The great mathematician John von Neumann (1903-57) once famously said, “The
ever accelerating progress of technology ... gives the appearance of approaching
some essential singularity [an abnormal mathematical point] in the history of the race
beyond which human affairs, as we know them, could not continue.”” Another math
professor, Vernor Vinge, well known for his science fiction, picked up the concept. He
began lecturing about the Singularity during the 1980s and published a paper about
the concept in 1993 [1].

The ideas caught the imagination of non-scientists who founded a secular
moral philosophy in 1991. They call themselves ““Singularitarians” and look forward
to a technological singularity including superhuman intelligence. They believe
the Singularity is both possible and desirable, and they support its early arrival.
A related philosophy is called transhumanism, followers of which believe in a post-
human future that merges people and technology via bioengineering, cybernetics,
nanotechnologies, and the like.

By contrast, a number of renowned scientists think that the advent of the
Singularity is a time of great danger. The pace of technological innovation is accel-
erating so rapidly that new waves of progress appear faster than we can safely
acclimate to other recently established ones. Sooner or later we shall make a colossal
mistake that leads to apocalypse. The killer need not be a single well-known hazard
like global warming. Scientists who are alert to this sort of threat are watching
indicators for signs of danger and will likely warn us before the hazard becomes
critical. Instead, the killer will likely be something we overlook, perhaps a complex
coincidence of events that blindsides us. Or it may be a devious scheme that a
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Entrance to the Svalbard
Global Seed Vault.

misanthrope conceives, somebody with the mentality of the hackers who create
computer viruses.

Sir Martin Rees, England’s current Astronomer Royal, thinks the 21st century
may be our last [2], the odds being about 50-50. He has wagered $1000 that a single
act of bio-error or bio-terror will kill a million people by 2020.

Perhaps the most gravely worried is Bill Joy, co-founder of Sun Microsystems
and inventor of the Java computer language. He contributed much to the cyber-
technology that he now fears [3]: “There are certain technologies so terrible that
you must say no. We have to stop some research. It’s one strike and you’re out.”
Again, “We are dealing now with technologies that are so transformatively powerful
that they threaten our species. Where do we stop? By becoming robots or going
extinct?”

Physicist Stephen Hawking, renowned author of A Brief History of Time, has
joined the chorus: “Life on Earth is at the ever-increasing risk of being wiped out by a
disaster, such as sudden global warming, nuclear war, a genetically engineered virus,
or other dangers we have not yet thought of.”” To my knowledge no eminent scientist
has publicly objected to any of these concerns.

In June 2006 the five Scandinavian prime ministers gathered at Spitsbergen, a
Norwegian island in the far arctic, part of the Svalbard archipelago. The occasion
was the groundbreaking ceremony to begin construction of a $5-million doomsday
vault that will store crop seeds in case of a global calamity. Again, prominent people
have a vague but widespread perception of serious danger.

Optimists disagree including the late economist Julian Simon [4] and the late
novelist Dr. Michael Crichton [5]. Crichton has reviewed past predictions of doom
and, from their failure, he has inferred that all such predictions are invalid. This is
clearly a non sequitur since all prophecies of doom fail—except the last.

All these pundits, both optimists and pessimists, rely on qualitative reasoning
that is endlessly debatable. By contrast, the arguments presented here are
quantitative. Numerical results are also debatable, but to a lesser extent. Doubts
converge on two parameters. I hope that readers will use this model, and with modest
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effort and different sources of data compute their own survival figures. Detailed
results will vary, but the most robust conclusions will prevail.

# # #

Some folks question whether it is valid to apply an impersonal mathematical
formula to human survival, given that we are intelligent conscious creatures with
ideals and spiritual qualities. To answer this objection, we can represent humanity by
microcosms for which actual survival statistics are readily available. In particular,
business firms and theatrical productions share important qualities with humanity.
Those two microcosms plus humanity comprise three entities with the following
attributes in common:

e All three consist of people striving for the entity’s survival.

e All are exposed to many diverse hazards.

e All are aggregates of individuals, each of whom can be replaced while the entity
remains intact.

e Within each entity the individuals act from mixed motives that balance group
interests against personal ones.

e None of the three entities (our species, business firms, stage productions) has a
cutoff age, a maximum it cannot exceed.

However, there is one relevant difference. People in businesses and in theater
work together for the common good and develop a sense of teamwork and group
consciousness. This does not extend to our species as a whole, which is too vast and
amorphous for such feelings to take hold. With regard to cooperation, our species as
a whole is the least “human” of the three entities. Therefore we might expect our
species to conform better to a dispassionate, indifferent formula than the “more
human” microcosms do.

Shakespeare would approve of stage plays as a microcosm for human survival:
“All the world’s a stage, and all the men and women merely players. They have their
exits and their entrances” (4s You Like It, 2:7).

# # #

Technology, industry, and population, all feed on one another to produce a
dangerous level of development. Bulldozers raze jungles to expand agriculture.
Machinery plows the land, plants crops, and harvests them. The abundant food then
promotes population, more people to make more machines to produce still bigger
crops. This so-called positive feedback runs faster and faster. Agrochemistry produces
fertilizer and insecticides, which make more food followed by more people, who
consume more fertilizer and insecticides and deplete natural resources. People work
in sweatshops and make more computers, which free our time to build more industry
and invent more technology. The processing power of computers doubles every few
years. Everything will accelerate until civilization hits some hard physical limit and
breaks down. The human race may be part of that breakdown.
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All these survival risks are far too complex and chaotic to analyze directly. We
cannot attempt to extrapolate current trends. That would be valid only briefly until
our world encounters a tipping point. After that, trends change suddenly, drastically
and unpredictably. The study of such instability is known as chaos or complexity
theory. The best-known paradigm of chaos is the proverbial butterfly in Brazil that
can cause (or prevent) a tornado in Texas if it decides to flit from one twig to the next.
The butterfly’s tiny slipstream encounters an unstable airflow and alters its motion
out of proportion to its original size. These secondary currents in turn alter bigger
instabilities, and so on until the train of events grows to hurricane size.

Such bizarre causality applies to each single instance. However, in the statistics of
many tornadoes and many butterflies, the number of times a butterfly causes a
tornado offsets the number of times another butterfly prevents one. Thus, for big
samples, the number of tornadoes and butterflies are unrelated on average, as you
would expect. In other words, statistical numbers conform to smooth predictable
formulas despite the chaos in particular instances.

Imagine living in 1900 and trying to anticipate nuclear winter, cobalt bombs, and
global warming. Such predictions were impossible then and are just as impossible
now. Therefore, our formulation for studying long-term human survival is not based
on numerical simulations of future events or on any detailed risk analysis. Instead, it
transcends these imponderables by relying on humanity’s two-part track record for
survival: one part is past exposure to natural hazards, and the other is past exposure
to man-made hazards.

A rough analogy may help here. Suppose you measure the overall properties of a
big machine—inputs and outputs such as power consumption, power delivered,
temperature, pressure, and entropy. Then you apply the laws of thermodynamics
to the machine as a whole and deduce something about its performance without
analyzing all the forces on individual gears and wheels. In principle the detailed
analysis would convey more information, but in practice it may be inaccessible,
too costly, impractical and/or prone to error. Likewise we put aside the details of
world simulation and rely instead on humanity’s dual histories of survival.

Our track record for surviving natural hazards is comforting. Humankind has
survived them for 2000 centuries. After such long exposure, we can surely expect to
survive another 20 centuries, only 1% longer, other things being equal. But other
things are not equal. Our exposure to serious man-made hazards has lasted a scanty
half century. New hazards appear faster than we can safely acclimate to established
hazards. Our job is to balance this huge disparity in exposure and arrive at a best
estimate for our species’ longevity.

Had we known our species’ age in 1900, only the first survival history would
apply, the one for natural hazards. In that case, as we shall see, the formula from this
book reduces to a simpler formula first discovered by astrophysicist J. Richard Gott
[6]. Imagine that you were living in 1900 and discovered Gott’s formula. Using it, you
would have predicted a 90% chance of survival for at least another 22,000 years—
nothing to be concerned about.

For comparison, our ancestor, Homo erectus, lasted 1.6 million years—8 times
longer than our current age. Our cousins, the Neanderthals, lasted 300,000 years—
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50% longer. By all these measures our species is still adolescent, much too young to
worry about survival issues. However, those relatives did not make artifacts capable
of mass destruction, nor did we in 1900. At that time the risks were all natural events
such as asteroid strike or climate change. No man-made hazard was then powerful
enough to consummate self-extinction, nor did anyone expect such hazards in the
future.

Then something extraordinary happened: world population soared, and so did
the pace of technological innovation. Starting about 1950 we acquired the means to
cause or at least contribute to self-extinction. Nature might start an epidemic, but
modern air travel could spread it to remote places with unprecedented speed. Con-
sumption of fossil fuel altered the atmosphere. Human extinction became a feasible
scientific project, perhaps by genetic engineering or robotics. And nobody knows
what is next. We have slipped out of the safe stable equilibrium of past centuries and
are hurdling toward an unknown Singularity. We have the power to forestall hazards
if we anticipate them in time, but when they bombard us too rapidly, anticipation will
fail someday when the big hazard hits. To quote James Thurber, ‘“Progress was
alright; it only went on too long” [7].

# # #

As we shall see, numerical results show that the risk of extinction is currently
3% per decade, while the risk of a lesser apocalyptic event, the collapse of civilization,
is triple that, about 10% per decade, or 1% per year. The magnitude of these risks
is comparable to ordinary perils that insurance companies underwrite. (Perhaps
they should offer extinction insurance!) Both risks are proportional to world popu-
lation. Every time the population doubles, so does our risk. Unless the population
plummets soon, a near-extinction event will likely occur during the lifetime of today’s
infants.

The collapse of civilization will be almost as deadly as extinction. However, for
those who do survive, the aftermath will be a very safe time. Sparse population will
protect outlying villages from epidemics. The biosphere will recover from human
degradation, although perhaps with a changed climate and extinction of many
species.

Ironically, humanity’s long-term survival requires a worldwide cataclysm.
Without it we are like the dinosaurs. They seem to have expired because the big
bolide (meteoric fireball) hit first without warning. Had there been precursors, near-
extinctions, many species might have adapted well enough to survive the big
one. Since humankind will likely suffer a near-extinction event; the probability of
long-term survival is encouragingly high, roughly 70%.

(Incidentally, this high probability bears on Fermi’s paradox: the universe
apparently has a great many Earth-like planets, so why have we not seen evidence
of intelligent life? As Stephen Webb has mentioned [8], one explanation says that
extinction is the normal result when humanoids reach our present phase of high-tech
development. However, some of those exohumanoid species should have high
survivability similar to our own and thus live to explore the galaxy and leave
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footprints. The apparent absence of intelligent life probably has some other
explanation.)

# # #

Think of self-extinction as a job to be accomplished, like digging a ditch. Suppose
it takes 6 man-hours of manual labor to dig a ditch, then it takes 1 man 6 hours, or 2
men 3 hours, or 3 men 2 hours. However, in our case the number of people involved is
not the size of a work crew but rather the entire world population. And the time
involved is not the duration of a job but rather the entire lives of the people. There-
fore, in place of labor expressed as man-hours, we have population-time (pop-time
for short) expressed as billions of people centuries, abbreviated BPC. Thus pop-time
is a measure of total human life worldwide.

(Incidentally, the grand total for all past human pop-time is about 1.7 trillion
people-years, calculated by adding the world’s estimated population for every year
since the dawn of our species. The uncertainty of prehistoric population matters little
because their population was so small.)

Labor to do a job often cannot be accurately predicted. Ditch diggers going out
on a job may not know what they will encounter. The earth may be soft soil, rocky, or
hardpan. Thus, in advance they can only estimate labor with varying degrees of
confidence. They may estimate that a certain ditch will require 4 hours with 30%
confidence, or 8 hours at 90%. Likewise, we can only estimate the amount of pop-
time to consummate extinction at various degrees of confidence. The half-life of
civilization, defined as 50% confidence, will last about 8.6 BPC. This will accrue
in about a century if the population is 8.6 billion. The half-life of the human race is
about 30 BPC. However, this will accrue extremely slowly after civilization collapses,
which will probably happen first.

If hi-tech civilization thrives long enough, there will come a window of
opportunity for sending intelligent life into outer space, ultimately to colonize the
solar system and possibly the galaxy. That window opens when we acquire the
requisite technology, and it closes when we exhaust essential resources. It is difficult
to estimate the time and probability of this opening and closing, but at least our
species will most likely be alive to exploit it if and when it does occur.

Our descendants may colonize the solar system and perhaps the galaxy either
with biological humans or with some sort of conscious artifacts that we regard as
our intellectual descendants (cyborgs, androids, whatever). When these colonial
descendants achieve independence from Earth’s resources, they will then be almost
immune to extinction. Loss of any one habitat will not threaten the others.

# # #

Any formula for human survival will surely conflict with somebody’s worldview,
thereby inviting controversy. It is critical, therefore, that the reasoning be as
thorough and credible as possible. We shall proceed cautiously with many examples
using four very different approaches or viewpoints. All four converge on approxi-
mately the same formula. Four approaches may seem excessive, but the math is vague
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in some places (fuzzy, as mathematicians often say), and the strengths of one
argument compensate weaknesses in another.

One of these approaches has an abstract quality that seems almost unreal because
it mentions nothing about hazards, risk rates, or causality. Instead, it is all about the
moment we observe the entity in question and when that moment occurs during its
life span. Nevertheless, it produces almost the same formula as the other approaches
and provides valuable insight for generalizing the basic theory. This approach stems
from the so-called Doomsday Argument [9, 10], which began about 1983. This argu-
ment comprises the main historical background for our topic, so let us digress briefly
to examine it now.

The main players in the Doomsday Argument are about a dozen scholars,
mostly philosophers and physicists, and especially astrophysicists. In its usual
form the argument goes like this: Starting from the dawn of our species, the
total number of people who have ever lived is about 70 billion. If the world ends
next month, those of us alive now will be among a small fraction at the very end of
human history. On the other hand, if humanity lasts for several millennia and
colonizes the galaxy, then trillions will live. In that case we will be among a tiny
fraction at the very beginning of human history. Both extremes are statistically
unlikely; it is much more probable that we now live sometime in the big middle of
human history.

Let us choose a time in the “big middle” to use as a reference. The most natural
choice is the exact middle, the median, defined as the time when the number of future
lives equals the number of past lives, about 70 billion. To estimate this future, let us
use the worldwide birthrate. It is now about 160 million annually; suppose that it
stabilizes during this century at 200 million/year. Our median future is then

70B = 0.20B/yr = 350 years.

Similar reasoning, which seems equally plausible, gives a very different result. In
1993 astrophysicist J. Richard Gott III independently made the same argument [6]
except that he based his estimates on time instead of counted lives. He noted that
humanity began about 2000 centuries ago, and that we are probably not at the
extreme beginning or the extreme end of humanity’s duration. On this basis (time),
our median future is another 2000 centuries, which is drastically different from the
first estimate, 3.5 centuries, the ratio being 570. As we shall see, this huge discrepancy
is soluble by working from the various approaches mentioned above, each of which is
clear in one aspect and occasionally murky in another.

Meanwhile, the Doomsday Argument continues. Its basic quantity or indepen-
dent variable—such as time or counted lives—has not been decided. Participants
recognize that its choice is crucial, but they have not settled on a criterion. Moreover,
whatever quantity they choose, they must also decide what lives to count. Should
they include future cyborgs? Androids? All conscious entities in our galaxy? Who
(or what) comprises the so-called reference class? Scholars realize that hi-tech risks
are important; hence some say that the reference class should be something like
computer owners, or perhaps people who understand the Doomsday Argument. If
this choice were valid, extinction would be imminent. Whenever we discuss the
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survivability of some entity, that entity must be defined
in such a way that its beginning is known and its end is
clearly defined.

So, although the Doomsday Argument contains a
core of truth, it leaves two ill-defined concepts: the inde-
pendent variable and the reference class. Using inputs
from two other approaches, these problems are
explained and resolved in Sections 1.3 and 1.6 below,
which then make the Doomsday Argument quantitative
and useful. In this formulation the reference class is
always the biological species Homo sapiens and risks
are defined in ways consistent with that choice.

Professor Gott substantiated his survival formula
using data from 44 stage productions advertised in The
New Yorker magazine on May 27, 1993. His example led
me to use stage productions as one of the two micro-
cosms that represent humanity. However, his analysis
was sketchy [11]. To my knowledge, no other doomsday
scholar has used any statistic from the real world. Data
that appear in Sections 2.2, 2.3 and 3.3 below fill this
gaping omission.

One of the most active scholars in the doomsday
group is Canadian philosopher John Leslie. In the intro-
duction to his book [12], The End of the World, Leslie
states on page 3:

“The doomsday argument aims to show that we
ought to feel some reluctance to accept any theory
which made us very exceptionally early among all
humans who would ever have been born [emphasis
in original]. The sheer fact that such a theory
made us very exceptionally early would at least
strengthen any reasons we had for rejecting it. Just
how much would it strengthen them? The answer
would depend on just how strong the competing
reasons were—the reasons for thinking that the
human race would survive for many more centuries,
perhaps colonizing the whole of its galaxy. The com-
petition between reasons might even be modeled
mathematically.”

J. Richard Gott Il

Dr. Gott is a professor of
astrophysics at Princeton
University. He is best known as
the author of Time Travel in
Einstein’s Universe: The Physical
Possibilities of Travel through
Time, 2002, Houghton Mifflin
Books.

He is also well known for his
involvement in the Doomsday
Argument, which he discovered
independently. He claims that his
epiphany came when he visited
the Berlin Wall as a tourist in
1969 and wondered how long it
would stand. Knowing very little
of the geopolitical issues, which
were too complex anyhow, he
looked for and found a principle
that would estimate its future
based on a single datum, its age.
He relates his viewpoint to the
Copernican principle, the idea
that humans are not privileged
observers of the universe, as he is
not a privileged observer of the
Berlin Wall. (Copernicus was the
Polish astronomer who in the
16th century showed that Earth
is not the center of the Solar
System, but rather just a
geometrically unprivileged
planet.)

Prof. Gott received the
President’s Award for
Distinguished Teaching in
recognition of his work with the
National Westinghouse and Intel
Science Talent Search, a
competition for high school
students.

That last sentence succinctly summarizes the project described in this book.
Recall the examples of independent variables discussed above, counted lives and
time. Imagine that these were the relevant ones for human survival. Counted lives
says that extinction is nigh, while time says that there is no problem, and it is too soon
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to worry. These are examples of Leslie’s “‘competing reasons”. If counted lives and
time were the relevant variables, the technique used here would consider the relative
importance of the two and produce numbers for survival times at various levels of
confidence.

# # #

You will see equations in this book, but they are relatively simple and their key
features are described in words. So even if you know little mathematics, you can still
follow the arguments. For mathematically sophisticated readers, full derivations and
details are given in the appendixes. Five chapters follow:

e Chapter 1 derives the survival predictor and its variants from four viewpoints.

e Chapter 2 discusses and fortifies the formulation with statistics and additional
context.

e Chapter 3 shows how to manage divergent risks, essentially Leslie’s “‘competing
reasons”’. In particular, the risk of natural disaster is spread evenly in time—a
volcano is as likely to erupt one decade as another. By contrast, man-made
hazards such as genetic engineering are concentrated in modern times and are
still accelerating. So how best can we choose a hazard rate between these ex-
tremes?

e Chapter 4 adapts the predictor to human survival and presents the main
numerical results. In addition to survival of the human race it includes prospects
for civilization.

e Finally, Chapter 5 relaxes the quantitative discipline and includes conjecture,
opinion, general principles for survival, and a list of serious hazards. With
sufficient awareness we can hope to beat the odds and make our species one
of the more durable survivors in our galaxy. Perhaps we can hang on long enough
for a viable colony to escape somewhere or at least take refuge in an artificial
habitat.
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Formulation

The value of a formalism lies not only in the range

of problems to which it can be successfully applied,

but equally in the degree to which it encourages physical
intuition in guessing the solutions of intractable problems.

—Sir Alfred Brian Pippard

Let us begin by examining the most basic formula for an entity’s survival. The
equation gives its decreasing probability of survival starting at birth. For a stage
production that would be curtain time on opening night. Later we shall adjust that
formula to give the entity’s survival probabiliy starting at a later time when it is
observed alive.

In Chapter 2 we substantiate this simple equation using many sets of statistics,
but for now let us examine a single set to illustrate the concept. This example is a set
of data compiled by Mata and Portugal, which lists the longevity of domestic
business firms in Portugal. Their tabular data appear as points in Figure 1, which
shows the fraction Q of firms surviving after a duration 7'. (The word term can serve
as a mnemonic for 7, but it is ambiguous compared to duration.)

Mata and Portugal had access to annual reports submitted to the Portuguese
Ministry of Employment. Portuguese law requires everyone hiring labor to report
business statistics, so the data include all sizes of firms, even the smallest. Therefore,
bias in the data due to the firms’ size and importance is minimal. The authors used
data for more than 100,000 firms from 1982 to 1992 and distilled them to eight
summary data in their Table 6 under the heading “domestic survival rate”.

If we assume that the business climate is stable, meaning it is the same now as it
was during the lives of the firms in this set, then we can interpret Q as the probability
that a new firm will remain open for business beyond time 7.
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The smooth curve in Figure 1 has the formula
J 1
0= = (1)
J+T 1+T/J

where J is a curve-fitting parameter. In this case J = 4.2 years happens to fit the
points almost exactly.

By itself the fit in Equation 1 is not statistically significant. However, more
statistics in Sections 2.2 and 2.3 agree, and so do two theories in Sections 1.1 and
1.5. The combined weight of all this support makes the formula compelling. Of the
two expressions in Equation 1, the first is more convenient for most mathematics,
while the second emphasizes that the ratio 7/J is what counts, not T and J
individually.

Many later formulas in this treatise are mere modifications and generalizations of
this main equation. It applies to our two microcosms and by inference to the human
race. However, parameter J differs from one entity to another. It differs not only
among broad classes such as stage production and business firms, but also among
categories such as service firms and manufacturing.

It is tempting to interpret J as a gestation period. Since 7T is measured from birth,
negative 7 represents the prenatal period during which hazards can cause miscar-
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riage. This idea extends back to T'= —J, at which time the formula breaks down.
(It gives Q = J—+zero, which is of course nonsense: the operation of dividing by zero
is undefined.) This breakdown might be acceptable, however, if we interpret T'= —J
as the inchoate moment of conception.

However, the real definition of J is something related but different. It is the time
during which the fastest hazard dispatches its victims (as Appendix A explains). For
example, stage productions do not expire as the curtain rises on opening night except
in the most extraordinary circumstance. (Perhaps a meteor strikes the theater at that
moment.) Similarly, business firms do not expire while the owner is unlocking the
door on her first day of business. At some time longer than these absurd extremes,
there is a practical time J in which the faster hazards act. It is related to the actual
gestation period, because any hazard that acts in less time dispatches vulnerable
entities prior to birth, and is therefore never observed in the statistical ensemble.
The next section gives an example. However, nothing prevents J from being longer
than gestation.

As already mentioned, for the Portuguese businesses in Figure 1 the best fit to the
curve is J = 4.2 years. My friend Henri Hodara commented on this number since he
and three partners founded a successful technology firm in 1966. Henri said that 4.2
years is much too long; preparations for their firm lasted only about 6 months.
However, there is another factor: one of the four partners had previously founded
a company in the same market, and all of them had worked together for years. Thus
the founders’ track record for survival was already in place before the corporation
legally existed. Clearly, this makes the concept of business gestation rather fuzzy.
However, 4.2 years may well be reasonable for a business formed from scratch by
people who have never worked together. In any case, let us continue to use the word
gestation as a nickname for J because a fully descriptive name for the concept would
require too many words.

If we put T = J in Equation 1 then we find Q = % In other words, J is also the
median survival time, and indeed a thumb rule for business states that the first 5 years
(close enough to 4.2) are critical. A firm that passes that milestone will probably
succeed.

Note that there is no limit to the duration of a business firm. Accordingly,
Equation 1 does not go to zero at a finite cutoff time. This equation therefore cannot
apply to entities having an inflexible age limit, such as the human body. Nor does it
apply to anything with a known constant hazard rate, defined as a probability of
expiring per unit time. A classic example of the latter is a radioisotope that decays
exponentially with a known half-life, which we discuss in the next section. Instead,
Equation 1 applies best when the risks are numerous and diverse, and/or the hazard
rates are completely unknown, as explained in the following section, the first of the
theoretical methods mentioned earlier. We shall see later that a second theory
produces similar results. More survival statistics in Chapter 2 also substantiate
Equation 1. Taken together, these approaches make a compelling case for this
equation.

As mentioned in the introduction, we shall approach the formulation of huma-
nity’s survival from four viewpoints:
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e survival statistics for business firms and stage productions (first example above,
many more in Section 2.2)

e probability theory based on random hazard rates (Section 1.1)

e probability theory based on our history of survival (Section 1.4)

e Bayesian theory (Section 2.1)

The first approach substantiates the main formula using actual survival statistics
for microcosms. However, it offers no theoretical insight that would help modify and
extend the theory to dual threats, as needed to compute human survival.

The second approach, theory based on hazard rates, shows how to deal with
variable risks, in particular the accelerating technologies that threaten humankind.

The third approach is a revision of the Doomsday Argument, which was briefly
summarized in the introduction. Despite its eccentricity, the argument produces
almost the same formula for mankind’s survival as the other approaches and gives
valuable insight for generalizing the basic theory.

The fourth approach begins with a trivial formula for the probability of an
entity’s age if we already know its duration. It then uses Bayes’ theorem to invert
this formula and obtain what we really want, the probability of duration given age.

In the following section we proceed to examine one of the theoretical approaches.

1.1 MULTIPLE HAZARD RATES

A radioactive atom has a constant hazard rate, a fixed chance of expiring per unit
time regardless of its age. Its familiar decay law is the exponential curve in Figure 2. A
bulk sample of a radioisotope decays by half after a time appropriately known as its
half-life. Atoms that survive the first half-life learned nothing from their experience,
nor have they a will to live. Therefore, their hazard rate remains the same during the
next half-life, and so half of the remainder decays, leaving a quarter. This halving
continues until the last atom vanishes. The dotted lines on Figure 2 mark the
succession of halves, 50%, 25%, 12.5%

Besides radioisotopes, many other things decay exponentially. They include
electric charge on a capacitor that leaks through a fixed resistance, red light pene-
trating blue water, and so forth. In some cases, the decay represents survival of
certain objects, for example molecules in a metastable state, or particles in a beam
penetrating a gas. These objects have no absolute age limit because their parts do not
wear out. Instead, the number of survivors dwindles gradually due to a constant risk
rate as shown in Figure 2. A mundane example is the supply of Harry Potter books at
San Diego’s public library. (They kindly gave me their statistics.) Although books do
eventually disintegrate, the dominant hazard is borrower’s failure to return them, a
fixed probability per loan.

Some critics mentioned exponential decay as a counterexample to the
generalization of Equation 1 (beyond Portuguese businesses). Two of these critics
were P. Buch [14] and E. Sober [15], but they did not understand the underlying
assumptions. Equation 1 pertains to lack of knowledge. If you know the half-life, it is
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not supposed to apply. It does apply if you do not know the half-life or if you have a
mixed sample with many different half-lives (see Figure 3 below). This kind of
probability is a tricky subject: it depends not only on the physical properties of
the system or process but also on what the observer knows about it. You may
know or suspect that a die is loaded but not know which face it favors. From
your perspective the prior probabilities all remain 1/6 until you observe a few
rolls and reassess. Your overall probability blurs the distinction between
indeterminacy (the individual roll of the die) and lack of information (the die’s inner
structure).

Consider a sample of the radioactive element ficticium, freshly prepared in a
nuclear reactor. It has four isotopes in equal abundance with decay rates 1, 3, 5, and 7
per week. (The decay rate equals 0.693 = half-life.) Figure 3 shows the fraction of
ficticium surviving after time 7" measured in weeks. Dotted curves show the decay of
individual isotopes. The bold solid curve shows their average, the fraction of all
ficticium atoms surviving in the mixed batch. The bold dashed curve is a plot of
our survival formula, Equation 1, with J =1/6 week =1.2 days. Over the time
interval shown here, our formula is a fair approximation to the actual survival shown
in the bold solid curve.

Ficticium has more unstable isotopes with greater decay rates (shorter half-lives),
but we are scarcely aware of them because they have mostly decayed by the time the
specimen is extracted from the nuclear reactor, purified, and delivered to the labora-
tory, which is about a day in this example. If the delivery had taken less time, say an
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Steel .
Target carrier

Proton beam

Underground Isotope Production Facility at Los Alamos National Laboratory. This schematic
view shows a proton beam striking a target to make radioisotopes. The target carrier, a steel
box, is surrounded by concrete. A lift in the vertical shaft carries the target into a hot cell above
ground where an operator can manipulate the fresh isotopes without exposure to radiation.
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hour, we would then see these short-lived isotopes decaying. They would make the
initial slope in Figure 3 much sharper and would fit Equation 1 with a much smaller
value of J, about 1 hour. Therefore, we can think of delivery time as a gestation
period, which imposes a maximum on the observable hazard rate. This is one
explanation for the parameter J, although other limitations on risk can make J
greater.

The curves in Figure 3 represent a hierarchy of uncertainties. If you know an
atom’s isotope and the half-life of that isotope, then you know all that is physically
possible to know about that atom’s survival prospect. And yet you cannot predict its
survival time with certainty because its decay is an indeterminate process. All you can
know about the single isotope is its probability of survival, which appears in the
appropriate dotted curve.

The solid curve represents the next level of uncertainty. It tells us the survival
probability of a single atom drawn at random from the batch of ficticium. You know
the isotopic abundances and the half-life of each, but you do not know which isotope
you drew. The same solid curve also represents the surviving fraction of the original
mixture (as we shall see in the next section).

Now consider another case, in which the isotopes are separated into four bulk
samples. You draw one of these samples at random, not knowing which one it is.
However, once you have observed the sample’s decay for a while you can determine
which isotope it is by measuring its decay rate. The remaining fraction does not
follow the solid curve but rather one of the dotted ones for that pure isotope.
Nonetheless, prior to observing its decay, the solid curve was still your best estimate
of the decay, as proven in Section 1.2 below.

Next, suppose you first draw a random isotope and then draw an atom from that
sample. Now the probability that you drew a particular atom is the same as though
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the whole supply had been physically mixed, and so
the atom’s survival probability reverts to that case, the
solid curve again.

Finally, consider the case in which you know
nothing about a sample except that it is radioactive
and something about its preparation time, which lets
you estimate J. Now the dashed curve given by
Equation 1 is your best initial estimate of survival.
All these different kinds of uncertainty could be given
names and carefully identified as we encounter them,
but that seems pedantic. Instead, let us not belabor
these distinctions, but rather let the interpretation of
each case follow naturally from its context. Appendix
A gives the mathematical theory.

1.2 PROBABILITY THEORY: A QUICK
REVIEW

So much for our first viewpoint on the question of the
survival of humankind. Before we move on to a dis-
cussion of the second viewpoint, it is worth refreshing
some basic ideas of probability.

If you roll a fair die, the probability of getting a
5ora6is 1/6+1/6=1/3 because these two faces
comprise a third of all six possibilities. This is an
example of the sum rule, which states that the prob-
ability of either outcome A or outcome B is the sum
of their separate probabilities (Prob(A4)+ Prob(B)).
Likewise, for three possible outcomes, Prob(A4, B,
OR C)=Prob(4) + Prob(B) + Prob(C). (Note that

[Ch. 1

The Trickiest Probability
Puzzle

When probability depends on
what the observer knows, one
encounters some seemingly non-
intuitive situations.

Suppose you are a contestant
on a television show. The host
offers you a choice of three boxes.
One of them contains a valuable
prize, but the other two are empty.
Box 3 is painted your lucky color, so
you choose it. To your surprise, the
host opens Box 1 and shows you
that it is empty. Then he offers to
let you change your bet from Box 3
to Box 2. Should you do it?

For a moment you are
suspicious. If you made the lucky
choice, they can avoid payoff if
they trick you to change your bet.
But no, the show has a reputation
to uphold, and surely some fans are
keeping statistics. Besides,
audiences like to see people win.
You conclude that the offer is
fair—part of the original game plan
before you made your choice.

Should you stick with Box 3 or
switch your bet to number 2? The
solution appears on p. 26.

the logic relations AND, OR, NOT, XOR, and so on are usually spelled with capitals
in formal logic expressions.) In general, you add the probabilities of outcomes to
which you are indifferent.

If you flip a coin and roll a die, the probability of getting both six and tails is
1/6 times 1/2=1/12. In general, the probability of multiple independent outcomes
is the product of their individual probabilities. Independence means that the
occurrence of one event has no effect on the probability of others, just as the coin
and die have no effect on one another. This is an example of the product rule. For
three possible independent outcomes, 4, B and C, the product rule states that
Prob(4, B, AND C)=Prob(A4) x Prob(B) x Prob(C).

In a nutshell, AND means multiply; OR means add. Much of probability theory
follows from repeated applications of these two rules. For example, let us calculate
the probability of rolling a pair of dice and getting six. Suppose the dice are labeled J
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and K. Let the symbol (4, 2) denote the probability of getting 4 on J/ AND 2 on K.
Applying the product rule gives

(4,2) =1/6 x 1/6 = 1/36.

Likewise, any other combination has the probability 1/36. So the probability of
rolling 6 with the pair of dice is

(1,5) OR (2,4) OR (3,3)...(5,1).

Finally, invoke the sum rule and replace each OR with a plus sign to get the
probability of rolling a 6 with a pair of dice:

Prob(6) = (1,5) + (2,4) + (3,3) + (4,2) + (5,1) = 5/36.
# # #

We can apply these same rules to a survivability problem. Suppose that an entity
is either type 4, B, or C, with probabilities P,, P, and P.. The three types have
survivabilities Q,, @, and Q. respectively. If you draw one such entity from a
random ensemble, then the probability that it is type B and that it survives to age
T is

Prob(BAND T) = P, x Q,,
according to the product rule. But suppose you do not care whether the entity is type
A, B, or type C; you just want to know its survivability Q(7") regardless of what type
it is. In this case you apply the sum rule to all three products like the one above and
find
Q(T) = Prob(4 AND T) + Prob(B AND T) + Prob(C AND T)

:(PaXQa)—’_(PbXQb)J'_(PcXQC)
= weighted average of the Qs.

The third line may be almost obvious, but it is worth noting anyhow: the survivability
of a random entity is simply the weighted average of the survivabilities of the subsets
in the original ensemble.

Suppose you draw samples from an ensemble in which the entities are all the
same type, but you do not know which type. Then the decay you observe will be Q for
the type you actually draw, not the average in the equation above. Nonetheless, this
average is your best estimate prior to the drawing. In other words, actual statistics
may deviate markedly from theoretical prior probability even when both are correct.
One of the examples we have just discussed is like that. You first drew a pure isotope
of ficticium, not knowing which isotope it is, and found that its decay matched one of
the dotted curves in Figure 3, rather than the solid curve that represented the average.
However, prior to observation the solid curve was still your best estimate. In this case
the Ps are merely probabilities, but in a mixed ensemble they are actual abundances
of the various types, in which case theory and statistics do agree.

All the theoretical curves, which began with Figure 3, are based on ignorance of
real hazards. However, real hazards do exist whether we know them or not, and they
produce the survival curves that we see, such as Figure 1. Thus we might reasonably
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expect sizable discrepancies between theory and statistics. Surprisingly, however, they
conform quite welll How can we be so lucky? Very likely it happens because human
intuition is quite skilled at sensing bias. In the real world, any predictable risks,
biases, or cutoff ages would be well-known lore about the entity in question, in which
case anyone making a theoretical model would have either chosen a different entity or
modified the formulation to take the bias into account. Sections 1.5 and 1.6 below,
especially the story of space-traveler Zyxx in 1.6, include just such modifications.
Chapter 4 extends them to include modern man-made hazards to humanity.

1.3 CHANGING HAZARD RATES

Let us now move on and consider the case in which hazard rates are known to
be changing, as they have been for humanity during the past 50 years. Calendar
time T is no longer appropriate in Equation 1 since it does not reflect the accelerating
risk. To quantify this, consider old-fashioned utility meters that tally consumption of
water, gas, and electricity. Their dials turn rapidly or slowly in proportion to the
rate of consumption. By analogy consider a virtual meter that tallies consumption
of luck, in other words, risk exposure. To my knowledge there is no standard
name for this quantity, so let us call it cumulative risk, or simply cum-risk (kewm-
risk) for short, and use the symbol Z (as in hazard) for the meter reading. Like the
utility meter the virtual meter’s dial rotates at a rate that represents the current hazard
rate.

~

breaking
Cumulative-Risk Meter

Nh ¥ |

If the hazard rate is constant, our cum-risk meter turns at a constant rate; in
effect it reverts to a clock, and so Z = T'. Thus it seems likely that the generalized
version of Equation 1 should simply replace T by cum-risk Z. The argument given in
Appendix A.1 shows that this is indeed the case:

7
S J+Z 1+ Z)J

0

The parameter J must also refer to cum-risk rather than calendar time.
Depending on the hazards, one can estimate Z in various ways. For example, one
might keep a log of dangerous events and score each of them from 1 to 10 depending
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on its severity. Then Z would be the running total of all these scores. Finding a
suitable Z for human survival will be the main subject of Chapter 4. That cum-risk
necessarily involves world population and the world economy.

1.4 POSTERIOR PROBABILITY

As mentioned above, age is a track record for an entity’s survival, but age does not
appear in Equation 1 for Q. Instead, O gives survivability from birth without refer-
ence to any later observation of age. In other words, Q is a so-called prior probability,
which applies before any observation alters the odds. If we know the entity’s age, we
want an equation for the posterior probability, which applies after the thing is
observed alive at age A. (We are stuck with these two asymmetric terms because
of their long usage.)

Let G denote the posterior probability of survival, and sometimes let us expand
the notation to read G(F | A). The parentheses and the vertical bar are a standard
notation from probability theory that tells us what quantities are required to evaluate
G, in this case the entity’s future F after we learn its age A. In general, Prob(X | Y)
means the probability of X after we know the value of Y, in other words, the
probability of X given Y.

Appendix B derives the formula for G. The trick is to calculate the formula for
Q(T) in two different ways and then compare the results. The first way jumps directly
from time zero to 7, which is Equation 1. The second way inserts an intermediate
time at which an observer determines the entity’s age 4 and inquires about its future
F =T — A, hence

T=A+F

The result in Appendix B is the desired formula:
J+ A p 1

G(F|4) = _ _ . P—A+J 2
) = T F = P F T F/P + @)

For brevity the third expression changes A4 + J to P for past. If a case arises where J
represents gestation exclusively, then the past P is the lifetime measured from con-
ception, unlike age A, which starts at birth. (Many papers use the letter P to denote
probability, so we must be careful to avoid ambiguity. In this treatise any probability
will have other letters following P.)

In the case of human survivability, J is much shorter than the uncertainty in 4,
too short to have an effect on the numerical estimates. Nonetheless there is good
reason why we have dwelled on J in the equations above. It affects the shape of the
curve in Figure 1 and in similar figures that follow. These figures in turn support the
overall theory and consistency of the four approaches described in the introduction to
this chapter. Leaving J unresolved would cast a shadow of doubt on our whole
formulation.

Equation 2 above is related to Equation 6 in Gott’s original paper [6]. Let us
therefore call it Gott’s predictor, hence the symbol G. However, he derived the
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equation by different means described in the next section, and his result, Equation 5,
is slightly different.

A useful variant expresses the minimum future in terms of a specified level of
confidence G. Solving Equation 2 algebraically for F gives the expression:

F=(1/G-1)xP

This form shows that an entity’s future at confidence G is proportional to its past. The
longer it has already lived, the longer we expect it to survive. This seems counter-
intuitive only because we are accustomed to things whose vital parts wear out, or its
ingredients decompose. Few of us will live 100 years, and few of our cars will exceed
200,000 miles. My prescription drug expires in three years, and milk cartons are
stamped with expiration dates. Future prospects for such material objects and for
living creatures dwindle with age.

Gott’s predictor applies to such things only when we have no idea what their
durability might be. However, this situation is rare because we usually have an
approximate sense of the durability of physical objects: mountains last for epochs,
aspirin a few years, and insects only weeks.

Prospects for other entities do indeed improve as they age. For example, ancient
nations (Spain, France, China) stay intact while newer ones disintegrate: the United
Arab Republic (Egypt, Syria, Yemen) lasted only three years, and both the Soviet
Union and Yugoslavia were relatively short-lived. Infancy is a time of extreme
danger. Many stage productions close after one performance. New businesses have
high mortality, a median life of only two to four years [13, 16, 17]. (Such a short time!
Do people know this when they start a business?) To reassure their customers and
suppliers, old businesses advertise the year they were founded: “Serving greater
Middletown since 1897.”” Maturity indicates that the worst hazards are under control,
and their immediate future is secure.

Many entities outlast both their replaceable physical parts and the people
involved. They include such things as organizations, systems, processes, phenomena,
political parties, research stations, Zeitgeist, ethical standards, and extended open-
ended activities like the space program. None of these entities has a characteristic
lifetime: each may survive days or millennia. Hence, our theory applies well to them.
It also applies to plant and animal species because their survival prospects are
unrelated to the longevity of their constituent organisms. Cockroaches have pro-
duced about a billion generations and counting. By contrast, Neanderthals lasted
only 10,000 generations. Like the other entities, species’ future prospects improve
with age as they adapt to their environment and demonstrate their ability to survive
changing conditions.

Let us use 10% risk as a reasonable threshold for alarm. That means 90%
survival confidence. Putting G = 9/10 in the equation above gives

1
F(90%):<30—g>><P—§ That is ...

Entity’s future with 90% confidence > 1/9 of its past.
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At the opposite extreme, 10% survival confidence, we put G = 1/10 in the
equation F = (1/G — 1) x P above and find the minimum future F equals 9P. The
90%—-10% range of uncertainty from P/9 to 9P is thus a factor of 81, much broader
than we would like, but the best we can expect when so little is known.

The near future in the above expression is much more important than the
long term at 10% simply because the future P/9 is imminent, allowing little time
for rescue efforts or other changes. By contrast lots of changes occur during time 9P,
which is ample to remove hazards and revise estimates of survivability.

When F = P, we quickly see from Equation 2 that G = %, which makes
P =J + A its median future. Accordingly, in an ensemble of entities of age A, half
will survive for a future F = P. We shall use the following pair of benchmarks in later
examples:

F(90%) = P/9
(90%) /} )

F(50%) = P

The median is one quantity that summarizes the overall size of a set of random
quantities. Another summary quantity is the average, usually called the mean in
probability theory. We tend to think of median and mean as being very similar, sort
of middling. However, in our case the mean future is infinite. (Appendix C explains
why, if you are interested.) This seems very odd, but a numerical simulation displays
its true meaning. Pseudorandom values of G were drawn from a uniform distribution,
0< G <1, and corresponding futures F were calculated using the equation
F=(1/G—1) x P above with P = 1. Sample sizes ranged from ten to a million.
The results of this simulation appear in Table 1 below. Obviously each finite set of
entities has a finite mean future, simply the sum of the futures divided by the number
of them. However, as the sample size grows, the mean fluctuates randomly while
increasing very slowly. There is no end to this process; the mean never converges to a
finite value. In general the word infinite is simply an abbreviation for this sort of
endless growth that never converges to a limit.

Table 1. Behavior of the mean future as sample size grows. (The number following E simply moves the
decimal point. For example, 4.66E—5=0.0000466.)

Sample size 10 100 1,000 10,000 100,000 | 1,000,000

Average future 7.40 4.25 6.35 7.03 10.66 71.38

0.0079 5.63E—-03 | 2.43E—03 | 6.23E—05 | 5.04E—06 | 1.88E—06
Three least futures 0.639 63.76E—02 | 4.16E—-03 | 1.73E—04 |2.29E—05 |2.28E—06
1.4697 4.81E—-02 | 5.84E—03 | 3.06E—04 | 4.66E—05 |3.73E—06

8.66 35.9 414 1.00E+03 | 3.09E404 | 1.42E+05
Three greatest futures 21.32 441 427 1.91E+03 | 3.59E+04 |1.43E+405
32.54 88.7 799 7.90E4+03 | 3.95E4+04 |6.01E+07
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Critics have cited the infinite mean as an objection to Gott’s approach. However,
that is not valid as Table 1 shows. An actual statistical ensemble is always finite, as is
its mean, even if the sample is a million as in the last column of the table. If there are a
million humanoid species in our galaxy, there is no danger that their mean future will
actually be eternal.

Moreover, Appendix C shows that the formula for the mean is just on the verge
of convergence. Any slight trend toward obsolescence or any gradual decline in
vitality, however small, tips the balance to a finite mean. Such aging processes are
probably always present in small ways that we do not know how to formulate. Let us
therefore regard mean future as a soft infinity. More discussion of soft infinities
appears in Appendix D.2 especially the discussion of Equation D-29.

In Section 2.3 below, our database is statistics of theatrical productions in
London. It includes many that are 400 years old, mostly Shakespearean. One
play dates back to the 15th century. London, however, was an important town in
the 10th century and surely citizens of that time performed some sort of shows on
stage. Recorded drama dates back to Play of Saint Catherine, Dunstable, about
1110. If the mean duration were truly infinite, we should expect an occasional
performance from that time, but we find none. The gap from 10th to 15th century
represents a correction to the mean from infinity to a duration that is long but
finite.

Likewise, few businesses are ancient. Possibly the oldest surviving corporation is
the Swedish copper-mining company Stora Kopparberg (great copper mountain)
which merged with a Finnish paper manufacturer in 1998 and became Stora Enso
Oyj. This company was in business prior to 1288. Other ancient businesses include an
Italian wine from 1385, Antinori, which has been a family business for 26 genera-
tions. If mean durations were infinite, we should expect to find surviving businesses
that were founded in biblical times.

If everything loses just a little bit of vitality with age, then our theory
represents an ideal age limit that is never quite attained. Real entities expire a bit
sooner. To the extent that this applies to humanity, my survival estimates are some-
what optimistic.

# # #

This whole treatment of posterior survivability applies equally well to the case of
changing hazard rates expressed in terms of cum-risk Z. Just as time 7" equals past
plus future, P + F, cum-risk Z equals Z, + Z;. Then, just as Equation 1 led to 9, the
equation Q = J/(J + Z) in Section 1.3 leads to

V4 1

G(ZNZ,) = P = 4
(Zr12,) Z,+7; 1+27,/Z, )

In other words, cum-risk Z replaces time everywhere it appears in Equation2. This is
a straightforward generalization since time is simply a special case of cum-risk in
which the hazard rate is constant.
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1.5 PRINCIPLE OF INDIFFERENCE

Let us now proceed to our third approach to survivability questions.

A guy by the name of Guy was crossing a street one day, when he found a die
lying in the gutter. Its cubic shape looked accurate enough, and its corners were not
chipped, so he kept it. (It so happens that Guy was writing a book with six chapters,
and the die would be a big help in organizing his material.) He saw no visible defect,
and thus assumed that successive rolls would bring up each of its six faces with equal
frequency. This is a classic example of the principle of indifference: If a process has N
possible outcomes, you may be justified in assigning probability 1 /N to each of them,
especially if you look for bias that would favor one outcome over another, but find
none.

Some scholars have declared unequivocally that the principle of indifference is
discredited. What most of them probably mean is that nobody has mathematically
defined a search for bias that fails to find any. Many of these same scholars could be
caught off guard during their leisure time and enticed to play a game for modest
stakes using a die of unknown provenance.

Some theorists define probability strictly in terms of the frequency of outcomes
following repeated trials. For them indifference has no meaning. Most of us use a
more relaxed definition, which allows best estimates prior to any trials. (Hopefully,
we can discuss probability of human extinction without a requirement for repeated
trials!)

As Guy played with his die without finding any bias, he gained more
confidence in its fairness. He conjectured that it came from a discarded child’s game
and fell from a trashcan. Since manufacturing defects (perhaps an off-center bubble
inside) are rare, Guy’s confidence was high at the outset and higher after visual
inspection. Yet the die might still be biased somehow. If he wanted more confidence,
he could drop it in a glass of water many times to see if one number comes up too
often.

The amount of confidence we demand depends on the stakes. For example, when
Guy has lunch with five friends, one random member of the group chooses the
restaurant. For that decision he would be willing to trust his die with no test at
all. For serious gambling he would probably test the dic in a glass of water.
However, if diplomats are using dice to settle international disputes, they would
surely use the water glass plus other safeguards against hi-tech deception. (After
each session they would smash the die to show that no mechanism was hidden
inside. There could be a micro-motor that moves a tiny weight off center and back.
Pips on the die would double as electric contacts. A deceptive negotiator might have a
dry cell up his sleeve, with which he secretly activates the motor.)

Perhaps a logician will someday take these ideas and organize a formal treatment
of indifference based on confidence that approaches 100% as one test after another
fails to find any bias. For now let us simply state the first of two principles to be used
below in our third approach to the survivability formula:
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Solution to the Trickiest Puzzle

Most people think the prize is just as likely to be in Box 2 as in 3, in which case it makes
no difference whether you switch your bet—the principle of indifference again. We have
stressed cases in which this principle holds; however, this simplistic version fails. If you switch
your bet from Box 3 to 2, you double your chance of winning!

If you stick with Box 3, then no matter where the prize is, the host has at least one
empty box he can open, which is all he needs. Consequently, his opening Box 1 gives you no
information about Box 3, and so your chance of winning remains 1/3, which leaves 2/3 for
Box 2. If this explanation seems too simplistic, read the detailed analysis below. In the end it
uses statistical indifference to obtain the correct answer, but this time we choose the
alternatives carefully.

If your initial choice, Box 3, happens to have the prize, then the host must choose
which of the other two boxes to open. Let us say that he decided prior to the show by
flipping a coin, which removes any chance of bias. You do not know the outcome, so from
your viewpoint there are three random variables: the result of the coin flip; which box the
host opens; and the important one, which box holds the prize. These have 18 combinations
represented by cells in the three-dimensional array below, one table for each outcome of
the coin flip. At the outset we eliminate 6 combinations, the ones labeled X0, in which the
host would open the box with the prize. This leaves 12 equally probable combinations, half
of which will be eliminated in the steps that follow.

Heads Tails
Box with prize ... Box with prize ...

: 1 2 3 : 1 2 3
- 1 X0 1/6 1/6 ] 1 X0 1/6 X1
%

o (]
i 2 X2 X0 X1 g 2 X2 X0 1/6

o
< B
3 3 X2 1/6 X0 3 3 X2 1/6 X0

[aa]
o
Prize 0 23 13
prob’ty

When you choose Box 3, that invokes the coin flip, which eliminates the two cells
labeled X1. When the host opens Box 1, that eliminates the four remaining cells labeled X2
in the Box 1 columns. Six equally likely combinations remain, which are labeled with their
probability 1/6. Total the columns to find the prize probabilities at the bottom right.

Note that this argument ends by applying the principle of indifference to the final six
possibilities, but this is a sophisticated application of the principle unlike the simplistic one at
the outset. This process of repairing indifference when it fails is essential to our formula for
human survivability. Another example is a story in Section 1.6, the second one, in which
space-traveler Zyxx repeatedly finds flaws in her assumptions of indifference, but each time
she finds a way to restore it.

To finish the story, you make the mathematically correct choice and change your bet to
Box 2. But you lose; by dumb luck the prize is in 3. You should have been faithful to your
lucky color!
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Logic alone does not guarantee the principle of indifference. However, the human
mind is skilled at sensing biases (if any exist), and diligent effort to find them can
make the principle workable.

# # #

The principle of indifference got its name from the famous economist John
Maynard Keynes. This name suggests that somebody does not care about the out-
come. This is unfortunate when applied to human survival, since most of us have a
definite preference whether or not humankind survives. Of course Keynes was using
the term indifference in its statistical sense rather than an emotional one. In prior
centuries the name was principle of insufficient reason, coined by Pierre Simon
Laplace. This name suggests that an investigation has occurred, and any reasons
for possible bias were deemed insufficient. Only then are equal probabilities a reason-
able default assumption. This is exactly how the concept is used here; hence the old
name seems more appropriate.

Let us return to Guy when he met five friends for lunch, and he volunteered his
untested die to decide which of the six would choose the restaurant. Before the roll,
one of the friends lines up the others and assigns them numbers from one to six. Now
suppose that the die is loaded in the extreme and usually brings up four. Is the choice
of winner still fair? Yes! The unsuspecting group lined up in random order where each
one was equally likely to be number four. A physical bias is not enough to nullify
indifference. In this case a dishonest organizer would have to roll the die furtively a
few times prior to the lineup and then take the fourth position himself. This could
be very awkward if numbers 3 and 5 are having a discussion. The point is that

observation

I age A future F=3A ———|
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Thing is alive at future F=3A with probability ]1.
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a1 " a2 " a3 " o4
Thing is dead at F=A/3 with probability 11;
hence alive with probability %.

Figure 4. Timelines for Gott’s
survival predictor.



28 Formulation [Ch. 1

indifference is robust. More than one factor must conspire to nullify it, and this may
be one reason why indifference works better than you might expect in the examples in
Chapter 2.

# # #

A statistician named Stacy was strolling through an unfamiliar part of town one
hot day, when she stopped at Murphy’s Tavern for a pint of ale. Since she was
working on survivability theory, Stacy naturally wondered about the tavern’s
long-term prospects. No sign in the window gave any hint. (Neither “Grand opening
at our third location”, nor the desperation sign “Coming soon, karaoke every
Saturday night”.) Stacy saw no competitor nearby, but neither did she explore
all the streets in the proximity. The barmaid was a new hire with no helpful
information.

On the wall inside was a photograph of the staff on their first day of business. The
photo was dated, so Stacy was able to calculate the tavern’s age. She has now
forgotten the actual age, but no matter, she just calls it 4, which becomes a parameter
in her equations that follow. This was Stacy’s only clue to survivability, not much, but
age is a track record for survival. If Murphy’s were thirty years old, Stacy would be
surprised to find it expired next week. On the other hand, new businesses have high
mortality. If Murphy’s were only a week old, Stacy would be surprised to find it open
for business thirty years hence.

While sipping her pint and pondering survival, Stacy took a napkin and drew a
timeline with Murphy’s opening night at the left end and its eventual demise at the
right as shown in Figure 4a. Then she divided the timeline into quarters. Suppose that
by some remote chance she arrived exactly at the end of the first quarter, the point
labeled observation in Figure 4a. Then Murphy’s future would be F = 34, the
remaining three-quarters. But the chance of that is infinitesimal because time is a
continuous variable, thus never exact. To get a finite probability, suppose Stacy
arrived anytime during its first quarter as in Figure 4b. The labels 4, 34 and F
would then shift in ways that make F > 3A4. In other words, Murphy’s would still be
open for business at F = 34.

So what is the probability of this outcome? Following Gott [6], let us invoke
indifference and assign equal probabilities of 1/4 to Stacy’s arrival in each of the four
quarters. This gives us a definite prediction: with 25% confidence Murphy’s will be in
business at future time F = 34.

This reasoning aroused controversy. Steven Goodman, a professor of oncology
and a biostatistician, sternly criticized it in a letter to the editor of Nature [18]: “If we
are completely uncertain about the future [time] 7', then we are equally uncertain
about the cube of that duration 7°.” To pursue his objection, let us define U = T°.
Goodman then proceeds to assign equal probability to equal intervals of U obtaining
entirely different results than those of Gott. However, this is not valid. Suppose you
watch a movie in which the frames are equally spaced in increments of U. At first the
action is so frantic you cannot perceive what is happening. Later it slows to a normal
pace, and finally to a boring snail’s pace. Suppose you divide the movie’s U-duration
into quarters. Prior to watching it, you make a bet on which quarter has the car chase.
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You would surely bet on the first quarter simply because it has most of the action.
Another event that would most likely fall in the first quarter is the arrival of an
observer inquiring how long the movie has been running. Thus, statistical indifference
fails if it is based on U instead of T, simply because the world runs on 7', not on U,
and so the counterexample is not valid.

Goodman again: ‘“‘there can be no meaningful conclusions where there is no
information.” But age is information. Suppose you have an atom of quacksilver,
and you learn that it was created in a nuclear reactor a fortnight ago. This
datum alone tells you that its half-life is probably a few days at least. Then suppose
you learn that quacksilver has only two isotopes, Q' with a half-life of six hours,
and Q'”7 with a half-life of four years. Now you know with practical certainty that
the atom is Q'”7 and you can calculate its future survival and other properties
accordingly.

Goodman one last time from the same letter to the editor of Nature: “The labors
of scientists to predict such things as the survival of the human species cannot be
supplanted by statistical arguments.” Wrong again. The statistical arguments are
more reliable than the labors of scientists because our biosphere, technology, and
behavior are too chaotic and complex for scientist’s labors to produce any credible
prediction. Again, try to imagine somebody in 1930 forecasting global warming,
nuclear winter or genetic engineering.

# # #

Back at Murphy’s tavern, Stacy had reasonably assumed probability 1/4 for her
arrival in the first quarter of its lifespan, which implies F > 34. This estimate was
rough since her investigation of the tavern’s business prospects was brief. Later, if she
happened to overhear Murphy talking with his bookkeeper, she might alter this
forecast, perhaps drastically. That posterior information would override indifference.
However, suppose Stacy becomes a regular customer and chats with people, eaves-
drops a bit, and explores the neighborhood. If nothing has any bearing on Murphy’s
survival, then she gains confidence in statistical indifference just as Guy gained
confidence in his scavenged die after playing with it for a while. In like manner
Section 2.2 below examines statistics of microcosms for humanity. There again we
gradually build up confidence that statistical indifference applies to them and, by
inference, to humanity.

Figure 5 shows the survivability curve for Murphy’s, the confidence G plotted
against the ratio of future to age, F/A. So far there is only one point on that curve; as
discussed above it is F/4 =3, G = 25%. Now let us find more points.

With probability 1/4 Stacy’s arrival may occur during Murphy’s last quarter,
Figure 4c. Then age 4 exceeds the duration of the first three quarters, and Murphy’s
will have expired at future time 4/3. The complementary outcome is that Murphy’s
will be in business at F = A/3 with probability 3/4. This also appears in Figure 4.
Using the usual notation (x, y) for points on a graph, this one appears at (1/3, 75%).
If we divide the timeline into other fractions, we get more points. In particular,
Stacy’s arrival is equally likely to occur in either half of the tavern’s duration. The
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first half has probability 50%, in which case the future exceeds the second half, which
lasts for time A4, and thus we get a point at (1, 50%).

Obviously quarters and halves are just examples. To find a general formula, let G
denote any arbitrary fraction. With probability G, Stacy arrives at Murphy’s during
the first fraction G of the tavern’s duration, in which case its total life exceeds 4/G.
Subtract A, the time already lived, and the result is its minimum future F:

F=A/G— 4

This is the equation plotted in Figure 5 below. In the first example above where G = %,
the term 4/G = 4A. If we subtract 4 from that then what remains is the future
F = 34 with probability 1/4, as before.

Solving the equation above algebraically for G yields the result

1
G:m (5)

This is Gott’s original predictor, which is just like Equation 2 in Section 1.4, except
with A4 instead of P = 4 + J; in other words, the gestation period J is missing. So
which equation is correct? The absence of J is a paradox, but a soft one that we can
resolve.

Equation 2 in Section 1.4 traces all the way back to the survival of Portuguese
businesses, Equation 1. Moreover, it also fits the survival of many businesses and
stage productions, as we shall see in Section 2.2 below. However, the survival of all
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these entities depends in part on many factors besides age: economic conditions for
one, public taste for another.

By contrast, Equation 5 above is based only on hypothetical observers who
inquire about age. They are profoundly ignorant of everything else, even common
sense. Since they know nothing about Murphy’s, they cannot know J because it is a
property of Murphy’s. They do not realize that Murphy’s risks involve some mini-
mum delay for hazards to develop, perhaps a month for a new competitor to open
across the street, or maybe an hour for a destructive drunken brawl to develop. Nor
do they realize that preparations for opening a business already comprise a track
record for survival.

Since none of this went into Equation 5, we cannot expect perfect agreement with
Equation 2 in Section 1.4. Clearly the latter with P = A4 4 J gives the better estimate
whenever we have some idea what J might be, even a vague one. What is remarkable
is that the similarity is as strong as it is, as was discussed in the last paragraphs of
Section 1.2. What Gott’s indifference formula has given us is another reassuring
viewpoint plus the general form of the basic equation. Without Equation 5, we might
not have used Equation 1 to fit the statistics. Instead we might have contrived some
arbitrary fit that lacks theoretical support.

As mentioned before, gestation has no effect on human survivability because J is
much less than the uncertainty in 4. Nevertheless, it was worth dwelling on the
subject in order to gain a sense of theoretical closure and the reassurance that goes
with it.

Finally, note that the formulation in Figure 4, which leads to Equation 5, derives
posterior probability (after observation) directly without reference to any prior
probability. As discussed in Appendix B, the unique prior that corresponds to
Equation 5 is simply Q = 1/7, which is improper but usable anyhow.

# # #

Back at Murphy’s tavern Stacy stopped in the lady’s room on her way out. A
photograph in the hall showed what happened one Saint Patrick’s Day. A mob of
rowdies came wearing orange shirts. After the inevitable brawl the floor was littered
with broken furniture and bottles. What would normally be Murphy’s most profit-
able night of the year became a disaster. Since the tavern survived, Stacy estimated
that the brawl should count as about four normal years of demonstrated surviva-
bility. That was just a guess based on her uncle’s tavern and the troubles it endures.
However, the guess is certainly better than no correction. Stacy guessed another year
for gestation and incremented the tavern’s age by five years in the formula calling the
sum effective survival age.

This example suggests that Gott’s survival predictor (GSP) need not be strictly
limited to calendar time. The original formulation in Figure 4 was based strictly on
Stacy’s arrival at a random time, but that was before she knew anything about the
tavern. Now she has a bit more information. Next let us formalize and generalize this
intuitive adjustment.
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Imagine that a race of exohumanoids has been watching Earth out of
curiosity for the past two billion years. At first they stopped by every 34 million
Earth years to check what geology was doing and whether the cyanobacteria
(blue-green algae) had modified their swim stroke. But now with hi-tech humans
racing toward the Singularity, their curiosity has peaked and they stop by every 267
days.

Whenever the word spreads that something interesting is likely to happen,
knowledgeable observers come around to watch. Interesting times also tend to be
hazardous. People now doing research in human survival are probably doing it only
because they live in a century when our survival is threatened. Had they lived in the
19th century, chances are their thoughts would never have turned to this line of
inquiry.

Recall that Z denotes cumulative risk (Section 1.3). In a stream of observers,
individuals are likely to come more often when risky events are happening. In other
words, observers arrive at more or less equal (on average) intervals of Z rather than
T. The individual who applies Gott’s indifference theory is a random member of this
stream. This observer replaces Stacy’s timeline for the tavern, Figure 4, by a cum-risk
line, and the equations that follow remain the same except that past and future are
expressed in terms of cum-risk rather than calendar time:

1
G(Z/ ‘Za) - 1+ Zf/Za
Here Z, refers to age measured in units of cum-risk just as Z, in Equation 4 refers
to past Z, = Z, +J. Moreover, the equation above relates to Equation 5 just as
Equation 4 does to Equation 2 in Section 1.4.

This argument based on a Z-line is rather weak. After postulating a stream of
observers, it then presumes to second-guess their motives and schedule. For this
aspect of our theory, the arguments in Section 1.3 above and in Appendix A are
stronger. That is how it goes in this formulation: each viewpoint fills a weakness in the
others. (This theory definitely is not ““one for the book” in the sense that Paul Erdos
used that expression [19].)

# # #

Now we have the essential piece that was missing from the original
Doomsday Argument discussed near the end of the introduction. People were
applying indifference indiscriminately to the wrong quantities. The original
random variable was our human serial number. If we divide that range into
quarters like the timeline for Murphy’s, then almost all of the risk falls in the
last quarter. People who lived in the other quarters were incapable of self-
extinction; therefore, indifference cannot apply to serial numbers. The same holds
if Gott’s timeline is applied to human survival: when divided into quarters, nearly
all of the risk again falls in the last quarter. So again, indifference cannot

apply.
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Human Serial Numbers:
1 2 0 s 64,486,347,666 - - 70,467,049,777

Adam Will

Professor Gott stated the same thing in different words. He stressed that the
moment of observation must be an ordinary moment in the life of the entity in
question. This excludes humankind from his formula because recent decades are
far from ordinary. My contribution stems from the observation that we can revive
the theory by using a measure of cum-risk instead of time. On the cum-risk scale the
present moment is ordinary because equal intervals of cum-risk do entail equal risks
although unequal times. Finding a suitable cum-risk for man-made hazards requires
considerable research, however, and that is the main subject in Chapter 4.

# # #

The principle of indifference is not the only probability rule that has fuzzy
conditions of validity. Another instance is Benford’s law, which gives the statistics
of the leading digits in numbers that are measurements of something, whether they be
physical constants, scientific data or prices of merchandise. Benford’s law has trapped
embezzlers and tax evaders who have cooked their books with fictitious numbers that
do not obey the law. Table 2 below gives the frequencies: the leading digit 1 occurs in
30% of the data, 9 in only 5%. The law has an interesting invariance: if it holds for a
list of prices in dollars, then it still holds when these prices are converted to pesos or
yen.

Of course, Benford’s law does not hold for every entity. For example, telephone
numbers fail because they do not represent measurements of anything; instead, they
are assigned arbitrarily like names. There are other exceptions: heights of adult
people expressed in inches, almost always start with 5, 6 or 7 simply because the
range for normal adults is about 56 to 77 inches. As with the principle of indifference,
you must apply some common sense before using Benford’s law. In both cases, Gott
and Benford, your ability to predict the law’s success or failure grows as you study

Table 2. Benford’s law for frequency of leading digits.

Leading digit 1 2 3 4 5 6 7 8 9

Frequency, % | 30 | 18 12 | 10 8 7 6 5 5
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examples and come to know bias when you see it. (In his opinion on a pornography
case, justice Potter Steward of the U.S. Supreme Court famously wrote that
“hard-core pornography” is hard to define, but “I know it when I see it.”)

# # #

The principle of indifference, aka insufficient reason, may apply in different
circumstances. First, the observer may be a random member in a stream of observers
as discussed above. Second, the observer may have tried but failed to find clues to
survival, in which case indifference is justified. This was Stacy’s case at Murphy’s
tavern before she learned about the brawl on Saint Patrick’s Day. Third, the observer
may be so overwhelmed with detailed information about the entity that risk analysis
becomes impossible, and again indifference is justified. Human survivability fits this
last case. In all these cases one has insufficient reason to assign a higher probability to
one interval than another.

Finally, one may know that a statistical ensemble of things decays according to
some different formula. However, if a parameter in the formula is completely
unknown, for example the half-life of a radioisotope, indifference (in the form of
Gott’s predictor) may still give the best prediction—temporarily. As soon as a couple
of specimens expire, one can deduce an approximate parameter for the true decay
formula and later revise it as more specimens expire.

The principle of indifference does not apply when you know the limits of dur-
ability. If you observe an 80-year-old man, you can be confident that he is in his last
quarter of life. Hence, you cannot use the timeline argument in Figure 4 to estimate
his survival because you know too much about his species. However, suppose this
same man is the first earthling that a pair of visiting exohumanoids interview. If they
inquire about the man’s age, and if they know nothing else about the life expectancy
of earthlings and how their physical appearance changes with age, then for them,
statistical indifference is perfectly reasonable. The aliens’ statistical ensemble is
entirely different from ours. It consists of first meetings with many species scattered
about the galaxy. When the old man expires at 87, the aliens get a perfectly normal
datum for their research into Equation 2 in Section 1.4.

1.6  CUMULATIVE RISK

Spaceman Jorj is the leader of a colony stranded on Planet Qwimp, where the need
for hydrocarbon fuel is crucial. His grandparents’ generation barely survived. When
his father was a child, they struck oil but not much. Now they have some industry,
and life is better, but for how long? Jorj must decide how to allocate limited resources:
should they develop this planet, or gamble on escape by repairing their crippled
spaceship? He has no idea how much oil is ultimately available, and the colony lacks
the means for large-scale exploration. But they have kept an exact tally of oil
extracted; call it O,.
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Jorj recalls a drawing in his middle-school textbook, essentially Figure 4. He
redraws it replacing the timeline by a line denoting oil consumption. The analogy is
exact: you cannot travel backward in time, nor can you recoup consumed oil. The
principle of insufficient reason applies with respect to O in exactly the manner that we
applied it to time while estimating the future of Murphy’s tavern. Assume that the
question of ultimate oil supply is equally likely to be asked during any quarter of the
oil’s original volume. Hence, Jorj’s best predictor for oil remaining in the ground, O,,
is GSP using barrels already extracted, O,, instead of calendar age as the measure of
cumulative risk:

1 1
G=— 0, =0.x[~—1
1+0,0, * YiTU (G )

The second form justifies the strategy that Jorj chooses: What is available (with
confidence G) is proportional to what has been extracted. He tells his people to build
a maximum-security storage facility and extract as much oil as possible O, before he
commits to a decision. As soon as Jorj settles on a decision time with a value of O,,
and he decides on a confidence level G, he then calculates O,, and converts it to
calendar time using projected rates of oil consumption.

In effect the oil-extraction meter is a luck gauge. Jorj can think of past consump-
tion as the amount of luck already expended. He doesn’t know the total amount of
luck in their future, but GSP gives him estimates of future luck based on the past.
Jorj and his people may be risk-aversive and use it frugally, or daredevils and
consume it extravagantly. A general discussion of time-dependent risks appears in
Appendix A.1.

gs

# # #

Jorj had no trouble choosing O as the measure of risk to which the principle of
indifference applies. However, the choice is not always obvious, as space-traveler
Zyxx learns. She parks her spaceship on Earth, hangs her universal language trans-
lator around her neck, and wanders into a nearby shooting gallery to watch earthlings
amuse themselves. A patient employee explains that they have just started a contest
with a valuable prize for hitting their most evasive target. In Zyxx’s culture the
favorite pastime is betting on the survival of things, so she gets quite involved making
estimates of the target’s survivability.
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At first Zyxx reasons that a typical marksman gradually learns the target’s
evasion strategy. She expects that the target’s survivability would decrease to zero
more quickly than the exponential rate in Figure 2. That rate represents a constant
hazard rate, but as a marksman learns the tricks, the target’s risk increases. But soon
Zyxx learns that targets typically survive many sessions with marksmen of differing
skill and sobriety. The target has many computerized evasion programs, which
management changes at random. Some marksmen are seriously trying to win. Others
are taking a couple of shots just for fun. In such chaos Zyxx decides that GSP with
zero gestation time is the ideal predictor, our Equation 5.

The next day Zyxx returns only to find the gallery closed. She quickly learns the
weekly cycle in the earthling’s calendar and discovers that the gallery operates Thurs-
day through Sunday, but closes Monday through Wednesday, which explains the
establishment’s name, Four-Day Shooting Gallery. Since the target’s risk alternates
between zero and maximum, she cannot be indifferent in comparing intervals of
calendar time as Figure 4 requires. So Zyxx uses a clock program in her pocket
computer and sets it to stop when the gallery closes and to run when it opens again,
thereby measuring cumulative hours of operation. Zyxx reasons that the indifference
principle will apply to this measure, which she then uses to evaluate 4 and F in
Equation 5.

Zyxx next learns that there are few contestants on Thursday morning, but many
on Sunday afternoon, hence risk still fluctuates with respect to this new time although
not as badly as calendar time. She learns that the turnstile at the entrance to the
gallery tallies paid attendance, which she calls Y. Apparently statistical indifference
applies more accurately to Y than it does to any measure of time. Zyxx revises GSP
accordingly:

G- L
1+Y,/Y,

where subscripts /" and p refer to future and past. To predict the calendar time of the
target’s demise, she converts Y, to approximate calendar time by using statistics of
past paid attendance, which the friendly manager provides.

Zyxx is satisfied with her new cum-risk gauge (the turnstile) until she notices that
some of the customers are there to attend classes for beginners, and few of them
attempt the grand prize. Hence, Y is also an uneven measure of risk depending on the
schedule for beginners’ classes. Finally, the manager invites Zyxx to the office and
shows her a counter that tallies the number of shots fired at the prize target. Clearly
shot count ¥ is the ultimate impartial gauge of cum-risk. Thus Zyxx makes her final
revision:

1

G=——
L+ ViV,

Again, she predicts the time of demise by converting ¥, to calendar time using past
statistics of the shot count, which the tolerant manager also supplies.

Zyxx has taught us that we may be justified in using indifference with respect to
time until we learn that time has a bias. But then we can switch to some other
independent variable carefully chosen to restore indifference. This is just the sort
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of reasoning we must develop to add man-made hazards to the equation for human
survivability. This is the second principle on which this approach is based. In
summary:

When bias nullifies the principle of statistical indifference, look for a different
variable that spreads the risk evenly and thereby restores the principle.

# # #

Clearly there is no end to the variety of cum-risks for other situations and the gauges
that measure them. They are all clock-like in the sense that readings increase mono-
tonically, but unlike a clock, their rates are not constant. Past cum-risk is the amount
of luck already expended, which improves survivability since it is a track record for
success and hence increases G through the ratio Z;/Z, in Equation 4,
G=1/(1+Z2;/Z,), at the end of Section 1.4. We do not know the total amount
of luck in an entity’s future, but Gott’s survival predictor gives rough estimates based
on past consumption.

Although the ratio future/past in GSP is its only numerical input, GSP contains
much additional information implied by the observer’s choice of cum-risk. Over many
years observers distill facts that they cannot recall in detail, but they retain common-
sense knowledge that guides them to designate the appropriate quantity as cum-risk.
In the case of oil reserves you know instantly to use the total volume extracted. For
the shooting gallery you know after a moment’s thought that shot count is most
appropriate. If the gallery doesn’t keep a count, then paid attendance is a reasonable
proxy—but not time. For stage productions, you might do a bit of research before
you realize that calendar time or performance count is best for lack of any one
dominant hazard with its own characteristic timing.

Thus GSP is a highly intuitive concept well suited to the way the human mind
works: it exploits the generalities we remember and the common sense we develop
without demanding the myriad forgotten details we would need to set up a risk
analysis. It also supplies an equation that quantifies our intuition, thus enabling
estimates we could not otherwise justify.

Statisticians have long recognized and debated the subjectivity of estimation [20].
Prior to 1939, the geophysicist, astronomer and statistician Sir Harold Jeffreys [21]
wrote, “The mind retains great numbers of vague memories and inferences based on
data that have themselves been forgotten, and it is impossible to bring them into a
formal theory because they are not sufficiently clearly stated.” This vagueness did not
stop him from developing useful techniques in probability theory.

# # #

This concludes the third approach to our survival formula, which invokes
indifference. Sections 2.2 and 2.3 below substantiate the formula further with many
sets of survival statistics for various business firms and stage productions. As we shall
see, for every entity except one, the first 80% to expire conform to the indifference
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rule quite well. However, in some cases the last 20% more or less expire somewhat
faster than the indifference rule predicts. Evidently small, unidentified, aging pro-
cesses cause deviations from perfect indifference, which incidentally make the mean
lifetime finite.
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Confirmation

When you can measure what you are speaking about, and
express it in numbers, you know something about it; but

when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of a science, whatever the
matter may be.

—Lord Kelvin

Figure 6 shows a logic diagram that traces our progress so far and what to expect
in Chapter 2. A continuation of this diagram, Figure 18 in Chapter 3, will complete
the logic for predicting human survival.

So far our emphasis has been on Theories 1 and 2 indicated on the left; read from
the bottom up. Both theories yield essentially the same formula for survival. Section
2.1 below briefly discusses Theory 3. Then Sections 2.2 and 2.3 collect the substantiat-
ing evidence indicated at the top of the diagram. The generalization from age to risk
exposure has already been covered in Chapter 1 (Sections 1.3 through 1.6).

2.1 BAYES’ THEORY

Our survival formula involves no modern concept. Thus it is amazing that it
first arrived in 1993, tardy by at least two centuries! In the 17th and 18th
centuries Blaise Pascal, Thomas Bayes, Pierre Simon Laplace, and others develoed
sophisticated probability theory.

If asked to develop a survival formula from frst principles, a typical statistician
would think of the Bayesian approach as the most conventional way and would
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proceed to use it. Consequently, it would seem to be the proper way to introduce the
subject in Chapter 1. However, Bayesian methods have their own logic problems, and
concepts are more abstruse than the ones in Chapter 1. Hence, rather than saying that
Bayes confirms GSP, it scems more logical to say that GSP substantiates Bayes in our
limited class of problems that concern the survival of something.

The following discussion is mostly qualitative. For mathematical details refer to
Appendix D.

Consider a different probability problem. Suppose you encounter a process of
fixed known duration T, perhaps a sports event or a computer program with a fixed
run time. At the time of observation the process gives no hint of its start time. So you
inquire, What is the probability that its past progress (age) at observation is less than
some time A4? Figure 7 shows the timeline. If your arrival time is random and
distributed uniformly, then the probability H is simply the ratio of lengths in the
timeline:

Figure 6. Logic diagram for
predicting human survival, part 1
of 2.

H(A|T)=A)T

Now express 7' as the sum of past and future, 7= A4 + F, and then the

probability becomes:
A 1

TA+F 1+F/4
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start observation finish

Figure 7.
Timeline for
a process of « A e F >
known
duration.

which is the same as Gott’s predictor (Equation 5).

We mentioned in the previous chapter that P. Buch wrote a letter to the editor of
Nature disapproving of Gott’s paper. The disapproval was motivated in part by this
coincidence [14]. It looked as though Gott had solved the trivial problem above
(Given T, what is the probability of A7), and then waved a magic wand to extend
it to the difficult problem of prediction (Given 4, what is the probability of T', hence
future F?). In effect, it looks like the old sales gambit, bait and switch. However, in
this case the coincidence is legitimate; no law says that two problems cannot have the
same solution. Appendix D gives an extensive discussion and actually derives Gott’s
predictor, Equation 5, from H(A|T) above using Bayesian theory.

2.2 STATISTICS OF BUSINESS FIRMS

Chapter 1 introduced survival statistics for expired businesses using the Portuguese
data in Figure 1. This section examines more sets of data to show that they all fit
Equation 1 for some value of J (except that the last survivors often die off a bit too
fast as discussed below). Recall that this formula evaluates survivability at the entity’s
birth. This is the prior probability before it is updated by an observation at a
particular age.

# # #

Published survival statistics are surprisingly scarce for businesses, possibly
because the fates of firms are complicated: mergers, acquisitions, spinoffs, moves,
foreign divisions, name changes, new owners, new management, and messy combina-
tions thereof. Hence, the statistician must carefully adhere to some rule that defines
exactly what entity she is analyzing.

A report by Baldwin et al. [16] is devoted to survival statistics. The other business
data given here are spinoffs from other topics. Baldwin’s group studied the fates of
new firms in Canada. Their Table 3 reports survival of goods-producing industries,
and their Table 4 reports service providers. Both tables disaggregate the data further
into specialties. Figure 8 shows the aggregate of all service industries plus the two
categories that deviated most from the average, “Wholesale Trade” and ‘““Other
Services”.
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Gestation periods that yield the best fit seem quite reasonable for business firms:
J(wholesale) = 4.5 years; J(other) = 1.9 years; J(all) = 3.0 years.

The quarter that live longest die off a bit faster than they are supposed to. Part of this
decline may be an artifact of the study. These firms had many years in which to
confound statisticians through moves, name changes, mergers, spinoffs, and the like.
However, most of the die-off is probably real, a departure from statistical indifference
owing to obsolescence or losses of vitality from unidentified causes. This shortfall
ensures a finite mean duration. Without this extra mortality we would expect to find
firms somewhere in the world that date back to the dawn of civilization, perhaps a few
millennia BC.

Before continuing, let us display these same data a better way, as in Figure 9.
Instead of age, we plot age + gestation on the horizontal axis. And instead of linear
scales, where integers are equally spaced, we use logarithmic scales where powers of
two (or any other number) are equally spaced. One advantage is that Equation 1 is
always a straight line with slope —1 regardless of J. This makes the quality of the fit

Canadian service

services” includes

communications,

trade, insurance,
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instantly conspicuous. Another is that the intercept on the horizontal axis is J, which
makes that parameter instantly readable.

Figure 10 shows corresponding data for industries that produce goods. Again,
three curves show the aggregate of all such firms plus the two categories that deviate
most. The incubation periods are

J(logging and forestry) = 2.4 years;
J(manufacturing) = 4.3 years;
J(all) = 3.1 years

One can speculate that manufacturing requires more preparation time to acquire
production equipment and develop the process.

One final set of business data shown in Figure 11 compares manufacturing firms
in the United States and Netherlands, the former by Dunne ez al. [22], the latter by
Audretsch et al. [17]. The remarkable feature is the huge contrast between gestation
periods, a ratio of 3.6:

J(U.S.) =2.7; J(Netherlands) = 9.6

However, this does not affect the general behavior we see in every case: the
short-lived 80% fit Equation 1 quite well, while the last survivors lose vitality.
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The Dutch (Audretsch er al.) begin their paper with this statement: “A recent
wave of studies has emerged consistently showing that the likelihood of survival tends
to increase along with the age of the firm. This finding holds across different sectors,
time periods, and even countries.” This finding confirms Gott’s theory, but Audretsch
et al. express no hint of any fundamental significance. They treat their finding as an
empirical observation possibly limited to business firms.

2.3 STATISTICS OF STAGE PRODUCTIONS

Let us now switch the paradigm to show business. Threats to a stage production are
many and varied: loss of a star, critical reviews, a disaster in the theater, events that
render the plot distasteful, fickle popular taste, competition, economy, or a crime
wave that discourages people from going out at night. Hazards to human life are
likewise varied and imponderable, and so we expect the predictor that works for the
stage to work for human Gott-erddmmerung as well.

J. P. Wearing [23] has provided an excellent source of theater statistics for the
London stage. His twelve volumes include every show that opened at a major theater
from 1890 through 1959, if only for a single performance. Wearing’s data are
perfectly suited for our project, especially since he paid careful attention to small
productions as well as big hits.

We must treat the data with some caution, however. For example, throughout
the theater statistics there are excessive numbers of one-night stands. Evidently there
are theater groups with names like Repertory Players that specialize in testing new
concepts or in providing fillers in the theaters’ schedules. Their productions are
apparently not part of the main competition for attendance. It is impossible to tell
how many of the one-night stands fit this category, and so we shall omit them entirely
with no noticeable consequence.

There are other reasons to reject some shows from the statistical ensemble. For
example, sometimes two or more short performances, rarely as many as four, are
grouped together in one paid admission. For our purpose they are equivalent to
multiple acts of a single production, and so I count them as only one. Occasionally,
though, one of them is more popular than the others and is later revived on its own.
In that case there are two entries in the statistics, one for the exceptional show and
one for the remainder as a group.

Another complication is how to count shows that move to London after opening
elsewhere. They acquired a survival track record at the earlier location, but not as
demanding as the run in London. Wearing gives the time spent at the earlier location
but not the performance count. I picked a subjective threshold for inclusion: time in
London at least double the time elsewhere. Fortunately, this judgment call is not
statistically significant in the final results.

Before proceeding, we must make four decisions: which years to use, what
criterion will demarcate each statistical sample, what quantity will be the cum-risk,
and how to define the entity in question. The chosen years sample the seven decades
while avoiding World Wars, the epidemic of Spanish influenza, and the Great
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Depression. The samples can be bounded either of two ways: all the shows that open
in a particular period of time, which ranges from one to five years; or all the shows
that were playing on specified dates. Mostly we shall use the opening date because it is
easy and rather well defined, but just for comparison we include one example in which
the sample consists of shows playing on specified dates.

Two possibilities for cum-risk are time duration and total number of
performances. Usually they don’t differ very much; most shows play about eight
times per week, typically six evenings and two matinees. The better choice is per-
formance count because that cum-risk is the greater cause of audience depletion, the
number of people willing to travel to the theater and pay admission.

Figure 12 compares three choices for defining the entity in question. The entity
plotted with asterisks is the composition, the creative work of the playwright, com-
poser, or choreographer. The entity plotted with circles is the production, the series of
performances produced by one team of people: managers, performers, and others
working together. Finally, the third entity plotted with squares is the run, a series of
scheduled performances with few if any changes in the theater, the cast, or manage-
ment. Our theory applies to entities that have no age limit, which suggests that the
best choice is the composition: Shakespeare has been playing for four centuries.
Clearly it would be impossible for a production or a run to hold on that long.
Nonetheless, Figure 12 serves as a sanity check to verify that the composition does
conform best to our theory.
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Figure 12 applies to shows that opened in 1920 and 1921. The plotted survival
count is doubled in the case of productions and halved for compositions in order to
disentangle the curves for visibility. The solid straight line has the slope that accu-
rately represents our theory. The compositions conform perfectly to that line until
obsolescence occurs beyond 235 performances. At first glance it looks as though the
change happens when about half the shows have expired, but that is an artifact of the
scales. At the breakpoint, 84% of the shows have expired, so only the last 16% of
them exhibit any obsolescence. As expected, the curves for productions (squares) and
runs (circles) decay too fast, about the —1.3 power of the performance count indi-
cated by the dotted line.

# # #

For a more recent example, Figure 13 shows survival statistics for 1950 and 1951.
We would not want data from the late fifties because we might lose revivals that
occurred after December 1959 when the database ended. Figure 13 shows composi-
tions that opened in those years. The statistics are very similar to 1920-21. Beyond
398 performances, the last 15% of the shows expire faster than the indifference rate.

Anomalies do occur. Figure 14 shows what happened to shows that opened in the
early 1900s. Compositions that opened in 1900 and 1901 (squares) expired too fast
after only 83 performances. They comprised 42% of the total. In other words, almost
half of the stage productions expired prematurely. I have no explanation except
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possibly some repercussion of the Boer War. However, the decay of the first half still
exhibits the slope characteristic of statistical indifference. By 1904 (crosses) the
statistics had returned to normal, namely a breakpoint at 220 performances and
7% survival.

Finally, Figure 15 shows the survivability of London stage productions from
1920 through 1924. (This big ensemble, 324 shows, will be used in Section 3.3 to
unmask a subtle effect that is most important to human survivability.) The main
curve (squares) shows qualities very similar to the other examples, obsolescence
beginning after 237 performances and affecting 18% of the stage productions.

The small curve (crosses) tests a hypothesis that the increased decay after 237
performances is not real but merely an artifact of the statistics. Perhaps we lost
several long-running shows because they changed their names, moved out of central
London, or were revived after 1960 when the database ends. (One of them may still be
running as I write.) All or most of these losses would occur after the 1812 perform-
ances on the scale in Figure 15. Hence, the effect of L losses on the graph would be to
boost the rank of number R up to number R + L. For this ensemble the best fit is
L = 19, which is 6% of the total. This fraction seems unrealistically big, and besides,
the warped shape of the curve (crosses) also seems unreal. It appears that the droop is
not an artifact; the true survivability of these stage productions does indeed depart
from statistical indifference near the end of its life.

If this is indicative of human survival, it means that the forecasts presented in
Chapter 4 are overoptimistic if our species is among the longest-lived 15% of
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humanoid species. However, we have absolutely no idea what percentile we fall in
until we obtain statistics for expired humanoid species (if any) throughout our galaxy.

# # #

Wearing’s books include a few productions that ran for a very long time: Peter
Pan for 3,000 performances, Charley’s Aunt for 3,800, When Knights Were Bold for
2,100, and Agatha Christie’s thriller The Mousetrap played about 16,000 times during
Wearing’s watch and is still open in 2009 after about 23,000 performances. For
comparison, the longest recent runs in New York are Phantom of the Opera, 8,061
and counting (October 2007), Cats, 7,485, and Les Misérables, 6,680.

So far these super-long productions are missing from our statistics because the
ensemble consists of all the shows opening in particular years, and most years do not
include an opening of even one of them, much less a statistically useful sample. Thus,
our data include many short-lived productions and only a few very long ones, as is
apparent in Figures 12 through 15 where the data cluster into a blur at the short end,
while only a few scattered points appear at the long end.

To get a better sampling, let us use a different ensemble, shows that are running
on a specific date. The chance that a random observation date falls within the run
time of a particular show is proportional to the show’s duration. Hence, we seldom
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Haymarket Theatre, London.

catch a particular (designated in advance) one-night stand, and we cannot miss a
show that runs the entire decade unless the date falls on a rare night off. In this case
the raw statistics do not give Q directly, but rather a different quantity from which O
can be derived. The conversion is difficult but worth doing once. It appears in
Appendix E.

Let us use the year 1925 to avoid two World Wars as much as possible, although
a few long runs playing in 1925 began before 1918 and a few others ran past 1939. For
good luck let us use the birthday of Pierre Simon Laplace, March 23. (I would prefer
Thomas Bayes, but his birth date is unknown.) A list of shows running on any date is
readily available in archives of the London Times. Let us also use four more dates and
total the data from all five samples. This gives a bigger statistical ensemble, but more
important, we can equalize the intervals throughout the year to average out seasonal
effects. A possible spacing is 1/5 year =73 days, but then many of the long-running
shows would fall on more than one of the five days, so for better variety let us use 4/5
year =292 days in which case only 13% of the shows appear in more than one set. We
could use wider spacing (6, 7, 8, or 9 fifths), but this would stretch out the overall time
span so that more of the ensemble would occur in wartime. Four-fifths of a year
seems a reasonable compromise.

Figure 16 shows the results. The initial slope is exactly that of statistical
indifference (Equation 1). Afterward the decay rate increases quite abruptly to slope
—2.5, a departure from indifference caused by unknown aging phenomena. At first
glance it appears that about half the shows fall in the departure period. However, that
is an artifact of the nonlinear scale; in fact 85% of them conform to theory, the
crossover occurring at 262 performances. In this ensemble, durations extend twice as
long out to 3,768 performances compared to only 1,812 during the sample of shows in
Figure 15 that opened from 1920 through 1924,

I am not aware of any survival studies for business firms that select their samples
as the ones open for business on a particular date. This might be a worthwhile project
for readers to undertake. A good date should be remote enough that nearly all the
firms have expired, but not so remote that the data are irrelevant to modern times.
Perhaps 1960 would be a good choice.
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Figure 16. Prior
survivability computed
for London shows
open on five specified
dates; gestation time
J =48.

Wyndham’s Theatre,
Westminster in 1900.
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2.4 LONGEVITY RANK

Consider a set of longevity statistics for N individual specimens, and let us label
the longest lived with rank R = 1. The next longest has rank R =2, and so on,
progressing to the shortest, R = N. This concept of rank is most useful in converting
statistics into probabilities and in relating durations to other statistical quantities that
have been studied for more than half a century. When managing statistics on a
spreadsheet, it is very convenient to have a column of ranks.

If a particular entity has rank R and duration 7, then R is the number that were
still alive at age T', while the statistically expected number is N x Q(T). For big N we
may equate the two:

R=NxQ(T) or Q=R/N

Using Equation 1 for Q tells us that

N xJ

Rank: R =
T+J

We can think of 7'+ J as duration from conception in the fuzzy sense described in
Chapter 1. If we call it X, then
N xJ

R:
X

Let us compare this to Zipf's law [24]:
Zipf: R = constant/X”

Here X is a random property of some object or process, and the power p is normally
close to 1.0. In our case, comparison shows that p = 1.

For whatever it is worth, this idea of rank shows that our prior probability of
survival, Equation 1, is simply the temporal version of Zipf’s law.

The following are some other entities that obey Zipf’s law or something quite
similar [27]:

words ranked by frequency in written language
cities ranked by population

businesses ranked by annual sales

wars by number of casualties

authors by number of books published

bomb fragments by size

frequency of access to web pages

frequency of keyword usage in a search engine
frequency of given names

distribution of wealth

What these entities/phenomena share is scale-free behavior: the variable in question
has no characteristic size or spread, in other words no mean or standard deviation.
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George Kingsley Zipf
(1902-1950)

Zipf was a linguist and German
instructor at Harvard University. He
discovered that words obey his law
when ranked by the frequency of their
use in written language [25]. He was
independently wealthy and apparently
spent his own money hiring people to
count the frequency of words, a
laborious task that now takes a
computer a couple of milliseconds!

Many consider Zipf crazy. His book
Human Behavior and the Principle of
Least Effort [24], apparently published at
his own expense, digresses in myriad
wild directions including the shape of
sexual organs. He notes that the
annexation of Austria into Nazi Germany
improved the fit of nation sizes to his
mathematical law. Some think he tried
to justify the annexation this way, but
| think maybe he had a wry sense of
humor that was too wry for some folks.

In spite of all this Zipf had moments
of genius that have attracted the
attention of eminent scientists. One was
Murray Gell-Mann. Nobel laureate in
theoretical physics, who lectured on
Zipf's law at the Santa Fe insitute.
Another was the renowned
mathematician Benoit Mandelbrot [26],
whose extension of Zipf's work is now
known as the Zipf-Mandelbrot law. This
is independent of the famous
Mandelbrot set, the mathematician’s
best known work. It is a two-
dimensional fractal array of points with
incredible beauty. One can zoom in and
see ever finer detail without ever
finding a smallest element. You may
view the Mandelbrot set at numerous
websites, for example
http:/lIwww.youtube.com/
watch?v=gEw8xpb1aRA and
http:/len.wikipedia.org/wiki/
Mandelbrot_set
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Time does not appear in the list above. After
seven decades of Zipf, it would be amazing if
nobody else has ever noticed that this law applies
to durations. This is especially curious since it is
easy to support Zipf when time is the variable. It is
essentially Equation 1 supported by all the argu-
ments in Section 1.1 and especially Section 1.5.
However, it is not possible to extend this argu-
ment to the size of bomb fragments, annual sales,
and all the other items in the list above.

2.5 UNIVARIATE SUMMARY

Several scholars have tried to refute Gott’s pre-
dictor during its 16-year history. However, to my
knowledge not one of them invoked real statistics
like those above (Figures 1 and 9 through 17). Let
us consider one last detractor, philosopher Elliott
Sober [28], who published relatively recently,
2003. His paper is curious because he confesses



54 Confirmation [Ch.2

in his Note 5 that an anonymous reviewer has essentially refuted his argument using
Gott’s theater statistics, and yet the journal published it anyhow.

Sober tried to make his case by noting that hazard rates of prehistoric taxa are
independent of age, according to the evolutionary biologist Leigh Van Valen [29]. But
this is not a counterexample. Van Valen made a hindcast, not a forecast. With data in
hand he plotted survivability on a semi-logarithmic scale and obtained straight lines,
the slope of which gives the age-independent hazard rate. This is exponential decay
just like the thin dotted lines for radioisotopes in Figure 3. But when you make a
forecast based only on the system’s age, you do not yet know that hazard rate. To
make an unbiased forecast, all you can do is average over the range of possible rates
as shown in Section 1.2. This leads to Gott’s survival predictor as shown in Section
1.1 and Appendix A.

(Hindcasts masquerading as forecasts are ubiquitous. In thousands of
engineering papers the authors claim that their analysis “predicts” somebody’s
published experimental results. Nonsense! You cannot predict published data; you
postdict or confirm them. Mere confirmation confers far less credibility than genuine
prediction because the postdictor is tempted to bias his data selection or assumptions
in favor of the desired result.)

Since humankind is a species, Van Valen’s extinction data seem particularly
relevant to our topic. As described in Appendix F, those same data intended as a
counterexample in fact turn into a reassuring confirmation, but not as persuasive as
our other data because a debatable assumption about sampling bias is required.

# # #

This concludes our investigation of cases that have only one independent
cum-risk variable, that is, univariate risk. The choice of that one variable is quite
flexible. We have looked at real data for calendar time and number of performances,
and at conceptual examples of shot count and turnstile count at a shooting gallery,
and at extracted oil on Planet Qwimp. Next, Chapter 3 generalizes the idea to
multiple cum-risks that vary independently of one another. In particular, human
survivability requires two completely independent cum-risk variables: the cum-risk
from natural hazards, which accumulates with time, and the cum-risk from man-
made hazards, which accumulates with some other quantity based on population,
technology, and economic activity. The latter has not yet been defined.

So far we have developed the univariate formula in two ways. The first appeared
in Section 1.1 and began with the well-known survival law for entities that have a
fixed hazard rate. Then we let this rate be completely unknown and found that the
survival law transforms to our formula (Equation 1). This gives survival probability
from birth, the so-called prior. Section 1.4 then used Equation 1 to find posterior
probability, which applies after the entity is observed alive at a later time. For human
survival that time is 200,000 years.

The second method, described in Section 1.5, dealt with the probability that the
observation of age occurs at different times in the entity’s life span. It gave the
posterior probability directly. The two derivations agree except for small corrections
that have no effect on human survivability.
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Finally we substantiated the formula using survival statistics from microcosms
that represent our species:

e scveral data sets for business firms in Portugal, Canada, and the United States
e scveral data sets for survival of London stage productions:
o shows that opened during specified years
o shows that were playing on specified dates
e survivability of prehistoric taxa deduced from the distribution of their hazard
rates (described in full in Appendix F).



3

Double jeopardy

"Tis better to be roughly right than precisely wrong.
—one variation by John Maynard Keynes

For human survival we require two independent cum-risks: one for natural
hazards, the other for man-made. The former is simply calendar time. Since an
asteroid is just as likely to strike one year as another, its risk gauge runs at a constant
rate; in other words it is a clock. For man-made risks, the virtual gauge is some
imprecise measure of modern hazardous activity. It indicates serious danger due to
our extreme inexperience—only a half century of coping, in contrast with 2,000
centuries of exposure to natural hazards. We must balance the two measures of risk
exposure, the old one that says we are safe against the new one that warns of danger.

3.1 A PARADOX

In preparation for multiple cum-risks recall that the probability of two independent
events is the product of their individual probabilities, as discussed in Section 1.2.
(If you flip a coin and roll a die, the probability of getting both six and tails is 1/6 times
1/2 = 1/12.) In short, and means multiply.

Consider two kinds of entity, Jays and Kays, which have the same age and the
same gestation period. Both qualify for Gott’s survival predictor G, Equation 2 in
Section 1.4. Suppose that Kays are exposed to all the same hazards as Jays plus an
additional independent set that is equally hazardous. Since Jays obey G, then accord-
ing to the product rule, the probability of Kays’ surviving both sets of hazards would
seem to be G for the first set times G for the second, which makes G squared (written
Gz). But this cannot be because G conflicts with the timeline viewpoint in Figure 4.
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According to that viewpoint, Kays must obey just plain G,
Equation 2 in Section 1.4, the same as Jays. How can this be,
given that Kays are exposed to twice the risk?

The answer is that we cannot infer Kays’ survival statistics
from Jays’ because on average the Kays are a hardier lot by
survival of the fittest. Most frail Kays have already succumbed
to the double set of hazards prior to observation. Thus G
remains valid for the Kays survival even though the risks are
double. To apply the product rule separately to the Kays’ dual
sets of hazards, the correct breakdown is the square root, v/G,
for each set, which then multiply to give the required G for
exposure to both sets. If Jays and Kays exchange risks, then the
hardy Kays are quite safe while the frail Jays are at great risk.

3.2 FORMULATION

Suppose that a certain impresario wants the most accurate
formula he can get for survival of stage productions. One big
risk, probably the greatest, is the show’s popularity for which
parameter J is small, about the time it takes to write a review,
have it published, and for the public to read it. The impresario
Iumps all other hazards into miscellany, which includes finance,
personnel problems, casting, theater, stage, and the risk of
losing the show’s star. Many of these hazards begin months
prior to opening night.

The formula has two gestation periods, one for each set of
hazards; call them J,, and J,ii.. The impresario reckons that

[Ch. 3

Public Health

The story of the Jays
and Kays in Section 3.1
and survival of their
fittest has implications for
public health. Popular
medical literature has
mentioned that
immigrants to North
America from
underdeveloped countries
are extraordinarily hardy,
and some commentators
regard this as a puzzle.
But the explanation is
simple: Like the Kays,
these immigrants are
survivors of societies that
had poor medical care for
many generations. The
long-term implication is
that public health may
depend not so much on
medical advances, but
rather on the rate of
medical advance keeping
pace with the rate of
genetic atrophy!

the two sets are statistically independent; neither has much influence on the other. In
that case, as we have just discussed, the probability of surviving both is the product of
the probabilities of surviving each by itself, which is the product rule discussed in
Section 1.2. Thus the prior probability of survival from opening night disaggregates

into two factors:
Q _ ( JPOP )l_q % ( Jmisc >q
Jpop +T Jmisc +T

By calling the exponents ¢ and 1 — ¢, we ensure that their sum is 1.0 as required,
Section 3.1 In another application of this formula, the two gestations might be equal,
Jpop = Imisc = J. Then the two factors coalesce, Equation 1 is restored, and nothing
has changed.

The two exponents express the relative importance of their respective hazards,
and so our impresario needs some means to evaluate g. He makes a list of expired
shows and uses his insider’s knowledge of showbiz to tabulate the cause of each

demise. Then he tallies the number of shows that fell victim to each set of hazards.
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One might expect that exponents ¢ and 1 — ¢ are in the same ratio as the respective
tallies of expired shows, and indeed they are for the special case of equal gestation
periods. However, in general the hazard with less gestation has extra mortality since
the hazard acts early when its victims are more vulnerable. Appendix G works out the
full theory.

After a stage production survives to age A, its posterior survivability for future F
is a revised GSP derived in the same manner that Equation 1 led to Equation 2. The
result is

1 l—q 1 q
G(F|A) = 71+ 7 X 714_ o
Jpop +4 Jmisc +4

Both factors in the impresario’s predictor involve measures of calendar time, but
this is not a restriction. In our later applications one of the cum-risks will be time, and
the other(s) something quite different, perhaps one of those in Section 1.6. Let us call
this cum-risk Z (for hazard) as before. For example, Z might run in spurts like the
shot count at the Four-Day Shooting Gallery. Although the statement above, “this is
not a restriction”, seems intuitively obvious, it lacks the rigor of a mathematical
proof. Therefore, we shall spend considerable effort to corroborate this statement
with statistical data, and this appears in Section 3.3.

For now, assume that this generalization holds. Then the modified version of
prior survivability, Equation 1, becomes

J l—q K \¢
o (777) (i) )
and the posterior survivability or GSP follows as before, Equation 5, except this time
there are two futures, T, and Z;, and two ages, T, and Z,.
1 I—q 1 q
G(Ty,Z | T, Z,) = 1+in X Hizf (7)
J+T, K+2Z,

Equations 6 and 7 resemble the impresario’s equations, the two above Equation 6, as
you would expect.

# # #

Most hazards that we deal with are statistically independent. For example, the
chance that an asteroid exterminates humanity is unrelated to the chance that a mad
scientist does it. There are exceptions. For example, the chance that nature kills
humanity with a new contagion is related to the chance that mankind provides the
rapid transit systems that defeat quarantine efforts. On the other hand, it is also
related to the chance that man develops a vaccine in time. In the first exception the
two effects cooperate; in the second they oppose. We have no reason to think that
positive correlation is more or less likely than negative. Hence, in accord with statis-
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tical indifference, let us assume that hazards are statistically independent on average.
Then the product rule applies again as it did for the impresario.

We can expand these ideas and factor GSP into a product of probabilities of
many independent risks or categories of risk. In principle there could be dozens:

1

G:G?xch--.xcg‘4=<

1 + Fy /P,

« 1 6 1 w
X >< P >< —_
) (1 + Fz/Pz) (1 +Fz4/P24)

(8)

where the exponents sum to 1.0 (o« + 8+ v+ ---w = 1) and the pasts P include any

applicable gestation periods.

In practice, however, the limited
accuracy of input data would seldom
justify more than two factors or maybe
three at the most. Any further disaggre-
gation would be counterproductive
because one cannot establish the many
parameters (exponents and gestations)
accurately enough to realize full theo-
retical precision.

We can understand the rather
formidable-looking Equation 8 from
another viewpoint. Each parenthesis
without its exponent is a GSP for expo-
sure to one hazard. The value of each
GSP derives from a risk gauge that
disagrees with all the others. The only
impartial resolution is an average over
the set of all such GSPs. However, this
must be a weighted average that favors
one hazard over another in proportion
to its severity, namely «, G, ...w. Equa-
tion 8 is just such an average, a geo-
metric one. A different type of average
(for example, arithmetic or harmonic)
would be inappropriate owing to the
multiplication rule for the probabilities
of independent hazards.

# # #

Equations 6 and 7 apply to
humanity’s survival. The first factor
represents natural hazards. Since a
bolide (meteoric fireball) is as likely to
hit one year as another, the cum-risk is

Algebra Review: Fractional Powers

In preparation for this section you may want to
review fractional powers and their products. The
square root is the 1/2 power:

G%° = VG; hence, (G%°)’=G
This is a special case of the rule that powers of
powers multiply:
(Gr)q _ erq
The zero power of any number is one:
G°=10; hence, G°xZ=10x2=2

The first power of any number is just that number
itself:

G'=aG

When different powers of the same number
multiply, their exponents (superscripts) add:

G xGI=G"

In our case r and q represent the relative severity of
two sets of hazards. For the Kays in Section 3.1, r
and g are both 0.5 so that

Gr+q — G1 -G

When the two severities are unequal, their sum
must still be 1.0.

Therefore, we replace r by 1 — g so that the
sum 1.0 is automatic:

GI%xG'=G"=aG

This subject arises again in Chapter 4, where GSP for
human survival is the product of two factors: one
for natural hazards based on calendar time, and the
other for man-made hazards based on world
population and technological progress.
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The Birthday Puzzle

Probabilities are sometimes counterintuitive.
Consider a group of people gathered in a room.
The probability that two or more have the same
birthday is 51%. How many people are in the
room? Make the obvious simplifying assumptions:
no twins, and the birthrate is constant
throughout the year, except February 29 when
the birthrate is zero.

As is often the case, the first step is to
change the question and ask, what is the
probability that no two people in a group of N
have the same birthday? Then search for the
value of N that gives 49%. Think of people
entering the room one at a time. The chance of
the second being different from the first is
364/365. If those two are different, two days are
taken, and so the chance of the third being
different from both of the first two is 363/365.
The probability of both the second AND the third
being different from the first AND from one
another is the product of the two fractions,
because AND means multiply. And so on. For N
people the answer is

364 363 366 — N
365 365 365

Note the resemblance to Equation 8, another
series of AND probabilities. It is easy and amusing
to set up this series of products on a spreadsheet.

The answer is 23. That's right, in a gathering
of only 23 people, the probability that two or
more have the same birthday is 51%. Most folks
think the number should be greater. They tend to
think that random numbers are nearly uniformly
distributed, which they are on average. But each
independent trial has by chance many clusters,
which produce the birthday coincidences. Shake a
handful of coins and dump them on a table. Then
look away (or take off your glasses) and arrange
them in a row. You may be surprised how often
three or four consecutive heads or tails occur. The
gambling industry makes a good profit by
exploiting just such misconceptions.

One final datum: in a room with 41 people,
the probability that two or more have the same
birthday has risen to 90%.

Prob(no two) =

An example 61

simply time. The other cum-risk repre-
sents man-made hazards with Z to be
defined later. This hazard was dormant
for most of human history but is now
accelerating rapidly. However, the first
factor gets the greater exponent because
nature has many times demonstrated her
ability to extinguish species on a massive
scale. By contrast, humans may not be
capable of self-extinction over the period
for which this study is valid. In other
words, ¢ is small.

3.3 AN EXAMPLE

For the univariate case, Sections 2.2 and
2.3 show numerous examples that sub-
stantiate the basic formula. We need simi-
lar examples for the multivariate case
because the formulas have a new aspect,
the (usually uncertain) exponents in the
equations in Section 3.2 and the claim
that their sum must be 1.0. Without ex-
amples one has an uneasy feeling that
understanding is incomplete. To fill this
gap we need survival statistics for entities
subject to dual cum-risks, one of which is
not time. We prefer that the statistical
records state the cause of each demise
so that we can fit the formula to multiple
equations, one for the “body count” due
to each hazard; see Appendix G. Let us
call this a strong substantiation.

If we were doing a medical study, we
could easily obtain strong substantiation,
namely mortality data disaggregated by
cause of death. All we would need is a
stack of death certificates. However, for
our class of entities, the ones with no
characteristic longevity, statistics listing
causes are surprisingly scarce. Without
them we can still get a weak substantiation
by adjusting all parameters to find the
best fit to one equation, the overall
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survivability, Equation 6 or 9. If the resulting set of parameters is both plausible and
unique (only one best fit) we then have reasonable assurance that the formulation is
working.

We do have one example, unfortunately the weak kind. However, the answers are
plausible, unique, and surprisingly consistent using two different criteria for data
selection. Again the entities are London stage productions, but in this case the risk
splits into two parts, the overall duration 7" and the overall number of performances
S (for shows). Survivability declines with S simply because the show depletes its
supply of people willing to travel to the theater and pay admission. Excessive
duration T also stresses a show. One with frequent hiatuses fails to provide steady
employment for the cast and staff, and so startup costs recur with each revival. In the
long haul, public tastes change or events redirect public interest.

Appendix H optimizes the parameters J, K, r, and ¢ in the following equation to
give the best fit to the theater data:

o= (757) * (s ®

(The optimization actually includes another term in the denominators of this
equation, which allows for some obsolescence in long runs, but that is a detail
described in the appendix.)

Equation 9 is like 6 except that the sum of exponents is not constrained to be 1.0.
The intuitive argument near the end of Section 3.1 says that the sum of exponents
q + r must equal 1.0. However, that argument does not meet rigorous standards of
mathematical proof. Therefore, instead of forcing the condition that r +¢ =1 as in
Equation 6, we let the optimization process discover it, thus enhancing our confidence
in the formulation. For the better of two sets of data, the sum r + ¢ = 1.013; for the
other a respectable 0.945. This is a most important result because two factors like
those in Equations 6 and 7 are fundamental to the calculation of human survivability,
one factor for natural hazards, the other for man-made. Now the statistics
corroborate it.

# # #

The statistical ensemble for this example consists of shows first performed in
London during the five years 1920 to 1924 (World Wars avoided again). Figure 17
shows a scatter diagram of each production’s performances and durations. Most of
them fall on or near the upper straight line, which denotes eight performances per
week, typically six evenings and two matinees. For this majority, the two cum-risks
are locked in sync. Only their incubation periods J and K may differ significantly. For
lack of samples in the direction perpendicular to the lines, one might expect the
statistics to discriminate poorly between them. However, the ensemble is big, 310
stage productions, and this suffices to discriminate well enough despite the synchro-
nization. For these shows, ¢ 4+ r = 0.945, which differs from the ideal 1.0 by 6%
instead of 1% for those off the main sequence.

The few shows to the left of the solid line in the scatter diagram played twice per
day during at least part of their run. The dashed line represents an average of two
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performances per week. The 69 shows to the lower right of this line (22% of the total)
have lengthy hiatuses. In some cases a brief run is an annual event, sometimes during
the holiday season. One might regard this group of occasional shows as an entity
distinct from the majority in the main sequence. Perhaps each occasional show has a
small but devoted following of people who expect to attend it repeatedly, as many
opera and ballet fans do. These shows discriminate very well between the two
cum-risks.

Recall that the two factors in Equation 9 derive from the product rule: if X and Y
are statistically independent, then the probability of both equals the probability of X
times the probability of Y. One might think that the strong correlation between
performances and duration along the main sequence would violate the requirement
for independence, but this is not the case. The kind of independence that the product
rule requires is that the hazards against performances (for example audience deple-
tion) are unrelated to the hazards against duration (for example revival startup costs).
The product rule does not exclude schedule synchronization, which is a different sort
of dependence.

Appendix H describes the computation of parameters J, K, ¢, and r for Equation
9 that best fit the statistics. Two tables below list summary results for the two
ensembles, occasional shows and main sequence. Table 3 gives the standard deviation
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Table 3. Standard deviations from theory, %.

Bivariate Univariate
Occasional shows 1.52 3.10
Main sequence 1.37 1.41

Table 4. Summary quantities.

Shows Perf. Dur. r/q r+q | J,perf. | K, dur.

wt, r wt, g median | median

Occasional 69 0.643 0.370 1.74 1.013 159 4.1 yrs
Main sequence 310 0.864 0.081 10.7 0.945 49 3.8 yrs

from theory. One column applies to our bivariate case. As a reality check, the column
on the right shows that the fit degrades if we revert to a univariate fit using only
performance count, as in Section 2.3. All of these fits are well within the expected
range for the sample size; see Appendix H. The main sequence is a closer fit simply
because it is a bigger sample, 310 stage productions instead of 69.

Table 4 shows other summary quantities. Consider the ratio of statistical weights
r/q =~ 1.7 for occasional shows. This says that the number of performances is a
weightier survival predictor than all the temporal hazards. This is plausible because
performances deplete the supply of paid admissions, the most fundamental survival
issue for any stage production. The ratio 10.7 for main sequence productions indi-
cates that duration has little effect on survival, probably because they have no
recurring startup costs.

The long median for occasional shows, 4.1 years, probably indicates that they are
well adapted to long durations. The sum of exponents r + ¢ confirms the theoretical
value 1.0 as noted above. In summary, the results pass all the sanity checks.

3.4 LOGIC DIAGRAM

Figure 6 at the beginning of Chapter 2 showed the first part of a logic diagram for
calculating human survivability. The diagram ended with a formula having a single
cum-risk, the so-called univariate case. The second and final part of the logic diagram
appears in Figure 18. The two parts are combined in Appendix I and converted to an
outline format with more details added.

At the top left of Figure 18 the univariate results are generalized to bivariate, the
process completed in Section 3.2. The top right corner of the diagram denotes the
reassuring example treated in Section 3.3 above. It corroborates the formulation,
especially the important claim that the sum of exponents must be 1.0.
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Figure 18. Logic diagram, part 2 of 2.

In the next chapter we shall move on to address directly the question of human
survivability as shown near the center of the diagram. We have noted before that for
natural hazards the indifference principle applies to calendar time: a bolide is as likely
to strike Earth one century as it is another. Choosing a cum-risk Z for man-made
hazards is our major remaining task. It must somehow involve economy, technology,
and population.

Before doing that, however, let us end this chapter with a brief discussion of some
other possible avenues for future research that readers may wish to take on.

3.5 FUTURE RESEARCH

Gott’s survival predictor is supposed to be a fallback formula when the observer
knows nothing but the entity’s age. However, in the univariate case we find that real
statistics from a variety of sources obey GSP quite well, Figures 1, 8 through 11, 13,
15, and 16. The question now arises: Does this bonus hold in the multivariate case?
Doubt arises since the formula has a new aspect, the uncertain exponents in
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Equations 6 through 9. If the individual specimens in a statistical ensemble have a
variety of exponents that conform somewhat to our weighted average, then the fit will
be fairly good. But if the true exponents are all about the same, and we average over
different values only out of ignorance of the real value, then the fit will be poor. If
possible we should learn which case arises most often in practice. The example in
Section 3.3 is quite encouraging, but still, it is only one example; furthermore, it is a
weak substantiation in the sense defined there. A couple of strong substantiations
would improve confidence.

Consider for example the preservation of historic structures. The cause of each
demise is normally available in public records. Cum-risks are time (fire, cyclone, other
natural hazards), public apathy (inferred from the number of visitors recorded in the
visitor log), official neglect (frequency of maintenance, security measures), and press-
ure to replace the structure with something new and profitable (market value of the
land). To estimate the survivability of a single structure, this is a good application of
the theory; see Appendix J.

However, it would be awfully labor-intensive to acquire a sizable database in
order to substantiate the theory for the case of historic structures. This would require
research at each site to examine such factors as visitor admissions, history of land
prices, and fire protection, which vary radically from site to site. For example,
replacement pressure on a historic structure in downtown Chicago vastly exceeds
the pressure on an abandoned gold mine in the Mojave Desert. A minimal ensemble,
say sixty historical structures that have been destroyed, could turn into many thesis
projects for students of futurology or forecasting.

Other qualified entities are difficult to find. If you want to take the challenge, the
following list of failed attempts will help you avoid some pitfalls:

e Business exits—Besides time, what is the second cum-risk? An outsider rarely has
the full true story. This is in contrast to show business, which thrives in the
proverbial fish bowl.

e Road show closings—The two cum-risks would be number of performances and
number of moves, but we should move on from stage productions to something
else.

e Computer hard drives—Cum-risks are hours running and number of start—stop
cycles, which are almost never recorded. Besides, the drives are physical devices
that wear out after a characteristic longevity.

e Shelf life of library books—Even though paper has a natural life, it may be long
enough to use this example, at least for books printed on acid-free paper. Cum-
risks are calendar time (obsolescence, vandalism, bookworm attack) and number
of times loaned (not always returned). I obtained statistics for hundreds of copies
of Harry Potter novels at the San Diego public library, but loss by the readers’
failure to return books was so dominant that I could not detect any other hazard
in the statistics.
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Human survivability

Man is only a reed, the weakest in nature; but he is a
thinking reed. There is no need for the whole universe

to take up arms to crush him: a vapor, a drop of water is
enough to kill him. But even if the universe were to crush
him, man would still be nobler than his slayer, because he
knows that he is dying and the advantage the universe has
over him. The universe knows nothing of this.

—Blaise Pascal (1623-62)

We may be the only humanoid species in our galaxy, or we may be one of millions.
In any case, let us pretend that a substantial number have come and gone. This lets us
use their presumed existence to retain ordinary concepts of statistical ensembles.

Most humanoid species that have arisen in the past have already expired for
various reasons, as have the vast majority of earthly species, often after a run of one
or two million years. Some of those extinction events had natural causes, others were
self-inflicted. Some of the latter extinctions happened suddenly in high-tech accidents.
A few species succumbed to sabotage by crazed individuals, the proverbial mad
scientist. Others were doomed when they triggered runaway processes (positive
feedback) that poisoned their biosphere, changed their climate, or allowed voracious
self-replicating things, either biological or robotic, to overrun their planet. Whatever
the cause, their luck eventually ran out.

Imagine that we somehow obtain the Grand Galactic Book of Knowledge, which
contains histories of every humanoid species that has ever lived and died anywhere in
our Galaxy—one million in all. After the enormous excitement subsides, statisticians
process the data. First, they choose a subset of 10,000 species that seem most human,
lived on Earth-like planets, and are roughly our age, 200,000 Earth years (adjusted
for each species’ metabolic rate).
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In one project, statisticians choose a preindustrial date, say 1000 AD, and look for
matches to our situation in the extraterrestrial data. They find a subset of 100 species.
Pretending that this time is the “present”, they look at survival statistics for “future”
time F. In other words, the statisticians simulate an earthling living in Y1K, and then
they inquire about survival using galactic statistics instead of theory. This is a means
for testing Gott’s original simple predictor. Agreement with galactic statistics ought
to be quite good in view of the many confirmations summarized in Sections 2.2 and
2.3.

Next, these statisticians pick a different subset of 100 humanoid species, the ones
whose civilizations most closely match ours in 2009. There is some overlap with the
first subset, perhaps a third. In the randomness of events most species that seemed
similar in Y1K eventually drifted away from our situation, while others that seemed
different drifted in.

Again the statisticians run the numbers and compare them to the generalized
GSP developed in this section. This time they do not agree as well. Compared to the
preindustrial case, two difficulties have arisen. One is assignment of statistical weights
to natural hazards as compared to self-extinction, the quantity ¢ in Equation 6. To
understand the other difficulty, recall the example of the Four-Day Shooting Gallery
in Section 1.6. Our observer Zyxx went through three flawed cum-risks before he
finally found the optimum quantity for statistical indifference, namely shot count.
Hazards for self-extinction are more complex, and it is tricky to find the cum-risk that
best represents the full set.

In summary, we had only one level of uncertainty for the preindustrial date;
namely, on the galactic survivability curve, what percentile do we fall in? That was all,
because we could be reasonably confident that the galactic curve was quite similar to
Gott’s predictor. Now, however, we still have the percentile uncertainty, plus a
second level of uncertainty about the parameters within the formula.

# # #

Imagine a rare combination of disasters that kills 99% of the world’s population.
It might be a coincidence involving volcanism, extreme weather, and mutant
mosquitoes, followed by wars fought over remaining resources. This would be the
worst calamity that humankind has ever suffered by any criterion—except one. For
long-term species survival this is the best that could happen! In its aftermath the 66
million survivors are a hardy lot, wiser for the experience and disinclined to rash
judgments and dangerous behavior. In remote areas isolated tribes are safe from
epidemics, drugs, and other man-made hazards that afflict civilization. The biosphere
gets relief from human stress. Carbon dioxide concentrations drop to normal.
Nobody is stressed by crowding. In summary, the man-made hazards practically
vanish.

As this extreme example shows, what’s good for our species’ survival is not
necessarily good for society, civilization, or individuals, nor does it conform to
accepted ethics and political rectitude. Throughout this section we must retain this
detached viewpoint, focus on survival, and avoid lapses into conventional thinking
about the well-being of society and individuals.
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An early version of my manuscript was reviewed by Theodore Modis, a physicist
turned futurologist and strategic business analyst. Dr. Modis slogged through my
mathematical details and made several helpful suggestions. However, at this point he
lost his focus:

“Why should all people do nothing but damage? There are people whose net
contribution to the survival of society is positive. ([Wells] could be one of them
by ... raising public awareness!) One may defensibly argue that people in general
do more good than bad toward the survival of society.”

Whoa! The subject is not about good, bad, nor society. The subject is the
probability of an extinction event. The potential causes are utterly indifferent to
our social values and cultural norms. Besides, good people do not offset bad ones.
Recall the diligent workers in airport security on the morning of September 11, 2001.
The final calamity will probably blindside us, so good folks working for good social
causes are ineffective. Also, the modest positive efforts of well-meaning citizens are
offset by the fact that they too generate carbon dioxide, spread pathogens, consume
nonrenewable resources, and unknowingly purchase goods from industries that
pollute.

Table 5 lists some extreme examples to emphasize the disparity between people’s
goodness/badness and their impact on our species’ survivability. The last column
contains remarks purposely devoid of human compassion. (Please read the disclaimer
at the top!) The correlation between acts that are good/bad for society and those that
are good/bad for survival is near zero, perhaps slightly negative.

Clearly, if we are engaged in trying to calculate the probability of an extinction
event we must not be distracted by conventional ideas of good and evil. We must view
this whole subject with the detachment of an exohumanoid ethologist visiting Earth
to do field work.

4.1 FORMULATION

Let us again compare risk measurement to the meters that public utilities install
to measure consumption of gas, water, and electricity. In our case they register
consumption of luck, meaning exposure to hazards. For human survivability we
use two virtual meters. The hazard rate for natural hazards is fairly constant, and
accordingly its meter is simply a clock that registers calendar time, the quantity in
Gott’s original formula. This clock now reads age 4 = 200,000 years [30]. If this
number and GSP had been published in 1900 prior to our ability to commit self-
extinction, our ancestors would have used Equations 3 and found that we have a 10%
risk of Gott-erdimmerung in 22,000 years. Little more could be said at that time, but
now things have changed drastically. Calendar time is no longer the dominant
cum-risk.

Starting some time in the mid-20th century, concern shifted from natural threats
to man-made hazards: first nuclear winter, then greenhouse emissions, and now
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Table 5. Dispassionate look at social values. Approved humanitarian behavior is unrelated to
survivability of our species. Disclaimer: The viewpoint listed in the last column, which is devoid of
human compassion, is not a suggestion for public policy!

Person Goodness or badness | Impact on human survivability
Charismatic leader of a Lunatic, killer Good: he takes out some irrational
suicide sect people who may be prone to drastic

behavior. They or their descendents
could harm us all

Participant in Spaceguard | Nice nerd Earth’s protector
Survey, which tracks
asteroids and other Earth-
threatening objects

Surgeon who repairs serious | Wonderful healer! Dysgenic, instrumental in propagating
congenital defects in infants defective human genes
Foreign-aid worker helping | Humanitarian Negative, those mosquitoes are
tropical people eradicate nature’s guardians of undeveloped
mosquitoes land and biodiversity
Joaquin Balaguer Evil ruthless dictator | Environmentalist and savior of
of Dominican Dominican forests. He expelled all
Republic forest encroachers from squatters to
lumberjacks to wealthy owners of
mansions
Saddam Hussein Cruel dictator Ecological disaster: set fire to oil

wells, spilled oil in the Persian Gulf,
and drained swamps in southern Iraq
killing species

biological warfare and genetic engineering. We must devise the second meter that
accelerates with world population and advancing technology and thus registers our
exposure to man-made hazards. The two come together in Equation 6 for Q, the joint
probability of survival prior to any observation of age. Just as it has two factors, one
for natural hazards and another for man-made, the corresponding predictor after age
observation will also have two factors. If we let f* stand for both futures, time and
cum-risk, and let p stand for both pasts, then the formula for human survivability is
simply
G(f1p) = G x G,

The expanded form of these two factors appears in Equation 7. Recall the notation in
parentheses on the left: (f|p) denotes the probability of future f if the past p is
known (given). The first factor, G,, stands for the old natural risks, while G, repre-
sents new man-made, man-activated and man-exacerbated hazards. The exponents in
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this equation and in Equation 7 total 1.0, as we learned in Chapter 3 that they must.
The limit ¢ = 0 is the case in which man-made hazards vanish; ¢ = 1 is the limit where
natural hazards vanish.
The equation for G,, has the form in Equation 4:
V4

? 1 (10)

G, = =
Zp + Zf 1+ Z/'/Zp

in which Z (as in hazard) is the cum-risk, which is not yet defined.
Let us change the notation for past and future time:

age 4 or past P — T; future F — Ty

where subscripts p and f* denote past and future. The reason is to make the time
symbols F and P in Equation 2 correspond to the Z symbols; hence,

1
G, =———
1+ T,/T,

The new notation puts emphasis (capital letter) on the two cum-risks, time 7" and the
new one Z.

# # #

The next task is the hard one, defining an appropriate cum-risk Z for use in
Equation 10. Throughout prehistory, ancient times, and part of the twentieth
century, Z barely budged from zero because humans were then incapable of self-
extinction. In the twentieth century we began making increasingly dangerous stuff,
and so Z took off and has accelerated ever since. When we do something risky, Z
tallies our consumption of luck just as the oil meters on Planet Qwimp tally
consumption of petroleum.

Consider the increment AZ by which Z increases in a single year. One factor in
AZ must be world population p during that year because p is the pool of potential
perpetrators, whether extinction is the work of a single mad scientist or the result of
everybody’s collective bad habits. So whom do we count in this population? Every-
body? Or only those deemed most dangerous? Perhaps we should count only the
populations of industrial nations that have the most power to commit extinction and
also generate the most greenhouse gas.

Opinions differ. Those who worry about disease should count people in the most
crowded germ-breeding areas of Africa and China. Those who fear robotics running
amok should count the world’s myriad sweatshops that make it affordable. Those
concerned about deforestation should count everybody: lumber companies provide
machinery, transportation, and money; affluent people everywhere create the
demand; and homesteaders in the forests are all too willing to sell their timber rights
and work as lumberjacks. In time they would raze the forests and jungles anyway for
agriculture. Those who believe that consumption of resources is the big threat should
count all affluent people. All of these judgment calls are too subjective: let us count
everybody.
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If you disagree, do not be too concerned. Whom to count is less important than it
might seem; to a first approximation it does not matter. If we suppose that the “bad
guys” who put us at risk are a fraction B of the population, B, in the past and B, in
the future, then this would alter Equation 10 to read

1

B x Z;
14122
Bprp

G, =

If we have no compelling reason to think B, < B, or B, > By, then the statistically
indifferent assumption is B, = B,. Then the B factors in the above equation cancel
and restore Equation 10. The harm that bad guys did in the past has strengthened us
proportionately against the harm their descendents will do in the future. Recall the
discussion of Jays and Kays in Section 3.1.

Conventional wisdom says that we in the developed world are to blame for
almost all the stress on our life-support environment since we consume far more
goods per capita than the world’s poor. It is fashionable to resent lavish consumers
and sympathize with the hordes of poor in the underdeveloped world. However, a
fellow who drives a Hummer stresses our environment no more than a typical
subsistence farmer in Amazonia. Whereas the driver’s extravagance is immediate,
the farm family’s damage is delayed a couple of generations. They have a high fertility
rate and produce myriad grandchildren who mature, raze more jungle to feed their
families, and exterminate species in the process. In the subject at hand, the surviv-
ability of our entire species, that delay is relatively brief and matters little. Affluent
folk are the looters, and subsistence farmers are the locusts. All do damage; so again,
let us count everybody.

Let us return to the task of finding a formula for Z, the cum-risk in Equation 10.
We digressed after deciding that the annual increment AZ must be proportional
to population p. However, p cannot stand alone because that would imply that
modern man and ancient man have equal ability to consummate extinction. As a
metaphor compare Z to the shot count V' at the Four-Day Shooting Gallery
discussed in Section 1.6. The human race is a distant target, and every person alive
takes one shot at it each year. Trouble is, their guns are growing more accurate,
and the rounds contain explosives with proximity fuses. Later shots must carry
far more statistical weight in order to retain the balance that we call statistical
indifference.

In other words, the threat is proportional to the power and expertise people have
to commit extinction either deliberately or by accident. This capability must be some
measure U of hazardous industrial/technical/scientific development; call it haz-dev
for short. Then the annual increment in cum-risk is the product of population times
haz-dev:

AZ=pxU

Finding a realistic formula for U is the tricky subject of the following section.
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4.2 HAZARDOUS DEVELOPMENT

To obtain a formula for haz-dev U we can modify a formula for the world economy,
E, expressed perhaps as the Gross World Product in trillions of dollars per year.
Johansen and Sornette [31] provided the formula. Their Equation 16 gives the annual
increase AE. Modifying their notation (L — p, B — C, A4 — E) to match ours, we
have

AE=CxpxE

where C is a constant of proportionality. World population p is a factor because it is
the pool of potential innovators and suppliers of labor and materials. Finally E itself
is a factor because old productivity leverages new. The steam engine enabled power
tools and machine shops, which then enabled all the things we manufacture including
better steam engines and power tools.

Here population has arisen in a context different from the one above, which once
again raises the question of whom to count. And once again my choice is to count
everybody. The world’s poor contribute by providing cheap manual labor for every-
thing from mining raw material to assembling the world’s machines and instruments.
Without them we could not buy a personal computer with a single week’s wages.
With fewer computers the world would run at a slower pace and be safer for it.
Moreover, Third World nations sell off their natural resources at an unsustainable
pace, which keeps the First World running ever faster.

Next let us modify the equation above to obtain a formula for U. Like E,
yesterday’s technology enables today’s. In other words, haz-dev exhibits positive
feedback, and so a first attempt would simply substitute U for E:

AUZCxpxU

However, the feedback for U is usually not as strong as it is for £, and so we shall use

a fractional power of U:
AU =CxpxU" (11)

Two reasons for this reduction both stem from the fact that most man-made
hazards involve cutting-edge technologies like genetic engineering, robotics, or
pharmacology. First, an ever decreasing fraction of the population has the time,
patience and intellect to acquire these ultimate skills. Second, in narrow hazardous
specialties there is less leverage among them. Robotics, pharmacology, and genetic
engineering do little for one another. An exception is computer technology, a
powerful lever for everything.

Physicist Derek Price [32] was the first scientist to do research on scientific
progress in general. This field has grown and now has its own journal, Scientometrics.
Price found that narrow measures of progress exhibit less positive feedback than
broader measures. For example, in his time (1963) the number of “important”
discoveries doubled every 20 years, while the total number of engineers in the United
States doubled every 10.

Some man-made hazards are not so high-tech, for example greenhouse gases and
world travel. These gases threaten our climate, and world travel spreads pathogens.



74 Human survivability [Ch. 4

Travel also homogenizes the world, thus reducing the chance that some remote
population will have a quirk that makes it immune to the ultimate hazard. For these
low-tech threats the exponent p should be close to 1.0, which changes the whole
character of the solution so that U grows exponentially; see Table K in Appendix K.
So perhaps we should disaggregate man-made hazards into two categories, one for
high tech and the other for low, just as the impresario did for stage productions as
described in Section 3.2. Unfortunately, we would pick up a couple more parameters
to be evaluated, and we have not enough reliable data to evaluate them all. Besides,
our quantities are too vaguely defined to justify the extra complexity. So let us press
on and use a single composite value of u to be determined. It will produce a single
composite cum-risk Z, which then represents all man-made hazards.
Appendix K solves Equation 11 with the result,

U= (X—-X,)“, wherew=—
I—n (12)
providing p < 1.0

In this equation, X denotes population-time, pop-time for short. This is the total
number of people-years ever lived by everybody starting from the dawn of
humankind, the extent of humanity. It is defined in the same sense that man-hours
or person-days gauge the amount of labor to do a job. Each year every person alive
adds one more person-year to the X tally. When somebody dies at age A, his life has
added A4 people-years to X. During 2005 world pop-time increased by AX = 6.5
billion because that was the world population in that year. The grand total for all
past human pop-time is about X, = 1.7 trillion people-years, estimated by adding the
world’s population for every year since the dawn of our species using estimates from
the U.S. Census Bureau [33]. Our ignorance of ancient and prehistoric populations
causes little error in X because the populations were so small then.

In Equations 12, X, represents the pop-time at some historical tipping point or
paradigm shift when man-made hazards began to surge.

Pop-time X will be the main variable throughout the rest of this chapter.
Therefore, we need conversions between X and dates, which appear in Table 6.
The dates and populations are those used by the economist J. Bradford DeLong
[34] rather than the U.S. Census Bureau. This maintains consistency with more of
DeLong’s data used later. The differences are minor; for example, we get
X (2005) = 2.0 trillion people years instead of 1.7. Throughout the second millennium
pop-times are numerically close to the corresponding dates, which can lead to
confusion. Also note that almost half of all the people-years ever lived occur in
the second millennium.

Returning to Equation 12, let us determine X, and p by fitting the equation to
existing statistical data that use four different proxies as measures of haz-dev:

e the yearly number of United States patents [35]

e the yearly number of pages in Nature magazine [36]

e the yearly number of papers published in natural sciences and engineering (NSE)
[37]

e an estimate of gross world product (GWP), the sum of all GDPs worldwide [34].
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Table 6. Population p and pop-time X at various dates, X expressed in billions of people-years,
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BPY.

Population X Population X
Date Millions BPY Date Millions BPY
—300,000 1 247 1300 360 1,310
—25,000 3.3 750 1340 370 1,324
—10,000 4.0 805 1400 350 1,346
—8000 4.5 813 1500 425 1,384
—5000 5.0 828 1600 545 1,433
—4000 7.0 834 1650 545 1,460
—3000 14 843 1700 610 1,489
—2000 27 863 1750 720 1,522
—1600 36 875 1800 900 1,562
—1000 50 901 1850 1,200 1,614
—800 68 912 1875 1,325 1,646
—500 100 937 1900 1,625 1,682
—400 123 948 1920 1,813 1,717
—200 150 975 1925 1,898 1,726
1 170 1,008 1930 1,987 1,736
14 171 1,010 1940 2,213 1,757
200 190 1,043 1950 2,516 1,780
350 190 1,072 1955 2,760 1,793
400 190 1,081 1960 3,020 1,808
500 195 1,101 1965 3,336 1,824
600 200 1,120 1970 3,698 1,841
700 210 1,141 1975 4,079 1,861
800 220 1,162 1980 4,448 1,882
900 242 1,185 1985 4,851 1,905
1000 265 1,211 1990 5,292 1,930
1100 320 1,240 1995 5,761 1,958
1200 360 1,274 2000 6,272 1,988
1250 360 1,292 2005 6,783 2,020
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Figures 19 through 22 below show the four fits to Equation 12.

Table 7 summarizes the estimates of X, w, and u. The last column in the table
“quality” refers to the amount of scatter in the data points.

The last proxy in this table, GWP, has p = 1.0. This confirms that the full
feedback in the equation AU = C x p x U (above) does happen sometimes. Equation
12 does not apply to this case. Instead, the solution takes a unique form and grows
exponentially as shown in Table K, Appendix K. In this example U doubles every 66
billion people-years, which would be 10 years with the present population, 6.6 billion
people. The scales on Figure 22 make the exponential process appear as a straight
line.

Recall Price’s observation that narrow measures of progress exhibit less positive
feedback than broader measures. This holds throughout Table 7. The broadest
measure of all is GWP, which has p = 1.0 as discussed above. The second broadest
is patents with g = 0.52, and third is the tally of papers in natural science and
engineering with 0.17. Finally, Nature magazine has the toughest standards for
acceptance. It is the publication most likely to announce an exciting new scientific
breakthrough such as the first laser or the double-helix structure of DNA. Therefore,
the scope of its individual papers (but not the magazine as a whole) is the narrowest of
all, and indeed i = 0. (Besides, Nature’s management may protect their reputation by
progressively tightening acceptance standards and thus limiting growth.)

For our purpose Nature is too high-tech, and GWP too low. The two remaining
sets of data, patents and papers in NSE, are more what we want. The best estimate for

Figure 19.
Number of U.S.
patents yearly
versus pop-time
in BPY. By
coincidence the
unit of pop-time
makes these
figures look like
dates, which can
be confusing. Few
patents were
issued for the first
60 years after
Patents did not catch patent law took
on for first 59 years. effect. This figure
shows only the
last outlier at
3 | 1614 BPY, which
1.x10 7 : : : : , ‘ . : ., occurred in 1850.
1600 1700 1800 1900 2000 Fit is X, = 1,430,
Pop-time X, billions of people-years w=2.1, p=0.52.

1.x10°

5.x10"

Patents granted yearly
—
X
—
o
1

(%) ]

X

=

(@]
w
1




Sec. 4.2] Hazardous development 77

1.x 10"
8.x10°
6.x10
S
g 4.x1077
Figure 20. b
Number of 3
pages published &
yearly in Nature &
magazine. 3
Nature includes 2.x10 7
all natural
sciences and has
the toughest
standards for ©
acceptance. Fit
is Xy = 1,000, 1. % 103— . . . ; , . . .
w=1.0, 1700 1800 1900 2000
w=0.0. Pop-time X, billions of people-years
5.x10° ]
1.x 10"
©
£ 5.x10%1
—
a
b
3
Figure 21. &
Number of
papers 1.x 10"
published yearly
in all the .
natural sciences 5.x10
and engineering
(NSE). Fit is
X, = 1,500, | . . \ . . . .
w=12, 1700 1800 1900 2000

u=0.17. Pop-time X, billions of people-years



78 Human survivability [Ch. 4

4
1.x10

5.x10°

%)
[
R
%
w
5 1.x10° )
3 i Figure 22.
5 5.x1077 Historical
k-] estimates of
g gross world
] 2 product
2 1.x10
2 (GWP), the
©5.x10' worldwide sum
of all GNPs.
Fit is
1 exponential
1.x 10

doubling every

T T T T T H T T 1
1200 1300 1400 1500 1600 1700 1800 1900 2000 66 BPY,
Pop-time X, billions of people-years uw=1.0.

w will be near the average of the two, about w = 1.6. The other two proxies serve
merely to bracket the chosen pair and to show consistency with Price’s observation.
We shall use the following numbers, which are close to averages from Table 7, but are
adjusted slightly to come closer to X, in Figure 20 for Nature:

w=1.6, p = 0.38, and X; = 1,400 BPY during year 1530 AD (13)

This date during the early age of exploration seems appropriate, especially since
explorations spread pathogens. Columbus had died in 1506, and a century had lapsed

Table 7. Parameters evaluated using four proxies for haz-dev U. X is expressed in billions of
people-years.

Proxy Xo w I Quality

U.S. patents issued 1,430 2.1 0.52 good

Nature magazine 1,000 1.0 0.0 poor

Yearly papers in NSE¢ 1,500 1.2 0.17 tolerable

Gross world product (GWP)? Doubles every 1.0 good
66 BPY

¢ Natural sciences and engineering.
b Expressed in billions of 1990 $.
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since Admiral Zheng He and his great Chinese fleet explored Southeast Asia and
parts of Africa. (Had they explored north and east along the Aleutian islands, I might
be writing this book in a Chinese dialect.) Johann Gutenberg’s movable type had
been in use for almost a century. The first half of the 16th Century was the time of the
spinning wheel, Copernicus’ discovery that the solar system is heliocentric, the first
pocket watch, and the theory of complex numbers. This was the time of the most
famous European explorers, mostly Spanish: Ponce de Le6n, Balboa, Magellan, de
Soto, de Coronado, Cabeza de Vaca, and de Orellana.

As a reality check let us compare risks in three different years using the tentative
parameters in the equations above. Relative risks are easier to comprehend than
absolute, so let us compare risks AZ during 1900, 1970, and 2005 using the equation
AZ = p x U from Section 4.1 and Equation 12 for U. Let M (for modern) denote
pop-time relative to Xj:

M=X—-X,

Then the ratio for any pair of years is

7, (i
AZ, p, M,

Table 8 supplies excerpts from Table 6 to use in this ratio equation for the years 1900,
1970, and 2005.

From Table 8, the extinction risk in 1900 was 6.6% of that in 2005. The
possibilities for self-extinction in 1900 are quite far-fetched. Wind-blown agricultural
dust has always crossed oceans and could conceivably spread deadly microbes to
isolated islanders who would otherwise survive. Or a sea mammal infected by a dirty
harpoon could spread a deadly epidemic throughout the world’s oceans and infect
people wherever sea mammals are hunted. Or both these calamities could happen at
the same time and together exterminate both continental people and islanders. There
are surely more hazards one could conceive, but regardless it seems like the risk in
1900 ought to be <5%, which would indicate 20 or more hazards in 2005 for every
one of comparable severity in 1900. We cannot expect a subjective guesstimate like
this to agree better than a factor of two or three with real data from Tables 7 and 8
simply because risks vary chaotically from year to year and decade to decade. Let us
accordingly accept <5% as adequate agreement with 6.6% from Table 8.

Table 8. Quantities for comparing yearly risks to 2005. (TPY means tera-people-years,
tera = trillion.)

Year Population p, Pop-time X Modern pop-time | Risk relative to
billions in TPY M, TPY 2005, %

1900 1.6 1.68 0.28 6.6

1970 3.7 1.84 0.44 39

2005 6.8 2.02 0.62 100
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Comparing hazards in 1970 to 2005, Table 8 shows only 39% of the latter. This
seems a bit too small, perhaps because it is scary to think that hazards have tripled
during my adult life. I had originally selected these two dates as an interval over
which the earlier hazard was about half the later. In any case, the comparison 39% to
50% is adequate for checking the reality of something that varies chaotically.

My judgment for comparing 1970 and 2005 was based on historical summaries of
the last four decades, but reasonable opinions may differ. You may make your own
assessment by studying the hazards listed in Table 9 below and adding your own list
to mine.

Table 9. Hazards during 1970 compared to 2005.

Risks during 1970 declining later e peak increase in world population

e threat of nuclear exchange, possible nuclear
winter

o Green revolution, consequences unknown

Risks worsening from 1970 to 2005 e carbon dioxide emission

o worldwide homogenization by commerce and
travel

e impossibility of quarantine: air travel, illegal
immigration, smuggling, refugees

e huge private fortunes, owners’ intentions
unknown

e Moore’s law, computer capability doubling
every 1-3 years

e pharmacology (remember thalidomide)

e high-power microwave emissions that reveal
our existence

Risks during 2005 but not during 1970 | @ genetic engineering

e sophisticated robotics

e information technology: Internet, Google,
and so on

Most of these hazards are familiar, but perhaps not the four in boldface.
They illustrate types of surprises that may blindside us:

e Green revolution—Norman Borlaug et al. fed more than a billion people who
had been chronically hungry by developing and distributing new varieties of
grain with higher yield and resistance to disease. Nothing bad has happened,
yet, but we didn’t know that when the revolution began. Subsistence farmers
might have multiplied rapidly, razed the forests, and triggered climate change.
Or his tampering with genetics might have caused a disastrous side-effect.

e Private fortunes—The late Sam Walton of Arkansas founded the Wal-Mart
chain of stores, which became the world’s biggest retailer. What if he (or later
his heirs) had “heard” orders from God to end the human race? If they spent $80
billion, the project might have succeeded.
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e Homogenization—Worldwide commerce and travel has homogenized cultures,
diets, drugs, and so on. This reduces the chance that some isolated population
will have some quirk or custom that saves them from the final calamity.

e Pharmacology—Suppose that almost everybody takes a new wonder drug not
suspecting its fatal side-effect. This after-effect has a very long latency; nobody
suspects anything until it is too late. Then everybody is sterile, or maybe they turn
into crazed killers who prowl the land looking for victims.

4.3 PREDICTOR FORMULATION

As shown in Appendix K, Equation K-9, the cum-risk is
Z=M“"Y where M = X — X,

Appendix K also splits Z into past and future, Equation K-10, to evaluate GSP for
man-made risks, Equation 10, with the result in Equation K-11:

c 1 (wt1)g 4
My)=|—+—

M( f) <1 +M/’/Mp) (14)

where w4+ 1=2.6 (x=0.38) from Equation 13 in Section 4.2;

M, (2009) = X(2009) — X in billions of people-years (BPY);
X(2009) = 2050 BPY from DeLong’s data, Table 6;

Xy = X(1530) = 1,400 from Equation 13, date from Table 6;
hence, M,(2009) = 650 BPY.

These are all the quantities required to evaluate Equation 14 except for g. We must
deal with ¢ separately for the two cases: survival of civilization in Section 4.4, and
survival of the human race in Section 4.5.

This completes the hard part of the calculation. Just a few simple steps remain
before we can obtain our formula for human survivability. First, let us restore the
factor for natural hazards found in Section 4.1, namely G, = 1/(1+ T;/T,), to
display the complete predictor, namely G(f|p) = GL ™4 x G4, also from Section
4.1, for the case in which the exponent ¢ is known:

G(f 1pq) = GL 1 x G < 1 )l‘q ( 1 )“““)
flp.q) = XGh=r—77=] X|—7r
! 1+Tf/Tp 1+Mf/Mp

As before, the notation (f'|p,q) denotes the probability of the future / (namely T
and M) given the past p (T, and M) and also given a value for g, the relative severity
of man-made hazards. Recall that time is the appropriate cum-risk for natural
hazards (because such hazards are as likely to strike one year as another). The second
factor in this equation represents man-made hazards, which was dormant for most of
human history but is now accelerating rapidly.

# # #
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The equation above suggests a paradox, and Planet Zanj gives us the perfect
paradigm. It is home to a humanoid species with accelerating technology, exactly like
ours. However, that species is fortunate enough to have no natural hazards—neither
ice ages, bolides, planet-quakes, volcanoes, nor Kkiller typhoons. For them ¢ = 1.0 in
the equation. This leaves only the second factor, the hazard of self-extinction, and
that hazard is maximum with ¢ = 1.0, several times greater than ours. Comparing our
situation to the Zanjians, it appears that the mere existence of natural hazards on
Earth confers major protection from artificial hazards. In our case 7, is a very long
time, and so we can ignore the natural hazards on a time-scale of centuries, as
discussed in the next two sections. Despite this, the natural hazards seem to protect
us somehow! How can this possibly be?

To resolve this paradox, realize that the Zanjians cannot justify omission of
natural hazards merely because they have never experienced any. In fact, their
inexperience may leave them all the more vulnerable to their first exporsure. Or
maybe Zanj is the proverbial powder keg. Perhaps its crust is under extreme stress
from shrinkage underneath. The first bolide ever, a modest hundred meters in diam-
eter, may shatter the whole crust and release poison gases.

Also recall that probabilties depend on our knowledge of the process in question.
If you are betting on a horse race, your assessment of the odds may change suddenly
and radically if you are lucky enough to overhear what the trainers are saying. But
nothing sudden happened to the actual physical conditions of the horses or their
jockeys. Only your knowledge of them has changed suddenly.

Likewise, the inexperienced Zanjians may make a poor assessment of the
statistical weights for ¢ in the equation above. By contrast, after enduring ice ages,
watching volcanoes, and generally experiencing nature’s fury, we can assess risks
better than they can. However, this assessment is a minor adjustment cmpared to
complete omission of natural hazards.

# # #

The equation above is not quite our final result. The exponent ¢ expresses the
relative potency of the natural and man-made hazards. The former gets the greater
exponent because nature has many times demonstrated her ability to extinguish
species on a massive scale. In other words, ¢ is small. Recall the opening example
in Section 3.2 where our impresario evaluated the exponents in his predictor.
Using his insider’s knowledge, he made a tally of expired shows and disaggregated
them into two groups, one for expired popularity and the other for all other causes.
Using these two “body counts” and the theory in Appendix G, he had sufficient
information to calculate the exponents. To follow his example in the case of human
survivability, we would need historical data for expired humanoid species throughout
our galaxy.

Lacking these, we could look for existing statistics that would serve as proxies for
g. A history of near misses is a possibility: asteroids or bolides that came close to
Earth; negligent government officials or military officers during the Cold War who
almost triggered a nuclear holocaust; a devastating simian virus that might have
jumped to humans but did not. These topics are certainly worth considering for
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future research; they are, however, too much for this treatise. Perhaps you can find a
good set.

Therefore our best fallback estimate of GSP, as shown at the end of Section 1.2,
is its average over possible values of ¢. This time we must use an arithmetic average
because it represents a logical OR: Hazard 1 may be twice as severe as Hazard 2, OR
it may be four times as severe, OR ... The previous average in Equation 8 is geometric
because it represents logical AND: The entity must survive both Hazard 1 AND
Hazard 2. In what follows, (angle brackets) indicate an OR average.

This change in Equation 14 yields our goal, the formula for human survivability:

o =((m) () b 09

The lower limit of the average, ¢ = 0, represents the absence of any man-made
hazard, while ¢ = 1 means the absence of any natural hazard. We must not give
these limits equal weight in the average: ¢ = 1 is not allowed because the natural
hazards will always be with us. Paleontology tells us that nature has the power to
extinguish species and has exercised that option frequently. Hence, the statistical
weight for ¢ = 1 must be zero.

Humans also extinguish species, but only those caught in vulnerable niches like
the dodo and the black rhinoceros. We have miserably failed to extinguish many
adaptable pests such as rats, mosquitoes, cockroaches, and the destructive invasive
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species in Australia (rabbits, foxes and cane toads). Humankind belongs in this pesky
adaptable category. Despite all man’s capacity to wreak destruction and misery, we
may lack either the brute force or the worldwide coverage to consummate self-
extinction. Moreover, nature is indifferent to who or what survives her violence,
while humans shy away from apocalypse as in the nuclear standoff during the Cold
War. Hence, ¢ = 0 is allowed and its statistical weight is maximum there.

To numerically evaluate Equation 15, we must deduce a formula for statistical
weights without the benefit of galactic data or microcosms. In other words we need a
formula for prior probability on the interval 0 < ¢ < 1 in a case where little is known.
Jeffreys [21] has addressed the case in which nothing is known. The ideas discussed
above can be used to modify his formulas; Appendix L gives the details, and Figure
23 shows the resulting plots. The solid curves are the main ones with maximum
statistical indifference. The dashed curves use a slightly contrived variant intended
merely to test the sensitivity of the final results.

For extinction the peak weight at ¢ = 0 is very sharp because there may be no
artificial hazard powerful enough to consummate complete extinction. However, to
merely destroy civilization, a disaster need not reach the remotest places. A man-
made or man-aggravated hazard (epidemic, bio-warfare) may suffice; accordingly,
the maximum statistical weight for civilization is quite mild. For reasons that will be
apparent in Section 4.5, we examine civilization’s survival first and then species’
survival.

4.4 SURVIVABILITY OF CIVILIZATION

Let us estimate the risk of a cataclysm that falls short of extinction. In order to use
our formulation, we must pose the question as the survival of some entity that has a
rather definite beginning and end. Survival of peacetime does not work because there
are always conflicts of various sizes. Survival of a particular nation will not work
either: its end may not be a calamity, but rather a merger, a split, or a whole new
concept in governance. So let us estimate the survival of human civilization, which
may be the most unequivocal example of a lesser calamity.

To qualify as the end of civilization, an event might kill everybody except those in
the remotest locations. Humans might survive in the Falkland Islands or Mauritius
or perhaps the high Himalayas. Or if islands drown, continental people may survive
but with their government, commerce, and urban services in ruins; currency becomes
worthless, and survivors abandon cities in their quest for food, water, and sanitation.

To use Equation 15 we need an estimate of 7, for civilization’s past. More than
one civilization have appeared independently. For example Maya civilization began
in Mesoamerica around AD 200. But that one collapsed and lost its influence during
the Spanish conquest. The civilization whose influence spread worldwide and remains
today is the one that began about 11,000 years ago, 9000 Bc, with agricultural
settlements in Mesopotamia. So let us put 7, = 110 centuries. Table 6 shows that
only 40% of human life (people-years, not the number ever born) occurred before
that time.
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There is no reason to calculate survivability beyond a few centuries because so
much can happen to alter the mathematical model. This future is short compared
with civilization’s age. The ratio T;/7, in the equation for natural hazards,
G, =1/(1+4T;/T,) from Section 4.1, is on the order of 3%, which is surely smaller
than uncertainties in the formulation. Therefore, we can ignore the ratio and put
G, =1.0.

It turns out that this same approximation holds in Section 4.4 for species survival
and throughout this treatise, so let us anticipate this result and simplify Equation 15
accordingly:

G(My | M,) = <<W)H>O (16)

This is our ultimate predictor, which is very convenient because G now depends only
on one independent variable, M, which is pop-time after 1530 AD. Thus we can
present results as a two-dimensional plot of G against M.

Figure 24 shows the final results for civilization’s survival. (The dashed curve
shows the result using a secondary formula for statistical weights, Figure 23, which
serves merely to indicate sensitivity to the uncertainty in those weights.)
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A summary result from this figure is that civilization’s half-life is only 8.6 billion
people-centuries. Let us examine what populations and durations this pop-time might
represent:

e If world population stabilizes with a crowd of 12 billion, then the half-life of
civilization is about 72 years—almost 3 generations.

e If population drops to a comfortable 4 billion, as in 1974, then the half-life is
215 years—about 8 generations.

e Thus overpopulation may prune as many as 5 generations off the family trees of
the many who perish in the cataclysm.

4.5 SURVIVABILITY OF THE HUMAN RACE

Again, there is no reason to calculate survivability beyond a few centuries because so
much can happen to alter the model. Contrast this maximum, T, with the age of our
species, about T, = 2,000 centuries. The ratio T} / T, in Equation 15 is on the order of
1/1,000, which we can certainly ignore. However, one might argue that the effective
age of our species is much younger. Evidence suggests that early humanity was
severely stressed by unknown forces that reduced our ancestors to a small band of
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survivors, about 700 to 2,700 individuals [38], perhaps 700 centuries ago. Our gene
pool has much less variety than those of other primates, which suggests that most
human genes were lost in a stressful time leaving only the genes of the few survivors.
Such an event is known as a genetic bottleneck.

That first group had specialized skills that helped them survive their crisis. But
those who died had other skills that the band would need later. This is the same dicey
situation that a new business or stage production encounters. The founders have a
few important skills and some star performers, but people with other skills are
lacking. This parallel makes one wonder whether we should use that time of crisis
as the age of modern humans instead of 2,000 centuries. However, the question is
moot in our context because the adjusted ratio 7,/7), is on the order of 1/200, again
negligible, and so the simplified Equation 16 applies again. Since the different ages
have no effect, the only significant change from civilization to extinction is the
statistical weights used in the average, Figure 23.

Figure 25 shows the results. The half-life for survival occurs at about 30 billion
people-centuries (BPC). However, this is much more sensitive to the assumed
statistical weight than the case of civilization.

Suppose we had the Grand Galactic Book of Knowledge with its database of
expired humanoid species. We could pretend to observe them at certain ages and
then plot future survivability using historical values of pop-time taken from the book.
For those sufficiently earthlike, the fit to Figure 25 would be crude but probably
satisfactory since we adhered to principles that worked well for microcosms here on
Earth.

However, a problem arises when we try to apply this curve to our real future here
on Earth because the pop-times are not historical fact but rather an unknown future.
Suppose we assume that world population levels off at 10 billion, then each interval of
10 BPC on Figure 25 would represent one century. This would say that the half-life of
Homo sapiens is only about three more centuries. But this is wrong because the
assumed population is not likely to hold that long. According to Figure 24 the chance
is 70% that the population will crash in a cataclysm that will kill billions and shut
down the hazardous technology. Hence, the real half-life of our species is much
longer than three centuries, but only because a lesser apocalyptic event comes to
its rescue! The pop-time will not recover and reach the half-life, 30 BPC, for some
number of millennia depending on circumstances during the aftermath.

This aftermath will be a time of safety for our species. The cataclysm will relieve
human pressure on the environment and let the atmospheric carbon dioxide con-
centration return to normal. Remote villages will be isolated enough to function as
survival colonies should another calamity strike. Lessons from the disaster will not
soon be forgotten nor ignored. The event will be a major topic in the history
curriculum of every schoolchild for centuries. In effect, the event will immunize
humanity against extinction for a very long time, long enough for humanity (or its
artificial descendents) to escape Earth and fulfill some greater destiny in the solar
system and possibly the galaxy.

Unlike the humanoid data from the book, we do not have actual values of future
pop-time to use in the formula. What we have instead are projections of future
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population and technology made by economists, scientometricists, and related
statisticians. The trouble with their projections is that they assume things will con-
tinue to run somewhat smoothly just as they have been. They make no allowance for
near-extinction events because they do not know how. But we do! We can make a
correction that takes cataclysms into account and lets us plot a curve of survival
versus projected pop-time, which we can estimate, as opposed to actual future
pop-time, which we cannot predict.

Figure 26 shows the general idea. Think of an ordinate (a point on the vertical
axis of the graph) as the number of survivors in a big statistical ensemble of humanoid
species. The steep curve on the left is a portion of the curve in Figure 25. It shows
entities dying off in the absence of any cataclysm. Follow the steep slope downward to
a point where a group of species eventually does suffer cataclysms. At that point their
risk vanishes, and all survive for the foreseeable future. Meanwhile, their projected
pop-time (oblivious to the event) continues like a clock, generating a horizontal
line. Further down the steep slope another group suffers cataclysms and generates
another horizontal line. These two discrete branches are only illustrations; the real
probabilities form a continuum of trajectories that blur into shades of gray. Each
trajectory represents a probability, which we know how to combine into a single
overall survival probability by using the sum and product rules (logical OR, AND)
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discussed in Section 1.2. Appendix M gives the details. The bold curve in Figure 26
shows the final overall probability of species survival expressed in terms of projected
pop-time.

4.6 SUMMARY AND CURRENT HAZARD RATES

Figure 27 summarizes the two most important results. To the extent that our many
assumptions are valid, our species’ long-term survivability is 70%, as shown in
Appendix M. Recall, however, that “long-term’ refers to the aftermath of a collapse
during which the population and economy have not fully recovered, and people
presumably remember lessons learned from the collapse. Let someone else predict
the hazards after that.

Curiously, the number 70% depends neither on w or M), which means that the
hazard rate has no effect on the final surviving fraction. If danger to humankind is
high, then so is danger to civilization, which rescues our species if it collapses first. If
danger to humankind is low, then so is danger to civilization. Therefore, while w and
M, influence the speed with which things happen, they have no effect on the final
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outcome. What does affect the outcome is the statistical weights of the exponents for
species and civilization, Figure 23.

@ In the very long term—many centuries—the odds are about 7 to 3 that our
species will survive.

@ It will not be a smooth ride. A near-extinction event may be doomsday for
billions of people. However, that cataclysm will probably rescue our species
from extinction.

Recall that all results in Figures 24 through 27 stem from Equation 16, where the
future depends only on pop-time M, not on time or population separately. For
example, we might be interested in both survivabilities at 12 billion people-centuries.
This pop-time can be lived over a period of 3 centuries in relative comfort at a world
population of 4 billion (as in 1974). Lots of nature and biodiversity can be salvaged to
keep the biosphere quite pleasant. Or the same pop-time with the same survival
prospects can be lived in crowded squalor that stresses the biosphere and its
inhabitants while they quarrel over limited resources. Perhaps 12 billion people will
endure for 1 century. An extrapolation of census projections peaks at about 10 billion
in 2080. From there it could go either way. The fertility decline may continue back to
4 billion or stall and let the population creep up to 12 billion.

# # #

The current hazard rates are important summary results. They should remain
valid for 20 years, more or less. For a big statistical ensemble the hazard rate is simply
the percentage of entities that expire per unit time. In our case this means the
percentage of Earth-like humanoid species or civilizations that expire per decade.

Appendix N derives the formula for the initial risk, which means the risk at the
time of my writing in 2009, Ty = M, = 0. The formula is

NRUEICEIIEY:

M,

Here (¢) denotes the mean value of the exponent ¢ for the various statistical weights,
which are listed in Table 10. In all cases let us use p = 6.8 billion people for 2009;

Table 10. Initial hazard rates for making predictions in 2009.

Case (@) Hazard rate,
% |decade
Civilization’s survival 2/5=0.40 9.6
Species’ survival, projected pop-time 1/7=0.14 3.4
Species’ survival, actual pop-time 1/4=0.25 6.0
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w4 1 =2.6 as before, and M, = 730 BPY for 2009. The result is
Ay = (¢) x 24% per decade

The first two cases are the important ones that apply to ordinary predictions. The
third applies if a cataclysm stops the clock. Note that these hazard rates exceed the
rates of some ordinary perils that insurance companies underwrite!

Which is more likely: that your house burns down, or you perish in a global
cataclysm? If you live in an ordinary urban house with a fire station at a normal
distance, and if you have no implacable enemy, then death in a global disaster is
more likely.

Is your fire insurance in effect and up to date?

4.7 BIASES

Let us review a pair of biases that I do not know how to quantify. Each of them may
cause our estimates for survival to be too optimistic.

In Figure 22 and Table 7 above we found p = 1.0 for gross world product, which
leads to exponential increase. The growth of hazardous technology U is normally
slower than that, according to Price’s rule. But nothing prevents an exception. There
may be some hazardous activity that is small now, but not for long, because its x> 1.
Some activities that are truly explosive, such as robotics or genetic engineering, may
conceivably exhibit 4 = 1.1 or 1.2. As shown in Appendix K, the character of the
solution changes again in this case, with the result:

(-w—1)
(L—X)™’
Note that both (—w) and (—w — 1) are positive and that U — oo as X — L. In other
words, parameter L is a drop-dead limit beyond which the entity cannot survive!

Maybe this is von Neumann’s singularity. Of course U never becomes truly infinite; it
only indicates that our mathematical model fails due to dangerous unprecedented

U= where w=—-100or — 5
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events. However, the risk of a near-extinction event is likely to have an earlier L,
which would bring on a collapse that rescues the human race as discussed above.

In principle, hazards with ;2 > 1 should be disaggregated from the composite x in
the manner of Equation 8. In practice I have no idea how to quantify the parameters
L and exponent —w, and so the drop-dead case does not appear anywhere in our
results. Yet its possible existence suggests that our results may err on the side of
optimism.

# # #

The second optimistic bias pertains to obsolescence. Our mathematical model
based on the principle of indifference is not supposed to apply to entities that die of
old age. However, no entity is completely ageless; there is always a bit of residual
obsolescence. As we saw in Chapter 2, in the case of long-running stage productions
in London the last 15% of survivors die off faster than our formula’s estimate.
Likewise we saw a smoother, lesser decline for long-running business firms. Our
predictor makes no allowance for humanity’s declining survival fitness, but in fact
our species fitness is declining. Modern medicine and social services are keeping
people alive and reproducing, many of whom either could not have survived in a
prior century, or at least they would have been unable to find a spouse and support a
family.



S

Apocalypse how?

Life is a tragedy to those who feel, @
but a comedy to those who think. )

—Horace Walpole

The probability of humankind’s long-term survival is encouragingly high, roughly
70%. This implies survival long enough to colonize the solar system and perhaps the
galaxy either with Homo sapiens or some sort of conscious artificial creatures that we
regard as our intellectual descendants (cyborgs, androids, whatever).

However, the high probability of survival does not imply smooth sailing. The
chances are about 50-50 that some apocalyptic event will decimate mankind within
the lifetime of today’s newborns. That will stop the frantic pace of technology and
development and make the aftermath a very safe time in which the biosphere recovers
from human devastation, although perhaps with a changed climate. Meanwhile, the
present is a very dangerous time with almost 4% probability of extinction each
decade. The probability of a lesser apocalypse is about 10% per decade.

The ultimate calamity, extinction, must reach the mountains of Tibet, the jungles
of Amazonia, underground malls and subways of great cities, the Falkland Islands
and the remotest islets in the South Pacific. It must be pervasive in the extreme,
leaving so few survivors that they cannot find each other and assemble a tribe that has
all the essentials for reproduction: a mate, perhaps a midwife, and enough people to
comprise a viable breeding stock, perhaps eighty [39].

Nothing can save us from nature’s most potent disasters, the classic example
being collision with a big asteroid. However, for other hazards, survival colonies
reduce the probability of extinction. Remote outposts built for other purposes also
serve as unintentional survival colonies.

Teams living in Antarctica comprise a survival colony. At McMurdo Station the
few who stay through winter number about two hundred. They have contingency
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McMurdo Station, Antarctica. Discovery Hut, Scott’s starting point on his first attempt to
reach the South Pole in 1902, is in the foreground on the left, Observation Hill is on the right,
and McMurdo is between the two. There are about 40 large buildings, many large fuel storage
tanks, and countless rows of piled up cargo in McMurdo.

plans and supplies for long isolation. Smaller permanent bases bring the total to
about a thousand. Some bases possess the means to escape unassisted before their
supplies run out. However, they are not completely immune to global catastrophe.
Travel during the summer might bring in an epidemic. An event that cools Earth
(such as an asteroid strike or extreme volcanism) during the austral winter would
likely kill them all [40].

Men outnumber women about two to one in these teams. If Antarctic teams
are the sole survivors of some apocalyptic event, their numbers provide more
than adequate genetic diversity for long-term survival of our species. In the first
generation, polyandry would improve their gene pool and the men’s behavior.

The fact that remote outposts exist now is no guarantee they will be there when
survival depends on them. Sooner or later these outposts will be abandoned, most
likely after losing their funds to competing demands. This leaves humankind vulner-
able to any hazard that would spare only the location of the abandoned outpost. Let
us ask Gott’s predictor how long the Antarctic research stations will survive. Serious
Antarctic studies began at a rather definite time, the International Geophysical Year
of 1957, 52 years ago (from 2009), so Equations 3 in Section 1.4 tell us,

Duration of Antarctic crews > 6 years with 90% confidence

> 52 years with 50%.

5.1 SCENARIOS FOR EXTINCTION

Population-dependent threats are all too obvious and worsening. Since 1950 world
population has surged from 2.5 billion people (BP) to 6.3 BP, a factor of 2.5. New
epidemics appear so often that we give them initials instead of names, such as AIDS
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(Acquired Immune Deficiency Syndrome), SARS (Severe Acute Respiratory Syn-
drome), and BSE (Bovine Spongiform Encephalopathy). Man and nature may
cooperate in our final demise. Nature creates the deadly disease, and then human
activity spreads it. It is well known that dust carries microbes across oceans reaching
the remotest islands and the highest peaks. Nature has always produced dust, but
humans make more of it and add different sorts of contaminants.

Our mobility may spread disease before quarantine can be enforced. In the 14th
century the horrific Black Death never threatened extinction, because it was confined
to Eurasia. People were more mobile in 1918 when Spanish influenza hit. That disease
spread worldwide and killed 20 to 40 million, about 2% of the world’s population. A
comparable epidemic today would spread much faster and spare fewer areas if any. It
is impossible to quarantine a continent in view of all the varied modes of transporta-
tion and the large number of travelers. Besides people taking legitimate business and
personal trips, there are covert smugglers, illegal immigrants, and boat people.

Carbon dioxide may be another hazard. In about 2050 its atmospheric concen-
tration will approach twice its preindustrial value. This concentration has been very
high in the distant past, but humankind and agriculture were not yet present to
interact and cause hazards that are not yet anticipated.

Safeguards against well-known hazards are already in place. We carefully moni-
tor the atmospheric concentration of greenhouse gases, we continually update numer-
ical models of climate change, and the Spaceguard program tracks those asteroids in
orbits that may possibly collide with Earth. However, we should not forget that
safeguards fail quite regularly. Since serious threats occur rarely, our guardians have
plenty of time to grow lazy and complacent. The Federal Emergency Management
Agency (FEMA), for example, was totally inept when Hurricane Katrina struck New
Orleans. An airport security system was in operation on September 11, 2001 when
terrorists hijacked four big passenger aircraft and used them for kamikaze attacks.
The Securities and Exchange Commission (SEC) is supposed to protect investors
from fraud. Yet Bernard Madoff, a respected financier on Wall Street, was able to run
a Ponzi scheme that cost investors $50 billion despite financier Harry Markopolos
claiming that he tried for nine years to alert the SEC. And so disasters continue.

The doomsday attack may well be deliberate. The culprit may be the proverbial
mad scientist or a demented trillionaire who spares no expense. We should not forget
that offense has a huge systemic advantage over defense. The attacker can spend a
long time to find one optimum opportunity. By contrast, the defense must watch all
possible vulnerable points all the time.

Before long, new hazards will emerge from the realms of science fiction and take
their place on the list of real concerns. Robotics is a big concern, genetic engineering
another. A more far-fetched hazard is the increasing number of high-power beams
such as radar and lidar that are probing the sky and announcing our location to
whatever may be out there.

# # #

In his book Our Final Century [2] Sir Martin Rees discusses the rapid arrival of
new hazards in recent decades without focusing exclusively on complete extinction of
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our species. John Leslie [12] provides an all-inclusive list of extinction hazards in his
introduction to The End of the World. In the popular literature Corey S. Powell [41]
provides a summary of specific threats. The following is a list of the extinction
hazards borrowed from his section headings:

Natural disasters

Asteroid impact

Gamma-ray burst

Collapse of the vacuum

Rogue black holes

Giant solar flares

Reversal of Earth’s magnetic field
Flood-basalt volcanism

Global epidemic

PRI R LD =

Human-triggered disasters
9. Global warming
10. Ecosystem collapse
11. Biotech disaster [genetic engineering]
12. Particle accelerator mishap
13. Nanotechnology disaster [self-replicating microbes]
14. Environmental toxins

Willful self-destruction
15. Global war

16. Robots take over
17. Mass insanity

A greater force is directed against us

18. Alien invasion

19. Divine intervention

20. Someone wakes up and realizes it was all a dream

In number 17, mass insanity, Powell refers to worsening statistics for mental
health. However, this heading could also refer to a mental state induced by a new
wonder drug that almost everybody takes before its unexpected deadly side-effect
appears. Perhaps 70% of humankind lose their minds, go on a murderous rampage,
and kill the other 30%.

The results of Chapter 4 allow a major revision to this list. The disasters in which
humans play no role, numbers one through seven, are negligible, simply because our
species has been exposed to them for a very long time and has thus acquired a very
long track record for survival. The same reasoning applies to 18, 19 and 20. Number
12 seems too far-fetched.

War, number 15, is not significant demographically unless it is part of some
complex scenario involving other hazards. If nuclear war occurs, the blasts will
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mostly be confined to the northern continents. From that origin nuclear winter would
be bounded by the latitudinal bands that dominate air circulation. Even if the tropical
Hadley cells merge, the temperate Ferrel cell from 30°S to 60°S would stay mostly
intact. Inhabitants of Falkland Islands, Tasmania, New Zealand’s South Island, and
Tierra del Fuego would survive. Philosopher Quentin Smith has independently made
the same observation [42].

In no special order, the serious hazards that remain are the following:

Global epidemic
Nanotechnology disaster
Global warming
Environmental toxins
Ecosystem collapse
Robots take over
Biotech disaster

Mass insanity

These hazards are all so well known and widely publicized that there is no need for yet
another review. Besides, the hazard that eventually kills us will probably not be any of
those listed above, nor will it be monitored or well publicized. Rather it will be
something bizarre that blindsides us because nobody has thought of it, or if they
did, they never took it seriously. To stress this point, the following eight scenarios
emphasize the offbeat and unexpected. Fictional details in some of them may help
you visualize a sequence of events and decide whether it is truly plausible. In no
special order the scenarios are the following:

Mutant phytoplankton

Coincidence and press/pulse

Latent killer

Pharmacology

Runaway greenhouse effect

Instability

Self-sufficient, self-replicating robotic species
Conspiracy
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This set serves as a foil to the balanced discussions by Rees, Leslie, Powell, and
others. The choice of eight examples is purely arbitrary. Their purpose is not orderly
coverage but merely examples that indicate a range of possibilities. The actual
number of such complex unorthodox scenarios is virtually infinite, hence the high
risk.

1. Mutant phytoplankton Trace gases in the atmosphere can have a big effect as
demonstrated by chlorofluorocarbons decomposing the ozone layer. The source of
that gas was artificial, and so governments were able, with difficulty, to control
the emission. But what if the source were mutant plant life? Earth’s plants have



98 Apocalypse how? [Ch. 5

already changed our atmosphere in a big way: they gave us oxygen. The next change
may be toxic to humans. If poison gas comes from a land species, we will identify the
culprit and exterminate it at all cost before it spreads too far. Since the target is
stationary, we would win that battle even against the most aggressive species. But
what if the peril is phytoplankton or perhaps kelp or some other seaweed? We
cannot treat the world’s oceans with herbicide, so that would be our doom.

Nature has warned us with the so-called red tides (back cover). They are not
really tides but rather algal blooms in shallow seawater. The water turns reddish-
brown with plankton, typically dinoflagellates (which means ““terrifying flagellates™).
The plankton poison shellfish, which in turn poison people who eat them. Occasion-
ally victims die.

A related dinoflagellate is more vicious. Pfiesteria piscicida attacks with deadly
nerve toxin. It was discovered by JoAnn Burkholder, a biologist at North Carolina
State University [43]. In 1991 it killed as many as a billion fish in warm shallow
estuaries nearby. After Burkholder sampled a toxic tank using gloves and the usual
precautions, she suffered nausea, burning eyes, cramps and loss of memory. Five of
her colleagues were seriously affected and suffered severe short-term memory loss. In
one case, the victim had not been near the tanks. He was merely downstream in the
ventilation system and had probably inhaled toxic acrosols.

Marine aerosols would probably not be a threat to people in the highest inland
mountains such as the Himalayas, but toxic gas emission is a possibility. One estimate
[44] states that living plants emit 400,000 tons of organic volatiles into the air, even
some with metals in their molecular structure. Other estimates say millions of tons are
emitted [45], the differences perhaps depending on what gases and vapors are
included.

It is unlikely that a toxic-gas mutation can happen as a purely natural phenom-
enon. If that were possible, it most likely would have happened already, probably
millions of years ago. Well, maybe it did. In the past 540 million years there have been
five major events that killed more than half the animal species. Lesser mass extinc-
tions that killed at least 10% bring the total to 26. Although a bolide strike has been
implicated in the most recent event, the one that killed the dinosaurs 65 million years
ago, other hazards may account for some of the other mass extinctions. A mutant
species of phytoplankton is a remote possibility.

Chapter 4 showed that extinction risk from purely natural events is negligible
compared to hazards that involve human activity. Genetic engineers and/or polluters
may indeed create the deadly mutant by accident. Radioactive effluents certainly
cause mutations, and one of them may be the eventual culprit. Once made, the
mutant organism reproduces freely and propagates on its own throughout the
oceans.

The only possible defense is risky and unlikely to happen, a survival habitat for
the privileged few. It might be an airtight artificial biosphere something like Bio-
sphere 2, the first attempt in Arizona, but bigger this time and with all the bugs
worked out. The refugees must escape eventually before crucial supplies are
exhausted, or equipment wears out. Perhaps there is a way the survivors can make
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their descendants immune by vaccination, selective breeding, or whatever, but it all
seems too complex to succeed on the first and only attempt.

It seems unlikely that any sophisticated survival habitat will be built and fully
maintained prior to its need. Until the need is apparent, the project would suffer from
severe lack of urgency and political will. It would be a prime target for budget-cutters
who look for projects that produce no conspicuous benefit in the short-term. How-
ever, if we wait until the need arises, there will not be much time. Without many years
of testing, the habitat will surely fail, as did Biosphere 2.

2. Coincidence and press/pulse In this scenario one mass killer leaves one set of
survivors, another leaves a different set. Occurring together, they kill everybody. The
dinosaurs’ demise may have been just such a double whammy: the bolide strike near
Chicxulub, Yucatan, Mexico plus major volcanism at the Deccan Traps in west-
central India.

The ultimate calamity will most likely be an improbable coincidence of multiple
hazards or failures simply because we develop defenses only against single hazards.
Defense against coincidences is impractical because there are too many possible
combinations, each of which is very unlikely.

Some studies of past mass extinctions support a so-called press/pulse model [46].
Press denotes a long-term pressure on the ecosystem, and pulse a sudden catastrophe.
The model makes good sense because two pulses are unlikely to coincide, and two

Deccan traps in western India The word traps derives from the Swedish word trappa for
stairway. Successive lava flows piled on top of one another in a manner that looks like stair
steps.
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presses probably leave survivors who manage to adapt. In the dinosaurs’ case volcan-
ism might have been the long-term pressure because dust blocks sunlight and volcanic
gases pollute the air. The bolide strike at Chicxulub, Yucatan is the prime suspect for
the pulse.

# # #

As noted above, war by itself is not enough to cause extinction. However, while
nuclear winter depopulates the Northern Hemisphere, a coincidental natural event
might take out the South. Volcanism is a possibility. It may occur at one or both of
the southern tips of the Pacific Ring of Fire in or near Chile and/or New Zealand.

As a third example, suppose climate-monitoring stations in Greenland and the
southern Indian Ocean fail simultaneously in a way that masks an Orange Alert. By
the time the trouble is fixed, it has become a Red Alert. That’s the pulse. Coinciden-
tally there is long-term tension between industrial nations and the underdeveloped
world. Leaders in four populous Third World nations assert themselves by refusing to
respond to the Red Alert because that would be seen as cooperation with the
industrial world. They claim the alert is a political ruse and refuse to shut down
their national consumption of fossil fuel. Before the United Nations (U.N.) can
enforce the Climate Treaty, it is too late. Earth follows the path of her sister Venus.

3. Latent killer This fatal contagion has a very long incubation period, as do BSE
and AIDS. By the time its symptoms appear, air travel will already have carried it to
the tiniest populated islands and all the remote outposts. Well, maybe not every
remote settlement, but perhaps a coincidence will strike those that remain. Wherever
the epidemic strikes, it will infect everybody during its latency. When symptoms
appear, it is already too late for quarantine. This is not too far-fetched: BSE has
been known to lie dormant for decades without symptoms. Incidentally, if a microbe
kills too quickly, its victims have little time to infect others. Thus, latency serves the
microbe’s reproductive interest; in other words, natural selection reinforces this trait.

Although diseases kill individuals, they rarely kill their host species. That would
be contrary to the microbe’s reproductive interest. Therefore, the killer probably will
not evolve naturally. But genetic engineers can make it happen either by accident or
on purpose. A lone mad scientist is not out of the question. In the words of Richard
Posner, “Human extinction is becoming a feasible scientific project’ [47].

4. Pharmacology This hazard also depends on latency. Imagine that a wildly
popular wonder drug has an unknown side-effect: those who take it slowly
become sterile, and their offspring are born sterile. In our homogenized world,
tourists, anthropologists, missionaries, photographers, and foreign-aid workers
carry the drug to the remotest outposts. Nobody has any warning until middle
age when grandchildren fail to appear. Nature has warned us with the drug
diethylstilbestrol, better known as DES, which is now banned in the United
States. It has produced adverse transgenerational effects in the reproductive tract.
Thalidomide, which produced defective children, was another warning of this sort of
hazard.



Sec. 5.1] Scenarios for extinction 101

On a longer time scale, pharmacology weakens our species by breeding depen-
dency (press). Worse, it tends to breed pathogens that mutate rapidly (as do influenza
and HIV [Human Immunodeficiency Virus]). This is the pathogen’s survival trick by
which it complicates or defeats medical treatment.

Although these hazards could cause the collapse of civilization, they are unlikely
to cause extinction because there will always be some group that refuses to take the
drug, perhaps a religious sect. To consummate extinction we must postulate some-
thing more violent. Maybe people taking the drug will go berserk and roam the land
looking for victims to kill. Lurid fiction has zombies turning into murderous canni-
bals. As fantastic as it seems, we cannot entirely rule out the possibility that a drug
might induce a murderous rampage.

5. Runaway greenhouse effect Our solar system has already demonstrated this
hazard in the case of Venus, Earth’s near twin [48]. She has Earth’s size and a nearby
orbit. Apart from slow rotation and dense atmosphere, Venus may have been much
like Earth during infancy before her water evaporated into space. It is remotely
possible that volcanism or a bolide strike could flip Earth to this lifeless state, but
this hasn’t happened in the last billion years. Thus the probability of this natural
event is insignificant, as Chapter 4 has shown. However, humankind may find a way
to aggravate this natural hazard.

It is not clear how we could set off a cataclysmic event. It might involve methane
(natural gas), CHy, a powerful greenhouse gas. Vast undersea deposits of methane
hydrate [49] will release methane if warmed and/or if its pressure is relieved. Perhaps
our constant quest for hydrocarbon fuel will accidentally release a burp of methane,
especially if the hydrate is already unstable as a result of ocean warming or falling sea
level. Further warming might release more methane until it becomes a cataclysmic
eruption. (Incidentally, methane hydrate is also known as methane clathrate, and the
eruption is a clathrate gun. Never underestimate scientists’ ability to create jargon.)

6. Instability On the evening of November 9, 1965 an electric power failure
blacked out parts of Ontario, Connecticut, Massachusetts, New Hampshire,
Rhode Island, Vermont, New York, and New Jersey. In some areas it lasted 12
hours. Twenty-five million people were affected. The cause was eventually traced
to human error that happened days before, when a maintenance man incorrectly set
a protective relay on a transmission line. In 1881 when Thomas Edison’s central
power system electrified New York, he could not possibly have imagined such
complex unstable connectivity over such a huge area.

Although that power failure was insignificant compared to extinction, it did
demonstrate the downside of big complex systems with lots of interconnectivity.
They work wonders while they work, but they also tend to have subtle instabilities
that wreak havoc when least expected. Seven states and a province are a tiny
fraction of the whole world, but if complexity multiplied that much in 84 years,
think what it may be like in the next century or two. In particular, the explosive
growth of the Internet makes our economy increasingly dependent on its proper
functioning.
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Cause of electric
blackout in Lisbon
and half of
Portugal, May 9,
2000; well, not this
particular stork,
but a similar one.

By itself, complexity probably has no means to deliver the coup de grdce, but it
may be a contributing factor in some complex coincidence.

7. Self-sufficient, self-replicating robotic species Self-replicating robots are not
feasible today nor in the near future because they cannot fabricate the integrated-
circuit chips they need to make their own brains. Billion-dollar facilities are required
for that task. However, someday there may be artificial brains that grow by
themselves when bathed in a special nutrient. The process may be something like
either crystal growth, or biological growth of brain tissue in an embryo. The brains
may be two-dimensional like integrated-circuit chips or three-dimensional like bio-
logical brains. A three-dimensional design will have a serious cooling problem, but
perhaps that will be solved if coolant channels are an integral part of a crystal-like
lattice.

Ultimately the robots will be capable of foraging for their own fuel and supplies
and making their own spare parts. The danger is that a self-replicating species will
proliferate, overrun the earth, and devour everything. Responsible nations will forbid
these species by law. However, in a world with billions of people and nearly 200
nations, what is feasible usually happens somewhere. A group of rogue engineers
funded by a rogue trillionaire may develop them in secret. Or, if not in secret, they can
just do it quietly in a nation where it is legal. To keep it legal, the trillionaire puts
national leaders on his payroll.

These robotic species will come in assorted shapes and sizes, one or more of
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which may prosper unaided. There will be safeguards against runaway reproduction.
For example, a bigger stronger species (not self-replicating) will be programmed to be
its “natural enemy’’. But then hackers may find a way to disable the safeguards. Even
without hackers, mutations and mistakes occur, and when the bad one happens, the
prolific species overruns Earth.

If the robots are tiny, they will spread worldwide, just as rats have done. They
will hitch rides in luggage, boxes of freight and bilges. If the successful robots are too
big to spread by accident, then the infestation can be confined to one continent until a
human misanthrope smuggles them out. A sub-billionaire can spread the scourge to
every habitable continent and island if she can hide her intentions from her hirelings
and smugglers.

8. Conspiracy Several decades in the future, embryo selection will be available
worldwide. Each embryo will be selected for its genetic perfection from a batch of a
half dozen or more. Most industrial nations will offer embryo selection free of charge
to all disadvantaged prospective parents. Besides the humanitarian aspects, this
policy makes financial sense. The cost of selection is more than offset by the reduced
need for social services and medical care later in life.

In this scenario a clandestine organization arises, the Secret Eugenics Society
(SES). Most of its members began life as designer babies. Many are second-genera-
tion selectees. They observe that a majority of citizens worldwide reject genetic
services and reproduce the old-fashioned way. SES members view this behavior as
child abuse on a grand scale. Why would anybody want their children to have inferior
health and intelligence? How can people justify using their mediocre eggs and sperm
when selection is readily available? As members interact, they reinforce these views
and develop growing contempt for the majority of humankind.

Eventually, the SES regards most of humanity as hopeless. Despite aid, under-
developed countries remain underdeveloped generation after generation. Overpopu-
lated countries remain overpopulated despite efforts to promote family planning.
Subsistence farmers continue to strip the land, kill off species, and exhaust natural
resources. ‘““And for what?” the eugenicists ask each other. If impoverished lives had a
modicum of quality or any purpose in the big picture, then many SES members would
feel a moral compunction to help them, or at least to let them live. But now the Secret
Eugenics Society has grown weary of it. They now regard the masses not as real
people but rather as an infestation to be exterminated.

By a big majority, the SES decides that the most merciful solution and the only
hope for global happiness is to cull humanity. “And why not?” they ask one another.
People cull herds of goats, elephants and other animals when their numbers threaten
their habitat. Why shouldn’t excess humanity fall in the same category? All those
people must someday die anyhow, so to SES members it seems reasonable to hasten
the inevitable if that is what it takes to make a better world. The SES plans a surprise
attack to kill all humanity except for several thousand privileged survivors, which of
course include their own membership.

Is this scenario absurdly far-fetched? Probably not. Attitudes and morality
change; what was outrageous a few decades ago is routine now. Why should this
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trend stop? Before 1973 abortion was illegal throughout the United States. During
the 1950s college dormitories for women had curfews and were guarded like fortresses
against sexually aroused men. Go back a few more decades and alcoholic drinks were
forbidden in the United States, a period known as Prohibition, 1920 to 1933. Well
into the 19th century slavery was common, and men fought duels. No one can predict
the next change in morality.

The end of the world may happen as follows: The Secret Eugenics Society
conducts studies, which show that biological weapons are the best choice. The Society
can make weapons by genetic engineering, which has become routine and inexpen-
sive. Genetic engineering is on a roll, much like the computer revolution of the 1980s,
1990s, and 2000s. The SES has skilled research biologists and genetic engineers
among its members, plus money to hire many more, most of whom are kept unaware
of the project’s true goal. The SES carefully selects and breeds pathogens to be as
lethal and contagious as possible to humans while sparing most plants and livestock.
They also develop a vaccine to protect the designated survivors. The pathogen’s
ability to reproduce is designed to fail after one year, long enough to exterminate
humanity plus a few months to spare.

Committees draw up a detailed plan. The big expenses include research and
development and a stockpile of weapons. All together they cost hundreds of
billions of dollars. But money is not a serious problem; in recent decades private
fortunes have been growing at an unprecedented pace. Nearly all SES members
are millionaires, a few are billionaires, and one of them is among the first
trillionaires.

The SES develops aerosol bombs to dispense the pathogens. The bombs are to be
hidden in dark remote corners of public buildings, subways, and the like. Very few
people would see them, and the few who do would be deterred by their false labels:
“Do not disturb, Property of the Department of Air Quality Control.” The bombs
are to be planted worldwide with signs in hundreds of languages.

The big problem is testing the plan. The SES sets up an “industrial biotech plant”
on an isolated Indonesian island. It has an “accident” and everybody dies except a
test group who were vaccinated. But that is only one test; several more are needed.
Years and continents must separate the next test from the first so that the world does
not suspect a conspiracy. The second test occurs on an island in the Canadian Arctic
with a mix of Inuit and Caucasians. The test succeeds, meaning that vaccinated
people survive and the others die. But this time a worker escapes and spreads an
epidemic among the sparsely populated villages. Information leaks, hired assassins
kill those who know too much, bribes are paid, and the SES barely manages to
contain the damage.

The membership grows impatient. On a close vote, they decide to forego further
testing—big mistake. The next extermination is worldwide. The pathogens kill every-
body who was not vaccinated. However, in the Amazon jungle the pathogen does not
expire after several months as it is supposed to. It finds a host where it thrives,
reproduces, migrates, and mutates (shades of Jurassic Park). Soon the vaccine is
ineffective, those chosen to survive die like the others, which completes the extinction
of humankind.
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5.2 WILD CARDS

Wild cards can be either our downfall or salvation.

India and China These nations have two billion people and sizzling economies
(prior to the global downturn in 2008). At present they show little interest in big
long-term issues like survivability and global warming, but then we cannot expect
them to think that way until their living standard improves. This is happening, but so
is their consumption and their impact on the biosphere. Will they become world
leaders in conservation, survival habitats and related projects? Or will they opt to be
uninhibited consumers? Nobody knows. Perhaps our species’ survival is at their
mercy.

Outrageous private wealth Forbes magazine publishes an annual report on the
400 richest Americans. In 2006 for the first time, all 400 were billionaires. In 2004
there were 313 billionaires, compared to 262 in 2003. The five Walton heirs (Wal-
Mart stores) have $90 billion among them, and Bill Gates (Microsoft) has $53
billion. At the rate private fortunes are accruing, there will be trillionaires before
long. Any one trillionaire would be able to buy weapons of mass destruction. She
might possess enough wealth to purchase a nation, rewrite its laws, and take its seat
in the United Nations, perhaps in the Security Council. Are all these trillionaires
sane? What about their heirs? Does the Federal Bureau of Investigation (FBI) or any
intelligence agency keep tabs on them?

Several people have committed horrendous, senseless crimes and claimed that
they acted on orders from God. Trillionaires are not immune to such delusions. If and
when a trillionaire imagines God’s command to end the human race, he may have the
will and the power to succeed.

John E. du Pont gave us a small demonstration [50]. He is the great-great-
grandson of E. I. du Pont, founder of the chemical company. As one of many heirs,
John’s fortune totaled a couple of hundred million. He is seriously deranged and
sometimes has claimed to be the Dalai Lama (among others). In 1996 he shot and
killed wrestler David Schultz for no apparent reason. A jury convicted du Pont of
third-degree murder. Okay, so he killed only one, far short of 6.5 billion, but his crime
and mental state warn us that the wealthy can have murderous delusions like any-
body else. They have the money to play out their delusions, and they are less likely
than others to be under supervision.

We think of megafortunes as good capitalism—an incentive to perform, a just
reward for a job well done. True, to a point, but gigafortunes far exceed that point,
simply because a thrifty shopper can live her whole life in splendid luxury for only a
few hundred million. After that, the money is just a thrill that feeds a dangerous
craving for power and enriches heirs of unknown sanity. Perhaps governments whose
tax laws allow such accumulation should be considered corrupt. In 1965 chief
executives of U.S. corporations were paid 24 times the wages of the average worker.
By 1989 that ratio had crept up to 71. In 2005 it was 262, an increase exceeding an
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order of magnitude in only forty years. To quote Francis Bacon: “Money is like
muck, not good except it be spread [51].”

Ironically a billionaire or trillionaire may save us when government fails. There
is no hope of making human survival a viable political issue since it lacks urgency
and emotional appeal. How many politicians are capable of understanding this
treatise? What fraction of their constituents? But hope is not lost. The possibility
remains that one of those vast fortunes can save humanity. Wealthy landowners
in some countries have protected private forests that peasants would raze were the
land equitably divided. Billionaire Gordon Moore (of Moore’s law) is a major
contributor to Conservation International, a group protecting land that would
otherwise be plundered. Albert Gore, Nobel Laureate, is a crusader to stop global
warming.

Here is a modest proposal to save the world that an ordinary billionaire can
sponsor: Help nature take back the tropics. From the dawn of our species until the
mid-20th century, the tropics were sparsely populated. They were a reliable buffer
against the excesses of humankind. The tropics absorbed carbon dioxide, stored
carbon, released oxygen and water vapor, retained nutrients, and preserved the genes
of millions of unidentified species of unknown (but probably great) future value.
Then “‘progress” came to the tropics with steel tools, insecticides, fungicides, and
medicine. The population exploded, and with it the demand for timber and raw
materials. Now the great tropical buffer is dwindling.

Perhaps a wealthy preservationist’s most effective strategy is to aggravate the
tropical conditions that discouraged development in the past. Insects and vermin are
high on the list. One possible project would breed and/or import hardier more
virulent pests, something aggressive and resistant to insecticides, repellents, and
the like. Genetic engineering might play a role. Unlike two-legged forest rangers,
the six-legged kind are far more numerous, self-replicating, and respect neither
property lines nor national boundaries. Best of all, they work without pay.

Homesteaders would suffer terribly from this preservation project. Depending on
the date and the areas affected, hundreds of millions might be displaced, but the
billionaire sponsor cares little; she is dedicated to her greater goal. Moreover, she does
care about the primates that the homesteaders abuse. In the case of Africa, she cares
about gorillas and chimpanzees, and in the case of Amazonia, she cares about
indigenous people. She views her project as long overdue redress for a half century
of abuse and encroachment on their lands. She also realizes that the indigens are
humanity’s fallback population, which should never be assimilated for reasons dis-
cussed in Section 5.7 under homogenization.

An alternative project would plant land mines in the main roads leading into the
forests and jungles. This might work where the terrain offers plenty of foliage to
conceal implanting teams and their equipment. Roads are the bane of preservation.
Main arteries branch into modest roads, which in turn branch into dirt roads and
driveways until vast areas are open to development, exploitation, and poaching. A
billionaire preservationist can probably acquire sophisticated mines and implanting
equipment normally reserved for the military. These mines can be activated or
deactivated by remote control. If observation posts are feasible, mines can be inactive
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domain).

while sweepers are present, active as soon as they leave. Minesweeping operations are
likely to fail for other reasons. The mines are difficult to detect against the natural
background of rocks, roots, and irregular terrain. Neither magnetic detection nor
acoustic echolocation is likely to work. The detonator’s trigger can detect either
pressure or magnetic material such as steel. The latter is attractive because it would
take out bulldozers and lumber trucks while sparing pedestrians and carts drawn by
animals.

Robotics When a species expires, it usually succumbs to predators or to com-
petition from another species that has moved into its territory and/or ecological
niche. Within the biological realm humankind has no such challenge, but in a
larger scope that includes robotics and artificial intelligence, we shall soon manu-
facture our own competition.

Sometime this century we shall see a revolution in robotics similar to the recent
one in personal computers. (Perhaps that revolution will produce the first trillio-
naire.) What guarantees this is a most amazing example of runaway technological
growth widely known as Moore’s law. In 1965 Gordon Moore noted that the density
of transistors on a computer chip had doubled every year. The time slipped to a year
and a half, then to two. Sometimes the law takes on a broader interpretation as a
doubling of computational power. For rough estimation over a long term, two years
is a valid doubling time. That amounts to a thousandfold increase every 20 years, and
a millionfold increase during the forty years from 1968 to 2008. Other components
have also maintained the pace. Especially noteworthy is the capacity of the hard
drive. It went from a few megabytes in 1980 to a terabyte in 2008 by doubling every
1.5 years.

Obviously a physical limit exists, and so the growth must level off at some point
like a logistic curve. Moore’s law will fail someday when the technology of transistor
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packing hits a hard physical limit, certainly before we reach one molecule per
transistor. However, it has already survived predictions of its demise. Each time
some new technique comes to its rescue. Ultimately, components with periodic
structures will be made by self-assembly, which means that the microscopic elements
arrange themselves in an orderly structure much as molecules do during crystal-
lization. If we give Moore’s law a broad interpretation that encompasses derivative
technologies, then this quasi-exponential trend could continue until it contributes to
the end of our world.

All this progress has occurred on the two-dimensional surface of the silicon chip;
the third dimension has yet to be exploited. Stacking integrated circuits vertically will
create a serious cooling problem, but that is not a fundamental limitation; engineers
will eventually solve it. We can reasonably expect another thousandfold increase
during the next 30 years, only a little more than a human generation.

As the capability of digital hardware grows exponentially, one might think that
the pace of artificial intelligence will be held in check by the time and intellect required
for programmers to write the computer code. Not so. That process will also grow
exponentially by means of genetic algorithms, a most amazing new technology.
Computer programs exist today whose developers, the human ones, have no idea
how they work. Because of limited education and intellect, humans may not be
capable of knowing how they work! The actual software development happens inside
a big computer equipped with a genetic algorithm (GA) that develops the program
through an evolutionary process.

It begins with a seed program that does something vaguely like the desired
program. Then the GA makes small random adjustments in the program’s code
and tests the result using known examples. (Suppose the problem is to factor
enormous integers. GA would create test examples by multiplying big prime numbers
to obtain integers to be factored.) Next, GA grades the altered program rather like a
teacher grading a pupil. It keeps the programs with the highest scores and proceeds to
the next generation with another set of adjustments. The process continues until a
near-perfect program emerges. All of this evolution runs automatically at high speed
inside the Central Processing Unit (CPU) of a supercomputer at rates trillions of
times faster than biological evolution.

So far this description applies to asexual algorithms. Sexual ones involve two or
more evolving programs that occasionally swap bits of code by analogy to biology.
Distinctions between man and machine dwindle as fertilization in silico takes its place
alongside fertilization in vitro. Robot manufacturers will compete using genetic
algorithms to make their androids ever smarter. These algorithms will advance
robotics software far beyond anything human programmers (or androids) can com-
prehend, much less compose as ordinary computer code [52].

# # #

When advanced robots arrive, people will quickly grow addicted to cheap, skilled
slave labor. Pundits and politicians will urge caution and safeguards to no avail. They
cannot restrain the demand for ever-smarter models. Some nations will outlaw
manufacture or at least limit their permissible intelligence, but then another nation
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takes over the market and reaps the profits. Smuggling will be low risk because the
robots can cross national borders on their own by walking, hitching rides, snorkeling
across rivers, or whatever works. Their body shapes and camouflage coloring can be
designed for self-smuggling. The juggernaut is unstoppable.

The serious threat is human hackers. They may deliberately breed a hostile strain
of androids, which then infects normal ones with its virus. To do this, the hackers
must obtain a genetic algorithm and pervert it, probably early in the robotic age
before safeguards become sophisticated. And their efforts may be sponsored by a
billionaire who thinks he hears orders from God.

Excluding hackers, it seems unlikely that androids will turn against us as they
do in some movies. The engineers who develop them will be so concerned about
hostility that they will build in safeguards at every level of their behavioral
programs, in effect giving the robots powerful instincts to nurture humans. It is
unlikely that the androids will violate such numerous and basic instincts. They cannot
turn hostile in a single accidental mutation. Computer code for hostility is too
complex; that would be like the proverbial monkey accidentally typing Shakespeare’s
works.

A series of mutations could gradually undermine the original safeguards and
produce hostility, but only if some compelling Darwinian advantage reinforces the
trend. Fortunately there is none. Androids do not eat human flesh nor compete for
cropland or scarce resources. All the gentle androids need is minerals to make body
parts and plenty of sunshine for their solar batteries. As for lebensraum they can
design themselves to be content in the desert, on platforms at sea, or in the Arctic.

Nobody truly understands consciousness. The one who comes closest may be
neuroscientist Gerald Edelman, Nobel laureate. He said, “Someday scientists will
make a conscious artifact” [53]. He and mathematician Eugene Izhikevitch have
already made a numerical simulation of a brain, which, to their delight, exhibits
intrinsic activity. In other words, it is thinking on its own even when it has no
assigned task or sensory input.

In the very long term, androids will become conscious for the same reasons
humans did, whatever those reasons may be. Lazy humans may let them run their
own genetic algorithms, at which point they control their own destiny and become a
species practicing unlimited, unregulated, open-ended evolution. In the words of
Richard Posner, “Human beings may turn out to be the twenty-first century’s
chimpanzees” [47].

Bill Joy fears the technology he helped create. Maybe he’s right, but to me it
seems more likely that robots will be our salvation. The same programmers who
create safeguards against hostility are unlikely to protect human rights such as
freedom, dignity, self-determination, justice, equality, and the unrestricted right to
reproduce. The programmers simply do not think about these issues in the context of
their daytime jobs. Even if they do, they will have great difficulty translating them
into computer code. In summary, the androids have powerful instincts to nurture
humans, but these instincts are unencumbered by concerns for human rights.
Androids will feel free to impose a harsh discipline that saves us from ourselves
while violating many of our so-called human rights.
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World Simulations A detailed unimaginative approach to survivability would
make a huge numerical model of our entire world and run thousands of simulations
of our future, each with slightly different inputs and random events. Statistics of the
outcomes would then indicate the probabilities of survival at various levels of con-
fidence. If world simulation seems far-fetched, then imagine living in 1975 and some-
body predicts that in thirty years most middle-class homes will have an appliance
that searches most of the world’s knowledge in less than a second.

If current trends continue, computer capability will have increased many thou-
sandfold in fifty years, which may be enough to enable the simulation. It will require
at least three major modules: the physical Earth, human behavior, and the economy.

Existing computer programs simulate huge physical systems, for example world
climate models. One component is a representation of oceans, a three-dimensional
grid that specifies temperature, pressure, current, salinity, carbon dioxide concentra-
tion and contaminants within each volumetric cell. Similar representations describe
the land and atmosphere.

Numerical models of the world economy date back to 1970 when the Club of
Rome made a big simulation that included natural resources, population, money,
industrial output, consumption, birth rates, food, environmental pollution, and much
more. They called their report The Limits to Growth [54].

The big missing piece is simulation of human behavior to the level of individual
personalities. Complexity theory tells us that tiny differences in the initial conditions
(perhaps small childhood events) cause a huge divergence in the outcome. Therefore,
any single run (execution) of the program will be virtually meaningless. However, the
simulation programs will make hundreds or thousands of runs with slightly different
initial conditions from one to the next. Then the full set of outputs will give the
investigators a sense of the range of plausible responses they can expect from each
simulated individual.

With this tool a diplomat can prepare for negotiations with her foreign counter-
part by first negotiating with his avatar. After the real meeting she can revise the
virtual personality and rehearse for their next encounter. Likewise, a candidate for
public office can simulate a public debate with her opponent to prepare for the real
one.

A world simulation cannot possibly treat eight billion people as individuals.
However, it can lump ordinary people into groups with generic personalities: the
membership of each labor union, immigrants from Mexico, the Caltech physics
faculty, Hutu farmers in Rwanda, and so forth. But world leaders, corporate
leaders, renowned scientists, and other influential and extraordinary individuals
each merit their own unique virtual personality and behavior pattern. When the
world model runs a short-term forecast, it will use personalities of named individuals.
However, long-term forecasts must assume personalities for unknown future
leaders. For any single run each personality is drawn from a statistical ensemble that
covers the range of traits found among leaders of that nation, organization, or ethnic
group.

Again the single run means very little. What counts is the range of possibilities
established by a very large number of runs. Using a so-called Monte Carlo algorithm,
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the world model will run thousands of simulations in which parameters are varied
within their range of uncertainty, especially the random personalities of future
leaders. This builds a statistical database of plausible futures from which events
can be predicted with varying degrees of confidence.

To be realistic, the world model must have imagination and “think outside
the box’. It must occasionally inject imponderables such as tipping points,
paradigm shifts, and the unexpected geniuses and inventions that cause them.
For example, in August 2001, no list of terrorist weapons included box cutters.
Hence, a simulation could not predict the terrorist attack on September 11, but it
might yield comparable disasters that indicate a level of risk and general areas for
concern.

However, imagination can go too far by injecting too many extraordinary events.
Certain parameters must be adjusted to realistic values: the frequency of tipping
points, paradigm shifts, and revolutionary inventions, the percent variation in initial
conditions, and similar quantities. This is a significant obstacle.

A possible solution would calibrate these parameters against historical data.
Pretend to live in an earlier time and then run the program to “predict” events similar
to those that have actually happened. This method is limited because history does not
include extinctions and near-extinctions among the test cases. Moreover, it is doubt-
ful that extant histoical records provide enough details to initialize the simulation.

A more practical approach would extract summary data from the simulations
and compare them to an analytic formula such as our Equation 16. It is not likely that
a seriously flawed simulation would conform to the formula. This test is analogous to
Benford’s law discussed in Section 1.5. It gives the statistics of the leading digits in a
big set of numbers that are measurements of something. Benford’s law has trapped
embezzlers and tax evaders who have cooked their books with fictitious numbers that
do not obey the law. In a similar manner an appropriate analytic formula may expose
invalid results from a set of Monte Carlo simulations.

No simulation can replace analytic models for three reasons. The first is time; we
cannot afford to wait fifty years for the model to operate reliably. Our species or
civilization could collapse in the meantime. The second is complexity; it is hard for
independent evaluators to digest all the inputs and intricacies and then make a valid
assessment. The third is the calibration discussed above. The analytic model and the
simulation are complementary. The latter provides the details with many surprising
and important trends. The former provides the reality check. No matter how sophis-
ticated simulations become, we’d better keep analytical models of survivability as
reality checks. No doubt there will be successors to my model that will be more
detailed and accurate but still within the analytic genre.

When the world model and the analytic model work together, this pair stands a
good chance of producing valid forewarnings. Whether the public pays attention is
anybody’s guess. Scientists running the model would use their results to make a
candid list of urgent reforms. It may include harsh measures that offend almost
everybody: restrain the economy, levy heavy taxes on fossil fuels and other natural
resources, impose compulsory birth control, and the like. The public reaction to such
a report would itself be an interesting subject for a simulation.
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One can imagine the repercussions: Special interests hire scientists willing to
downplay or ridicule the world model. Celebrities like the late Dr. Michael Crichton
will declare themselves instant experts and enumerate all the prior predictions of
doom that have failed. They will find lots of them since each simulated future is
merely a possibility, not a certainty. The real scientists will be branded as alarmists
trying to inflate their own importance. The public is helpless because the simulation’s
flowchart alone is too complex for any individual to grasp. Few people have time to
read it, much less verify the algorithms and statistical inputs.

Bulky data offer opportunities to insinuate biases consciously or not. An old
mainstay, selection bias, emphasizes one class of data and downplays or ignores
another. Potentially friendly critics know this game and remain skeptical. Most of
them put the problem aside for another day, which somehow never comes. By
contrast, hostile critics are motivated to sift through the data and inevitably find
some that are suspect and a few inputs that have been questioned or discredited.
(Think of creationists attacking Darwinism.) In the end the simulations will have little
impact on our way of life regardless of their true potential. Still, we must try.

So, will the simulation’s existence enhance or jeopardize our survival? It could go
either way. After a simulation averts a few ordinary disasters, people may have a false
sense of security. We press on with an expanding economy and ever-higher technol-
ogy confident that our computer program will warn us when we begin living too close
to the edge. Then the fatal one hits, something neither the machine nor its human
supervisors had ever imagined.

5.3 OVERRATED NATURAL HAZARDS

Our sun behaved alarmingly from 1645 to 1715, the so-called Maunder Minimum
when sunspots almost disappeared. This occurred during the four centuries of the
Little Ice Age in Earth’s Northern Hemisphere, which suggests a common cause.
However, the sun recovered and displayed normal spots for the next three centuries,
so our solar rotisserie seems secure for centuries to come. We now know more solar
and stellar physics and see no evidence that the sun will misbehave, nor will a nearby
star explode during the centuries in question. As they searched for sunspots, one
wonders whether Edward Walter Maunder and his colleagues felt much anxiety for
the world’s future, especially since they lived during the Little Ice Age.

Volcanism can spew enough ash into the stratosphere to shade Earth and cause
widespread famine. This happened in April 1815 when Mount Tambora in Indonesia
erupted. It canceled the summer of 1816 in the Northern Hemisphere causing hard-
ship in Europe and China and famine in New England [55]. Curiously the ash had
little effect during the summer of 1815, which began two months after the eruption.
Nor did it cancel summer in the Southern Hemisphere even though the volcano is
situated at 8° south latitude. This was probably because the huge southern oceans
comprise a heat reservoir like none other on Earth. (Incidentally, the so-called Year
without a Summer spoiled Mary Shelley’s vacation in Switzerland, so she passed the
time by writing her novel Frankenstein.)
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Geologists find evidence of catastrophic eruptions of far greater size that
occurred at intervals of a few hundred thousand years. On that time scale our species
will have likely expired from another cause.

Our survival for 2,000 centuries is a consequence of adaptation to killer plagues,
famine, and other natural hazards of ancient times. By contrast, our exposure to
man-made risks began only about a half century ago, which is shorter by a factor of
4,000. Based on this contrast Chapter 4 shows mathematically that natural hazards
are insignificant compared to man-made hazards. But few people are familiar with
this analysis, and even for those who are, the abstract argument lacks impact and
drama. People are understandably in awe of nature’s power—hurricanes, tsunamis,
droughts, fire, and so on—and so they assume that nature is at least as threatening as
humankind.

Concern about bolide strikes is almost a fad, especially since the comet Shoe-
maker—Levy collided with Jupiter, thus drawing attention to the possibility. A loose
international effort called the Spaceguard Foundation detects and tracks asteroids and
other threatening objects that might possibly collide with Earth. Effective defense
requires years of warning and careful planning. Objects with diameters bigger than a
few kilometers will be tracked decades in advance of a possible collision. The thresh-
old for extinction size is about 10 km in diameter, the probable size of the dinosaur
killer. A lesser bolide might surprise us, but at worst it could depopulate only a
modest-sized continent.

Many hazardous objects follow very predictable orbits and can be deflected
harmlessly by any one of several techniques. A review in Scientific American describes
half a dozen defenses [56]. For example, smashing a big spacecraft into the object at
about the midpoint of its trajectory would nudge it into a harmless orbit. Exploding a
nuclear bomb has been considered. In some cases a sustained gentle push or pull
would suffice. If we dust the object with white pigment, it increases solar radiation
pressure, which may provide enough gentle push. A feasible pull might be gravita-
tional attraction to a nearby spacecraft of appropriate mass. This last scheme is
totally independent of the physical characteristics of the object, such as its composi-
tion and spin. Thus the gravity scheme might be important in cases where we know
nothing about the object’s mechanical characteristics.

The most deadly objects, some tens of kilometers in diameter, are simply too
massive to nudge. Fortunately they are also extremely rare, hence not in the same
league with man-made hazards.

One exceptional hazard is a comet passing very close to the sun. Extreme
heat boils gases off the comet’s surface, which propels it slightly in the manner of
a rocket jet. We have no way to accurately estimate the jet’s thrust because the
comet’s shape, chemistry and physics are largely unknown. Thus, as it emerges from
behind the sun, its orbit is unpredictable to the accuracy required to forestall a
collision. While the comet is close to the sun, it is difficult to observe from the ground.
Eventually we track it and compute its new trajectory, but by then there is little time
to react.

However, all these bolide scenarios are details. The bottom line is that humanity
has an extremely long record of survival in the presence of these hazards. Hence,
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bolides are overrated compared to hazards we have survived for merely half a century
or less.

5.4 TRIAGE

Medical aid is usually inadequate in the aftermath of a great disaster or battle. To
allocate scarce resources to best advantage, medics practice triage, which classifies the
injured into three groups. Treatment is withheld from those who will survive without
it, and also from those who will die regardless. Only the third group gets full
attention, the ones who require treatment to survive.

There is so much misery in the world today that triage should be the guideline for
philanthropy, but alas it seldom is. Consider, for example, the battle against AIDS in
underdeveloped countries. If many cases can be prevented for the price of treating
one, then prevention should get priority, while those already afflicted should be
regarded as dead soldiers.

Discussion of prevention often arouses emotional distractions because it involves
condoms. Machismo is one impediment. Another is the accusation by Third World
leaders that western philanthropy has a hidden agenda to depopulate their countries.
Let us set these issues aside and focus on triage purely as cost effectiveness of
treatment versus prevention.
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Recent price reductions in underdeveloped countries have brought the price of
treatment per person down to about a dollar a day; however, this is still very
expensive for anyone living on two dollars per day. Treatment must be perpetual
because there is presently no cure for AIDS. As for prevention, a comparable effort to
hold the price down will provide protection for about ten cents per day, one tenth the
price of treatment. This makes an ideal case for triage: those already infected should
be ignored, except for pregnant women with AIDS, who should be treated to save the
baby.

A recent television report showed two ex-presidents, Bill Clinton and his
good friend George Bush, Sr., endorsing an AIDS treatment program. They
appeared with a stricken child in a Third World country. She was one of the few
getting medical treatment as a result of the program. It was a heartwarming photo-
op, the kind politicians love. Well, they are ex-politicians now, but old habits die
hard.

The camera could not show a scene in the future where ten AIDS victims lie
dying, those who could have been saved by spending the same money for prevention.
Nor could the camera show the likely death of that same child at a future time when
the drug delivery system breaks down in her village, a likely occurrence. Meanwhile,
her presidential benefactors have moved on to other projects and will never know of
her fate.

Surely Bush and Clinton understand the triage equation. So what was going on?
Well, medical aid is held in high esteem, much higher than condom distribution.
Moreover, some of the better places for real progress are in sordid waterfront bars
and truck stops where prostitutes hang out—not great photo-ops for politicians.
President Bush, Jr. maintained the same inept policy by spending $15 billion on
AlIDs relief, mostly in Africa, through his Pepfar program (President’s Emergency
Plan for AIDS Relief).

# # #

The issues in this treatise add a new dimension to philanthropic choices as shown
in the Venn diagram, Figure 28. Philanthropy typically ignores the set on the left and
scatters donations throughout the set on the right. In view of threats to the human
race, it would make sense to concentrate most aid in the intersection.

An altruist might decide sadly but reasonably to abandon lifesaving efforts in
overpopulated countries, because the long-term benefit is marginal. The people saved
(and their future children) occupy space and consume scarce resources that others
need, many of whom will die as a consequence. The net benefit of lifesaving may be
positive; certainly those saved and their families appreciate their benefactors, trust
them, and become influenced by western ways. However, the net gain may be too
marginal compared to worthy causes in the intersection of the two sets, for example
family planning in overpopulated countries.

Two lists of the top philanthropists [57] tell what causes they support. It is
heartwarming to read about billions of dollars going to scholarships, poverty pre-
vention, hospitals, schools, museums, and conservation. It was nice of Denny San-
ford to pledge $5 million to the Crazy Horse Memorial Foundation, which is carving
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a mountain to make a giant sculpture of the famous Lakota Sioux. But very few
philanthropists seem aware that humankind is at risk, and that they can do something
to help. An exception is Ted Turner, who funds projects for the environment and
population and the Nuclear Threat Initiative. Also, the Bill and Melinda Gates
Foundation gave $8.8 million to an organization that in my opinion does the absolute
most good per dollar in the intersection of sets in the Venn diagram (Figure 28). And
we must remember Nobel laureate Albert Gore for his dedication to global warming,
even though he is not among the top fifty philanthropists.

5.5 REFLECTIONS ON THIS STUDY

Most studies that address the big questions of economics and ecology have no simple
formulation like Gott’s survival predictor, Equation 2 in Section 1.4, and so analysts
resort to huge numerical simulations with myriad judgment calls. A classic example is
the Club of Rome’s study of Limits to Growth [54, 58]. A drawback of big models is
that analysts (like most of us) are often partial to some outcome. Consciously or not
they may bias their assumptions to produce a desired result. After publication,
another analyst comes along with the opposite predilection. Her model and assump-
tions reach the opposite conclusion. The matter degenerates into conflicting schools
of thought with no clear resolution, while the bewildered public has no time to delve
into the bowels of the models and challenge the myriad details.

The results of this treatise support my proclivity for restraint as opposed to
unfettered growth and development. However, unlike big numerical models, the
predictor—Equation 16—is so simple that it gives opponents only two places to
attack, and they are out in plain sight for all to judge. You can keep your daytime
job and still find time enough to challenge this formula. The first vulnerable spot is
the choice of cum-risk, Z = M+ = (X — Xo) () essentially the choice of param-
eters X, and w. The equation for the current (2009) risk rate A, which appears in
Section 4.6, is proportional to (w + 1)/M,,. My own attempts to evaluate this ratio by
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various means span no more than 15% change, but this range follows from my own
mindset. Your mindset might bring the variation up to 30%.

The second uncertain quantity is W (gq), the relative weights of natural and man-
made hazards, which is plotted in Figure 23. Details appear in Appendix L. A revised
W (q) can lean in either direction: a shift toward natural hazards (small ¢) is opti-
mistic for human survival; a shift toward man-made hazards (big ¢) is pessimistic. In
Appendix L (Equations L-3 and L-5) we use a very natural expression for W (q),
which involves a square root. When we change it to a cube root, which is somewhat
contrived (L-4 and L-6), it increases the current hazard rate by 33% for species
survivability, but only 7% for civilization. This change appears as dashed curves
in Figures 23, 24, and 25. Combining the two vulnerable spots in the analysis might
indicate errors as great as 50% in some of our results.

# # #

Opponents of my analysis will include optimists like the late Julian Simon [4],
also the late Michael Crichton [5, 60]. People ensconced in comfortable ruts resist
ideas that would require change. Dr. Crichton reviewed various predictions of doom
that have failed, and suggested that all such predictions are invalid. He thought
“inside the box”’, which contains a finite list of known hazards and the means for
coping with them. Outside “the box’ all sorts of unforeseen threats are lurking in our
chaotic world. For example, the weapons of September 11, 2001 were box cutters and
hijacked aircraft. Our complex biosphere has many possibilities for runaway positive
feedback, some of which have never been identified. New hazards bombard us with
increasing frequency until we eventually fail to anticipate the crucial combination in
time to adapt.

The new anxieties—climate change, population explosion, exhaustion of raw
materials, robotics, and pollution—arise from our evolved instincts that have success-
fully kept humankind going for 2,000 centuries. Crichton should not have disparaged
them. He used his novels to express prophetic opinions. He failed in 1992 [59] by
warning America about economic domination by predatory Japan. Now he has failed
again with a novel [60] that portrays environmentalists as the bad guys. People should
read his novels for entertainment, nothing more.

5.6 PROSPECTS FOR A SAFER WORLD

Sir Martin Rees [2] has wagered $1,000 that “‘by the year 2020 a single instance of bio-
error or bio-terror will have killed a million people.”” He writes that he fervently hopes
to lose that bet. Humane and politically correct people are supposed to share that
sentiment, and yet, as we saw in Chapter 4, a near-extinction event is required to save
our species. Is there no humane way out of this dilemma?

Population reduction would solve everything. Census extrapolation for world
population peaks at nine or ten billion in about 2090. From there the decline may
continue, perhaps to 4 billion (the world population in 1974), or it may falter and let
the population creep up to 12 billion. The latter seems more likely. Optimists say that
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the big population surge is ending; the long-awaited “‘demographic transition” is
catching on [61]. True in the near future, but this is simplistic extrapolation with no
appreciation for tipping points.

In the long run, fertility decline is probably just a hiatus. We’re seeing the result
of the contraceptive revolution. By enabling sex without pregnancy, it defeats nat-
ure’s strongest reproductive strategy. But nature has other tricks in reserve. They will
not be apparent for a while, because it takes several generations of natural selection to
make them conspicuous.

A friend of mine planned to have three children, but the third was a set of triplets.
His two girls and three boys comprised a full house! His many grandchildren will
propagate the predisposition for multiple births, especially multiples in the second or
third pregnancy. Twins from the first pregnancy do little to inflate family size because
the parents simply quit at that point. But when multiple births happen later, they do
inflate family size as happened to my friend.

Other pronatalistic incentives include provision for old age, and a simple love of
children—Ilots of them. Natural selection will reinforce nature’s backup tricks until
one of them restores the population explosion.

Any one pronatalist group acting alone can overpopulate the entire world.
Most of these traditional societies and religions will mellow out and join the
mainstream. Catholic Italy and Spain have birthrates well below replacement. Even
the communal Hutterites have dropped their fertility from about ten to about five or
six, which is still alarming [62]. But to permanently stabilize population, every last
one of these groups must change, and it is hard to believe this could happen
voluntarily.

The United States and Canada have unwise population policies. They admit
almost anybody—many claiming to be refugees—who then reproduce freely. People
like me are to blame. Both my housekeeper and my gardener are immigrants, each
with four children. I should fire them, but I like them personally—their children too.
It is one thing to be an armchair pundit, quite another to practice what you preach.
Multiply my personal fault by a billion or two, and you have the makings of
extinction.

Optimists have faith in benign social programs: education, contraception, and
incentives for sterilization. These work for a while, but in the last analysis they are
just a form of selective breeding. The surest way to breed stubborn pronatalists is to
dissuade everybody else from reproducing [63]. As cooperators die off, they vacate
land and resources, which the pronatalists gladly take for their big families. Huma-
nists seem to ignore basic rate equations for exponential processes that engineers use
routinely.

# # #

Somewhere in our galaxy a few humanoid species may have broken out of their
home planets and expanded to other habitats or other stars. These winners must have
made a concerted effort. Perhaps narrow escapes from extinction have focused them
on a goal and spurred them to action, or perhaps their world governments imposed
the goal by force.
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We earthlings dislike coercive world government; our leading nations and the
U.N. are committed to reproductive freedom and self-determination, which I am sure
most of my readers also support. But this benign ethic was forged by goodhearted
people with the best of motives who never saw Figure 27. Let Gott’s predictor tell us
about the survivability of this ethic. The start date was fuzzy; let us say 1960. Before
that time, colonialism, racism, and various other forms of suppression were common-
place. So let us put age 48 years into Equations 3 and find,

duration of benign ethic > 5 years with 90% confidence;
> 48 years with 50%.

The next ethic may be almost anything: good or evil, safe or risky. Hopefully a
population homogenized by intermarriage will reduce tensions among groups. How-
ever, we may get imperialism redux, ethnic cleansing, subsidized joy pills doped with
contraceptives, harsh state-imposed limits on family size as in China, or reproductive
quotas for various ethnic groups. Nobody knows.

# # #

We tend to rank perils based on emotion rather than reason. In the United States
we celebrate Halloween (October 31) by letting 36 million children put on costumes
and extort candy from neighbors, including strangers. A few decades ago there was a
big scare that people were putting needles, pins, razor blades, and sometimes poison
in the candy. Many parents forbade their children to eat anything that was not a
commercial brand in its original wrapper with no sign of tampering. The poison
stories all turned out to be hoaxes. There were only about a dozen instances of very
minor injury from sharp objects.

Many of these same parents take their children in the car while driving on routine
errands, a far greater risk. Moreover, these children are subject to greater risk simply
by being earthlings in the 21st century. A cataclysm that wipes out civilization will kill
vast numbers of them, and in Chapter 4 we found that hazard rate to be about 1% per
year.

During humanity’s 2,000 centuries, people evolved a strong concern for survival
of their own tribes, maybe even nations, but nothing as vast as their whole species.
Now, for lack of such an instinct, there is no sense of urgency or political will for a
trillion-dollar international project to save humanity.

I am no different. During a productive phase of this survivability project, I was
offered a lucrative consulting job. Of course, I took it. Humanity be damned, here
was a chance to make money! It is the same old Darwinian priority: first take care of
self and family. Abstract thinking about the world at large has low priority because it
has never before been a survival issue. It is a mere intellectual exercise rather than a
powerful instinct.

Saving one person brings out powerful instincts in primitive parts of the brain. In
prehistoric times the one saved was usually a fellow tribesman carrying many of the
same genes as his rescuer. But today, saving humanity is a small intellectual idea
somewhere among the brain’s most recent updates. Perhaps Josef Stalin was thinking



120  Apocalypse how? [Ch. 5

of this when he remarked, “A single death is a tragedy; a million deaths are a
statistic” [64].

And so the short answer to the big question is, No. There is no way out of our
dilemma. An apocalyptic event, perhaps a near-extinction, is prerequisite for long-
term human survival, and that’s just the way it is. Meanwhile, let’s be jolly, enjoy
some gallows humor, and let children accept candy from strangers.

5.7 SYSTEMIC STRENGTHS AND WEAKNESSES

The probability analysis in Chapter 4 applies to a hypothetical ensemble of humanoid
species scattered about the galaxy, each member of which has passed through a phase
similar to the one we earthlings are in now. Within this ensemble we have no idea
what percentile of longevity we fall in. We differ from those other humanoids in ways
that make us more or less survivable than typical members. Let us speculate on some
of those variations.

This comparison will be too pessimistic because we cannot imagine the strange
irrational thoughts and actions that may plague extraterrestrial humanoids. Like us
they carry obsolete baggage from their prehistoric times including instincts that
served their ancestors well but are superfluous or even a liability in a civilized en-
vironment. By contrast, it is much easier to identify our own irrational behavior. In
this sense comparing earthlings to extraterrestrials resembles the comparison between
ourselves and our adversaries (us versus them) in such events as war and business
competition. We tacitly assume that our adversary is more rational, capable and
knowledgeable than we ourselves, which usually proves to be untrue in the aftermath
when all the facts come out.

Intellectual extremes One way to have a fairly safe society is to forbid all fire-
arms. Another way is to require everybody to carry one. The middling condition is
the most dangerous, which partially explains why the United States has so much
crime. Similarly, an ignorant species is incapable of self-extinction. A genius species
will protect itself from the hazards it creates. The most vulnerable species is the one
with a broad spread of intellect, and this is what we have, especially in the United
States.

Creative geniuses gave us nuclear power, lasers, fiber-optic communications,
integrated circuits, computers, the Internet, search engines, genetic engineering,
and robotics. These ingenious inventors usually manage their creations responsibly
when they retain control of them. Some of them do become entrepreneurs and retain
some measure of control of their inventions; Gordon Moore comes to mind. How-
ever, patents expire, competitors appear, and control slips away. Genius happily
moves on to create more dangerous toys while control of the current ones devolves
to business people and politicians, including those with inferior intellect and selfish
motives. Then the cycle repeats. Perhaps other humanoid species have devised a
better system of governance that avoids this hazard. If so, their futures may be more
secure than ours.
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Homogenization It is important that isolated tribes be left alone to live as they
always have. Something in their diet, culture, surroundings, customs, or genetic code
may give them immunity to the extinction hazard that will kill the rest of us. These
tribespeople are humanity’s backup population. Contact brings them drugs, new
diet, microbes, and manufactured goods (cargo). One of those imports might some-
how cancel their immunity and make them as vulnerable as the rest of us. Hence, it is
vital that they be neither persecuted nor assimilated.

Misguided altruism Mosquitoes and other pests protect much of the remaining
wetlands and jungle in the overpopulated Third World, but then well-meaning aid
workers exterminate the six-legged defenders out of compassion for the burgeoning
human population. In the battle between nature and humanity, we should favor
nature, not for nature’s sake but for humanity’s sake. Nature often tries to restrain
humanity and keep us more survivable, but then goodhearted people thwart her
efforts for misguided short-term altruism.

Neoclassical economics A few economists are green [65, 66]. The late Kenneth
Ewart Boulding was the most notable with metaphors of cowboy economy (reckless,
exploitative) and a spaceman economy (constrained by the limited reservoirs of his
spaceship) [67]. Unfortunately, most mainstream (neoclassical) economists are com-
mitted to growth and regard sustainability as a fad. Then there are globalization
folks, who help the underdeveloped world to develop because this will create more
markets for goods from the First World, as though we didn’t already have enough.

Adaptation The event that killed the dinosaurs was something they experienced
for the first time. Had there been many precursors that killed some fraction while
others survived, then that bit of selective breeding would have enabled more species
to survive the big hit. We might have descended from dinosaurs and might still
exhibit vestiges of the reptilian line, perhaps eggs, scales, or something else.

As far as we know, our species has never in its 2,000 centuries been exposed to an
apocalyptic event of that magnitude. That leaves us much more vulnerable than other
extraterrestrials who have survived one and recorded it in their history. However,
there is a curious twist: even without their historical motivation, we somehow devel-
oped an interest in the subject. What sort of evolutionary selection acted on our
ancestors to make me want to write this treatise and you want to read it?

Curiosity is a factor. It had obvious survival benefit when our ancestors inves-
tigated strange footprints near the tribal campsite. Curiosity extended to scary things
that proved harmless like eclipses and rainbows. It produced practical inventions
with great survival value. Now we carry this trait to extremes by sending expensive
spacecraft to observe not only earth-like bodies but also obscure ones that tell us
nothing of any practical value. To my knowledge nobody has explained how we
evolved such extreme curiosity. Yet it may save our species by causing us to inves-
tigate extinction scenarios that are completely beyond our experience and history.

Somewhere a humanoid species may have as much high technology as we do, but
no instinctive drive to think beyond practical applications, no desire to ask questions
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about the big picture, things like species survival. Those types are more vulnerable
than we are.

Solutions to social problems It would seem natural to find sustainable social
solutions for social problems. Instead we evade social change by adapting hazardous
technical solutions:

e Our government could create incentives for people to donate organs for trans-
plant, but instead we breed special pigs to supply scarce organs, a procedure
called xenotransplantation. Obviously this is an opportunity for xenogenetic
diseases to jump from pig to man. Such a disease may be mild in pigs and fatal
to humans, just as simian immunodeficiency syndrome (SIDS) is mild compared
to AIDS.

e Cities could be made safe and livable, but instead people emigrate to suburbs and
commute daily to the city thus wasting time and money and needlessly generating
carbon dioxide.

e At rush hour our freeways are jammed with full-sized cars, the great majority of
which carry only the driver. So we widen freeways and build more of them. A
creative social solution would make hitchhiking safe, desirable, and a social
obligation for those who own cars, just as tipping waiting staff after good service
is a social obligation. For safety, an ID system could keep records of who
traveled with whom. It is quite possible to manage these data in the age of
computers and cell phones.

Mental disconnect 1 have given three lectures on human survivability to scholarly
groups with varied specialties. After presenting my calculated results I noted that the
survival risks are comparable to ordinary perils that insurance companies under-
write. All three audiences calmly accepted that and then asked good intellectual
questions about my analysis. Ironically there is a whole class of questions that
nobody asked—not one, not even close; questions with intense personal concern
like the following:

e How can we initiate political action to make a safer world? Do you think any
existing organization will take up the cause?

e What are the chances that death will be quick and relatively painless?

e My son and his bride plan to have children. Should I discourage them?

Perhaps my audiences didn’t believe me and tuned out. I tested them with the
joke slide in Figure 29. I tried to say, “‘Since survival risks are comparable to insured
risks, somebody ought to sell extinction insurance. However, I'm the only person
with actuarial tables, so I must take on that burden. Now if any of you brought your
checkbooks ...”. But milliseconds after the slide appeared, laughter drowned out
those words. So they were attentive, and the question remains: Why no expression of
intense personal concern? No doubt these same people would be troubled if they
accidentally let an insurance policy expire.
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Limited time offer—
EXTINCTION INSURANCE

Act now! Lock in this rock-
bottom introductory premium.

$1,000,000 policy now only

Figure 29. Extinction $995 per year.

insurance.

My audiences reacted as though I deserved credit for solving an amusing mathe-
matical puzzle. Perhaps it went straight to one cerebral hemisphere where intellect
resides but never reached the powerful emotions and motivators in the other side.
Apparently the topic trips a circuit breaker in the corpus callosum and shuts down the
connection.

Between lectures I discovered a much better way to formulate the cum-risk Z
discussed in Section 4.2. This made my analysis more accurate and convincing, so I
was elated. Oops, I forgot to be sad because the risk is three times my previous
estimate, which jeopardizes my own grandchildren! Quite clearly I have the same
mental block as the folks in my audiences.

If other species in our galactic ensemble have no such mental block, then they
may be more survivable than we.

5.8 SECOND CHANCE?

If a great calamity destroys civilization, the survivors will undoubtedly rebuild. No
matter how primitive they may be, they will discover our artifacts, repair or replicate
many of them, and proceed toward urbanization, industrial revolution and eventually
science and technology.

But what about extinction? Will Earth get a second chance to evolve a humanoid
species that develops civilization, industry, and scientific curiosity? Evolution would
take many millions of years compared to only a few centuries to replace civilization.
Could we be just such a replacement, the second rather than the first species to occupy
the humanoid ecological niche? Not likely, paleontologists would surely have dis-
covered ruins or some sort of evidence if a predecessor had existed.

Another fact guarantees our status as first. Our ancestors found native metals,
almost pure stuff that is ready to use with little or no metallurgy. We have now
exhausted all such handy resources and must obtain metals from ores, mostly sulfides
and oxides. Had there been a prior humanoid species, they would have exhausted the
native stuff, and our ancestors would have found none.
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In particular, our ancestors found
native copper and fashioned it into useful
artifacts. Sometimes they found nuggets
in creek beds or in pits in the ground,
and sometimes irregular chunks of cop-
per embedded in rock. On rare occasions
they found metallic gold, silver, and pla-
tinum. Other metals, such as zinc, tin,
and nickel, were scarce in the pure native
form but abundant as ores. Native non-
metals, especially sulfur, have been
found in abundance, also metalloids,
which include arsenic, bismuth, and
Native copper, 4 centimeters (courtesy of antimony. Our ancestors would have
Jonathan Zander). found nothing so convenient had they

not been first.

So, what if anything will take over
the humanoid niche after we expire? Perhaps some rodent will survive the extinction
event and eventually develop hands, start walking upright, develop a big brain, and
ultimately move into the humanoid niche. This evolution can proceed to the level of
industry based on stone, wood, leather, and other abundant resources. They will
invent the windmill, waterwheel, and such. But then their evolution hits an insur-
mountable barrier for lack of readily accessible resources such as native metals and
rich ores. Without them there is nothing to spark their curiosity and give them a
vision of a world with things more interesting than wood, leather, and stone.

# # #

Perhaps the first human coppersmith became wealthy, took two wives, and begot
many children, some of whom inherited his inventive skills. At that point in the long
complex Darwinian process, one strand turned a corner toward evolution of modern
man.

Another ancient man discovered how to exploit oil he found leaking from cracks
in the ground. Yet another became the first smelter. He built a fireplace from unusual
rocks. During a particularly hot fire, molten metal oozed from the rocks where it
came in contact with embers. In this reaction hot carbon reduced a sulfide or oxide
ore leaving a puddle of metal, probably lead since other ores require higher tem-
perature than a basic fireplace achieves.

Our replacement species will not have such educational experiences, nor will they
find such handy resources. The nascent humanoids that replace us will be deprived of
the stepping-stones they need to go on. With hardship they may be physically capable
of finding the buried low-grade ores and deep pools of oil that we use today.
However, no tribe living at a subsistence level would allocate the time and effort
for such a project without a clear objective and a good prospect of success. Besides, at
their state of development, they do not understand such concepts as research and
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long-term investment. An essential piece is missing, a teacher who could persuade
them that the effort would be worthwhile.

Without a quick payoff, maybe one generation, it is hard to imagine how
Darwinian selection could begin to reinforce the inventive skills required for an
industrial revolution, much less hi-tech. Instead, competing needs would drive their
evolution toward other benefits such as physical strength, warrior and hunter skills,
and resistance to disease.

Perhaps another planet can produce more than one humanoid species if their
resources for industry and hi-tech are as abundant as wood, leather and stone. But
Earth can bear only one.

5.9 SURVIVAL HABITAT

Before our time expires, we may send colonists to a survival habitat. Instead of outer
space, it is far cheaper to use an isolated or sheltered place on Earth and far easier to
rescue anyone in trouble. But where? John Leslie [68] thinks we should build human
survival colonies in artificial biospheres. He deplores the lack of any such project, and
I agree.

However, the safest and most affordable habitat may be unfit for humans, but
quite suitable for our sentient robotic successors. Their bodies can be designed
especially for the new environment, either on post-human Earth or in outer space.
Prof. Hans Moravec at Carnegie Mellon University would be comfortable with that.
He regards our robotic successors as our Mind Children [69].

A colony on the sea floor next to a hydrothermal vent [70] might possibly become
self-sufficient. (My Google inquiry turned up the current Aquarius program [71], but
nothing that attempts to wean itself from the world above.) That secluded neighbor-
hood should survive almost any calamity on the surface. Geothermal power is
available for general needs and for making oxygen from seawater. A temperature
differential from about 400°C in the vent to 2°C ambient is enough for a Carnot
engine to run at 60% efficiency. Among the strange organisms attracted to the vents,
some are probably edible, but to my knowledge, no one has yet done the taste test.
Available power might support light industry but probably nothing heavy.

Besides formidable technical problems, there is a psychological obstacle to build-
ing a survival habitat, namely severe lack of urgency. Short-term concerns always
take priority over those with a time scale of centuries—right up to the day disaster
strikes. During 2,000 centuries of human life we have evolved a sense of urgency to
deal with short-term hazards before they get out of hand: smoke in the distance;
neighbors encroaching on tribal lands, and that sort of thing. But we have no such
instinct for a threat that lurks in the background for a century or more. If this
inadequacy is typical of humanoid species throughout the galaxy, it suggests an
answer to Enrico Fermi’s famous question: “Where are they?”” They died because
they were always too preoccupied to anticipate long-term consequences.

Once a colony escapes Earth’s gravity at great expense, it makes little sense to
trap it again in the gravity of another planet unless that planet has water or other
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resources more important than any we have found yet in the solar system. Hence, the
best scheme for a space habitat may be O’Neill’s cylinder [72]. The living space is the
interior of a cylinder, which spins to make artificial gravity. Both gravity and climate
are adjustable for comfort. The cylinder can begin life in Earth orbit where help is
near. If and when it evolves into a permanent colony completely weaned from Earth,
then the cylinder can migrate into solar orbit. Eventually the colony can mine the
asteroid belt for material to expand or replicate more cylinders.

Sir Martin Rees [2] questions the feasibility of O’Neill’s cylinder because it is
vulnerable to sabotage, but that problem may be soluble. A saboteur needs privacy
both to prepare his attack and to conceal his emotional state. Hence, privacy should
be strictly limited to brief bodily functions (including sex). This is not an unnatural
state. Primitive tribes had little privacy. Nor do sailors in the United States Navy,
where officers inspect both workspaces and personal lockers. Violent incidents occur
occasionally, especially with disgruntled drunken sailors, but rarely if ever has any-
one threatened the ship. If anything could drive a mariner berserk, it would be
claustrophobic life on a submarine, and yet carefully selected submariners adapt
to patrols that last two months. (I spent one day submerged—the most I could
possibly tolerate.)

NASA and other space agencies and space enthusiasts everywhere seem to over-
look an important experiment: Establish self-sufficient colonies in harsh locations
here on Earth. The idea is not to choose a site that simulates a particular destination
in the solar system, but rather to develop intuition and experience in the problems of
self-sufficiency. Hydrothermal vents mentioned above seem ideal. Other possibilities
include Antarctica, the central Greenland ice sheet, and/or a harsh desert. Compared
to space stations and planets, these all have huge advantages of familiar gravity,
protection from space radiation, and breathable air at normal pressure. These colo-
nies would provide a baseline for evaluating questions about launch weight (initial
supplies), shelter, temperature control, food and other necessities, and in general, the
difficulties of achieving self-sufficiency. They also serve as survival colonies without
calling them that. Preparation for ““space colonization” makes a much sexier pitch for
funds than ““survival colony”, and the price is a bargain compared to other projects in
the manned space program.

We should not wait too long to build a space habitat, because the window of
opportunity will close (as Gott noted). Let us apply GSP to the duration of the space
age. So far it has lasted (from Sputnik, 1957) T, = 52 years, the same as Antarctic
studies, hence,

future of the space age > 6 years with 90% confidence

> 52 years with 50%

Space exploration may end with humans stranded on Earth just as the Rapa Nui
(the people of Easter Island) were stranded when Captain Cook visited in 1774. Prior
to that contact, Dutch admiral Roggeveen had found a hardy people in 1722. Some-
time between those dates civil war and ecological collapse had apparently decimated
both the population and the island’s resources [73]. They had toppled and desecrated
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their stone statues, just punishment for gods who failed them. The trees were gone,
also their seeds, and they had no material to build seaworthy vessels for escape.

Maybe Rapa Nui is a microcosm for humanity. If we spend all our resources on
wars and extravagant living, then we may not have enough left to build the giant
spaceships required to launch a viable colony. We may be marooned like the Rapa
Nui. If this fate is normal for humanoids throughout the galaxy, it may resolve
Fermi’s paradox.

Richard Gott wants us to colonize Mars and then move on to planets throughout
the galaxy [74]. He argues fervently that humans need a second planet (or other base)
to insure survival of our species [75]. But he should know better! He famously chides
people who think they are very special [76]. Yet humans would be very special indeed
if we become the first earthly species out of millions to colonize another planet.
Instead we should strive for a less special goal that is more attainable, to be the
progenitors of the first species to colonize the galaxy—our robotic descendants, the
androids.

We (or they) can design their bodies to be spaceworthy, able to thrive in a hard
vacuum without water or oxygen. And they can be designed to hibernate throughout
centuries of interstellar travel. It is far more feasible to design the colonists’ body to
thrive on a particular planet than it is to terraform the entire planet to accommodate
our demanding maladapted bodies. There is a good chance that we will not be able to
afford spaceships for humans but can afford them for androids. Look around any
superstore and compare the number of things that humans need to the number that
androids need. Then think about sending all that stuff to Mars for a few hundred
thousand dollars per pound.

We may simply be living in the wrong times for big high-tech engineering
projects. Manned spaceflight to the Moon and beyond has been on hold since the
last Apollo mission in 1972. More than half the missions to Mars have failed. The
space shuttle has been disappointing, and we have not built the proposed space
elevator (lift). (This would employ a cable car riding up and down a cable that
dangles from a space station above synchronous orbit to a point on Earth’s surface.)

Our cities are not covered by geodesic domes that would be useful as skyhooks.
Nuclear electric power is on hold. We have explored only tiny samples of the oceans’
floors and the insides of mountains. Boreholes to Earth’s mantle are challenging, and
earthquakes still cannot be predicted. By contrast, the microelectronics and software
needed to make android brains has been succeeding beyond our wildest dreams of a
few decades ago. It seems clear where we should place our bets.

It would be a shame to populate a galaxy with our own pitiful, frail bodies, which
require special care and feeding, major water supplies, crops, and so forth. Comfort
and pleasure cost far more. Rather than gamble on a long shot, we should gracefully
accept our limitations and take pride in our robotic descendants as they go forth to
colonize the galaxy.

If we humans ever journey into the galaxy, we may travel as frozen embryos in
the care of robo-nannies. This makes good ethical sense. If a mission fails, then the
only human loss is a batch of embryos, not sentient adults who have endured a long
journey only to perish disappointed. As for sentient androids on a failed mission, they
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can be reinsilicated here on Earth using backup copies of their brains and memories.
When a mission succeeds, the androids will go out in the poisonous air and do all the
building and exploring while their human pets live in a comfortable zoo with climate
control. It will be a “brave new world” with little role for human courage and
prowess.



Appendix A

Survival formula derived from hazard rates

Here we use probabilities of unknown hazard rates to derive formulas for survival.
Section 1.1 summarizes the concept and results. First consider the case in which the
hazard rate \, probability of expiring per unit time, is fixed. Radioisotopes are a well-
known example. The fraction of individuals in a sample that survive at time ¢ (or the
probability of any one surviving) is the well-known exponential decay:

(1| \) = e = exp(—\1) (A-1)

This formula applies to any entity if the hazard rate is constant in time: the entity
neither learns how to survive, nor does it wear out.

Now suppose we do not know A. For an atom this means that we do not know
which of several discrete isotopes it might be; see Section 1.1. But for a stage
production the possible \’s are continuous, and we estimate their probability density
to be a function F(A). (This is like the abundance of isotopes in Figure 3.) Now the
joint probability density that the system’s intrinsic risk is A, and that the system
survives that risk for time 7 is F(\) times exp(—Af). In survival problems we are
typically indifferent to A: we just want to know how long the entity in question
survives. In probability theory you sum or integrate over random variables to
which you are indifferent. (If you roll a die, the probability of getting a 5 OR a 6
is 1/6 +1/6 =1/3.) Hence, the probability of survival for time ¢ regardless of A is

0(t) = J FO) e ™ dx (A-2)
0
which is analogous to the mixture in Figure 3, the bold continuous curve.

We want an expression for F(\) that represents complete ignorance of A. The
most natural probability density is a uniform distribution; however, at this point we
cannot rule out certain other functions. A minor problem is that when F is some finite
constant, then [ F d\ = co. In other words F cannot be normalized to 1.0 nor any
finite value.
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To work around this problem, define the uniform distribution as

F(A) =Lim(r-e ™) (as 7 — 0, exp(—7A) — 1.0) (A-3)

7—0

Now

J F(A\)d\=1 as required.
0

If we delay putting 7 = 0 until later, Section 1.4, it will cause no problem.

However, there is a rationale for keeping 7 > 0. We cannot define the birth of a
stage production within one second whether it be signing a contract or curtain rise on
opening night, and so it makes no sense to allow A > 1/1 sec. For every entity there is
some maximum hazard rate that is plausible. A stage production does not fail while
the curtain is rising on opening night, unless an explosion wrecks the theater at that
instant. Likewise, a business does not fail while its owner is unlocking the door to
admit her first customers. We cannot define a sharp maximum cutoff for F(A), so let it
be gradual. Let 7 denote a time at which the risk has dropped to less than half,
perhaps several hours. Then removing the limit from Equation A-3 leaves

FA) =7e; J:O F\)dx=1 (A-4)

Using Equation A-4 in A-2 gives the prior probability Q:

Q(t]7) =

t+7 (A-5)
Note that Q(0|7) = 1.0 denoting 100% initial survivability in accord with the
definition of Q.

The question of taking the limit 7 — 0 hinges on the objective, namely finding a
survivability formula for an entity about which we know nothing. If we’re being strict
about “‘nothing”, then we must take the limit; otherwise, we know something,
specifically an estimate of 7. But if we relax that stipulation and allow a bit of
common-sense knowledge, then a finite estimate of 7 improves the accuracy simply
because we’re using what we know rather than deliberately ignoring it.

However, many problems (including human survivability) do not involve the
entity’s infancy, and so for brevity people often neglect 7 and simply use Q = 1/1, as
prior probability, secure in the knowledge that posterior probability will get rid of the
singularity and take care of normalization; compare Equation B-3.

When we keep 7> 0, its definition above Equation A-4 matches that of J, the
gestation period, so-called because a fully descriptive name would be too long. The
connection to gestation is that the fact of birth has already eliminated hazards that
would have caused miscarriage had the entity been susceptible; however, nothing
prevents J from being somewhat greater than gestation requires.

In what follows we have no further need for 7, so let us put 7 = J and proceed.

# # #
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Why should F(XA) be (almost) uniform? Why not some other probability
distribution? Consider for example,

F=o[l+ (oN)]?

The parameter o, having units of time, is either a property of the entity or a universal
constant. If it is the former, then its value is knowledge we are not supposed to have.
And there is no appropriate universal constant. Decay times vary from femtoseconds
for an excited atom to millions of years for a mountain range, so no universal o could
possibly apply over that range.

Besides this example, any other function will have this same problem except for a
power law M, the so-called scale-free case. (In the example above o would be a time
scale.) Normalizing this power law and putting 7 = J gives

gl
I'(l1+p)

When p = 0, this is again the (almost) uniform distribution, Equation A-4. Using
Equation A-6 in Equation A-2 gives

J I+p
o) = (517) "+ p=0Gee below (A7)

F(\p) = e N p> 1 (A-6)

In the case p = 0 this is Equation 1.

Theoretically p is allowed in the range —1 < p < 0, but for a practical reason, this
cannot be. Appendix C shows that for p = 0, the mean survival time is soft infinity,
which means that the small aging effects we have neglected will ensure that the actual
mean is finite. But p < 0 would make the mean a hard infinity. Then we would be
seeing stage productions from at least the tenth century, and our world would
suffocate under an accumulation of ancient stuff that doesn’t expire fast enough.
And billion-year-old exohumanoids (if any ever existed) would have invaded Earth
for lebensraum.

According to the approach taken here and in Section 1.1, a small positive value of
p is quite permissible. Since the factor A’ vanishes at A = 0, Equation A-5 says that
risk cannot be exactly zero. In other words, nothing lives forever, which is certainly
true. However, a different approach in Section 1.5 requires p = 0 as we assumed at the
outset, Equation A-3. Conversely, Section 1.5 has a different weakness that this
approach resolves in the following section.

A.1 VARIABLE HAZARD RATE

So far the hazard rate A has been constant, which leads to Equation A-1, but this is
merely a familiar example. Next we show that our predictor is more general and
applies to cases in which hazard rate r(¢) is not constant. Now when r is known, what
replaces Equation A-1 is

O(t]r) = exp(=Z(1)) (A-8)
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where Z is the cum-risk:
Z() :J H(s) ds (A-9)

(This is well known and also easy to prove as follows: In the n#th small time increment,
A, the probability of expiring is r,A and of surviving is [l — r,A]. The probability of
surviving all increments is the product:

(I=zA) -+ (1 =z,A) - =exp(—z;A — z,A--+)

This becomes Equation A-8 in the limit A — 0.)

Next, replace Z(¢) by A - Z(t), where Z denotes a known time dependence of the
cum-risk and A an unknown magnitude of the risk. Then Equations A-§8 and A-2
become

O(t|z) = exp(=A- Z(1)) (A-10)
and
o(1) = J F(\) e 0 a) (A-11)
0
Integrating as before (with 7 — J) gives
J 1
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(A-12)

which is the equation in Section 1.3 that we set out to prove.

A.2 UNKNOWN VULNERABILITY

As a final example consider the case in which the unknown variable is the
vulnerability of the entity to a fixed risk.

Let Y (¢) denote a pre-prior survivability that applies to a typical individual
entity in some class or species of interest. If ¥ has a tail longer than exp(—Az),
Equation A-1, it means that risk decreases with age as though the entity learned
survival skills during adolescence. If the tail is shorter, the entity wears out to some
extent.

Among the individuals in a statistical sample, some are frail and others are hardy,
which we express by using a multiplier p to stretch or compress their lifetime.
Survivability of the frail ones is Y () with p > 1, which says that they age quickly.
Likewise survivability of the hardy ones is Y (u#) with u < 1. Our observer, who notes
only the ages of individuals, cannot tell the difference. Besides, we assume that the
observer knows nothing about the species, and so he has no idea how fast individuals
age, except what he can infer from observed age. Hence, he takes an average as in
Equation A-2:

0() = | P () d (A-13)
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We use almost uniform distribution again, Equation A-3, but with y instead of A:

o(t|J) = JJOO Y (ut) e ™ dy = {Jm Y(z) exp(—Jz/t) dz (A-14)
0 tJo
If the integral, ‘
I= J Y(z)dz (A-15)
0

converges to a finite value, then as before, J/t in the exponential factor, Equation
A-14, is so small at birth and afterward, that we are justified in calling it zero, in which
case Equation A-14 becomes
o=1U/t (A-16)

Interpreting ¢ as time from conception 7"+ J again leads to Equation 1 as we set out
to show.

However, if the integral in A-15 does not converge, we must find a finite estimate
of J and use it in Equation A-14. Fortunately this does not happen in practical cases
as an interpretation of Equation A-15 will show. Let us integrate by parts:

/= Joo{—Y/(t)}tdl—i— Y () (A-17)
0

The second term vanishes at both limits, and {- - -} in the first term is the probability
density function (pdf) for death at age ¢, hence 7 is the mean longevity for the typical
(1 = 1) entity. Our argument fails only when Y (¢) decays so slowly, e.g. as 172, that
the average age is not finite, which was discussed above.

In summary, one loosely worded sufficient condition for our predictor is the
following:

e Specimens have a finite mean lifespan.

e Among individuals, expectations vary by a random time-compression/expansion
multiplier (p).

e That multiplier is uniformly distributed from zero to a maximum that exceeds
other rates in the problem at hand.

Given the impressive fits to statistical data in Section 2.2, other sufficient
conditions for our predictor probably exist.
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Posterior survivability

To obtain a formula for posterior survivability G, we calculate the formula for Q(T)
in two different ways and then compare the results. The first way jumps directly from
time zero to 7', which is Equation 1. The second way inserts an intermediate time at
which an observer determines the entity’s age 4 and inquires about it future
F=T—-A,orT=A+F.

Now consider a big statistical ensemble of newborn entities. A fraction
O(T) = Q(A + F) of them survives both intervals. Next let us calculate that same
fraction one part at a time. The probability of surviving for 4 is Q(A4), and the
fraction of that fraction that continues to survive the second interval from 4 to 4 + F
is G(F|A). Hence, the fraction surviving both intervals is the product,
O(A) - G(F | A). Equate the two expressions for Q(7T), the final fraction:

QA+ F)=0(4) - G(F|A4) (B-1)
Solve for G, use Equation 1 for Q, and find the desired formula:
A+ F A P 1
G(F|A) = QU+ F) _ I+ Copy of Eq.2 (B-2)

0(4) J+A+F P+F 1+F/P

For brevity the fourth expression changes 4 + J to P for past. If a case arises where J
represents gestation exclusively, then past P is lifetime measured from conception,
not birth, which would be A.

# # #
Quite often probability theorists write the prior simply as
Q = constant/T (B-3)

where “‘constant” means any number that does not change with time, typically 1.0,
and T is the appropriate time. They do not worry about either the infinity at 7 = 0
nor the vague numerator because they know to look ahead a few steps when both will
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disappear from the posterior probability during the following process. If T = 4 + F,

the posterior based on Equation B-3 becomes

G Q(A+F) constant 4 4 1 (B-4)
~ Q(4)  A+F constant A+F 1+F/4

which is Equation 5 again, Gott’s predictor for the naive observer who makes no
corrections for gestation or even common sense.
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Infinite mean duration

For Gott’s survival predictor,
G=1/(1+F/P) (2)
the probability density of expiring at future time F is:
Hazard rate: r(F) = —dG/dF
and so the mean future is

(F) :J F-r(F)dF = —J:CngF

Integrating by parts,
(F) = J G dF + GF
0

0

The second term is finite:
o0

F
1+ F/P

0

But the first one is not:

o0 < dF > dx
Gar=| —“ __p| 2 _p.ma
Jo Jo 1+F/P Jo l+x n(l+x)

oo

=00 (C-1)

0

And so the mean is (F) = oo, which compares to the median F = P. However,
Equation C-1 shows that the integral diverges logarithmically, the slowest possible
way. Hence, the slightest long-term decline in the entity’s vitality will produce a finite
mean. The empirical examples in Section 2.2 and 2.3 suggest that this always hap-
pens, and so the infinite mean cannot be considered a reason to reject the theory. See
also the discussion of Equations D-28 and D-29 in Appendix D.
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One normally thinks of mean and median as similar—sort of middling.
But consider a set of 9 objects in which 8 of them weigh 1 gram, and one weighs
lkilogram. The median (fifth) weight is 1 gram, and the mean is about 1008/9 =112
grams. Businesses, stage productions, and species are all like that. A few big winners
go on and on inflating the mean but not the median.
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Survival predictor from Bayes’ theory

A conventional derivation of Gott’s survival predictor provides reassuring closure
with established techniques. It uses Bayes’ theorem, which begins with two different
expressions for the joint probability of any two random variables X and Y,
symbolized Prob(X,Y). First it is expressed as the prior probability of Y times
the conditional probability of X given Y. Then the second form simply exchanges
X and Y:

Prob(X,Y) = Prob(X | Y) - Prob(Y)
= Prob(Y | X) - Prob(X) (D-1)

A word of caution: this is not proper notation for functions. Normally “Prob”
would be shorthand for some formula, and Prob(Y) would be the output you get by
putting Y into that formula. Then Prob(X) would be the output you get by putting X
into that same formula, the one called “Prob”. Here Prob(X) and Prob(Y) are two
different formulas, the former giving the probability of X, the latter giving the
probability of Y. This simplified notation would cause confusion if we wanted to
evaluate Prob(7.6). Which formula applies? However, this ambiguity does not arise
in the following context, so let us keep the notation simple.

The joint probability at the left end of Equation D-1 has already served its
purpose. From now on we equate only the two terms with conditional probability:

Prob(X | Y) - Prob(Y) = Prob(Y | X) - Prob(X) (D-2)

One of these conditional probabilities is known and used to evaluate the other.

In a typical application we observe an effect £, which may be attributed to any
one of n possible causes C;, and now we want to revise the probability of each cause
based on our observation of E. Put X = G, Y=E, and solve for the desired
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probability of C;, which in this context is called the likelihood of C;:

Prob(G| E) = pro H Prob(| ) (D-3)

The prior probability Prob(E) can be expressed in terms of the possible causes:
Prob(E) = Prob(E | Cy) Prob(C,) + Prob(E | C;) Prob(Cy) + - - -
+Prob(E | C,) Prob(C,) (D-4)
Substitution in Equation D-3 gives
Prob(E | C;) Prob(C))

zn: Prob(E| C;) Prob(C))

i=1

Prob(C;| E) = (D-5)

which is Bayes’ theorem in its usual form. As a sanity check, note that the sum of all
the likelihoods must equal 1.0, and indeed that sum makes the numerator and
denominator identical on the right side of Equation D-5.

Suppose we randomly observe ages from a long-lived population. On average
(but not in every instance) we certainly expect these ages to exceed those drawn from
a short-lived population. Thus we can think of duration T as a cause and observed
ages A as an effect and apply Bayes to find the probability of T given A and thereby
prove Gott’s predictor. In our case 7 and A4 are continuous variables, whereas C and
E above are discrete, but the conversion is straightforward.

Our problem is to prove Gott’s predictor, Equation 5, using the probability of
age given duration, which is obvious from Figure 7 in Section 2.1:

H(A|T)=A/T (D-6)

Putting 4 + F = T in Equation 5 gives the same result, which is what we strive to

prove using Bayes:
GF|A) = 2= 2 (D-7)
CA+F T
Unfortunately we cannot plug G and H directly into Bayes’ theorem. To see why,
let us denote probability densities as Pt(t) for duration and Pa(a) for age. (The double
t and double a appear to be redundant, but strange as it seems, we shall encounter
Pa(t) below.) Next let us write out the full definitions of G and H in terms of
inequalities:
G = Prob(duration > T'|4) = J Pi(t| A) dt
T

A
H:Prob(age<A|T):J Pa(a|T)da= AT
0

Compare Equation D-6.

There is no way to relate these two integrals via Bayesian equations because they
apply to different variables over different ranges. However, there is a way to avoid the
integrals and apply Bayes to the infinitesimal probabilities in an “area” dT by dA.
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Differentiating Equations D-8 gives the required probability densities, first the
one for H:

OH 04 = Pa(A|T) = 1/T (D-9)

which represents the uniform distribution of ages over duration 7', in other words the
derivative of Equation D-6. The corresponding density for G is

—0G /0T = Pi(T | A) (D-10)

To interpret this, think of a big statistical ensemble. The left side is the rate at which
the fraction surviving decreases, which obviously is the fractional rate at which
entities are expiring.

Now Bayes’ theorem, Equation D-1, applies to infinitesimal probabilities within
both dT and dA:

Pd(T,A)dT dA = [Pa(A) dA][Pd(T | A) dT) = [Pt(T) dT|[Pd(A| T) dA]
The infinitesimals cancel out leaving
Pt(T,A) = Pa(A) - Pt(T|A) = Pt(T) - Pa(A|T) (D-11)
Use Equations D-10 and D-11 to solve for Gott’s predictor:

oG Py(T)
et Sl A D-12
OT T -Pa(A) ( )
To get Pa(A), recall Equation D-5; for which we need the analogous equation for the
case of continuous variables, namely,

Pa(A4) = J Pa(A|T)- P(T)dT = J Pt(T)d7T (D-13)
A 4
Now the solution for G, Equation D-12, depends entirely on P#(7). So far the
theory has been rigorous, but it gets fuzzy when we try to choose a plausible
probability density Pt(T) for durations prior to any observation of the entity in
question. There are guidelines for this, especially a so-called noninformative (or
vague) prior, which serves to express complete ignorance about the entity in question
prior to observing it. On the interval zero to infinity the usual noninformative prior
[77] is simply
P(T)=1/T (D-14)

The fact that this is not a proper probability distribution does not matter as discussed
below Equation B-3 in Appendix B and again below. Use this in Equation D-13 and
find

Pa(A) = 1/4 (D-15)

(As a sanity check, note that we could have written this equation directly as the
noninformative prior applied directly to 4. This agreement tends to substantiate the
idea of the noninformative prior.)
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Equation D-12 now gives
LG P(T) A _A_ A4 ]
OT T -Pa(Ad) T% T A+F 1+F/A

(D-16)

which is Gott’s original predictor, the desired result. Although Bayes’ theorem and
the uninformative prior are widely used, they have logical weaknesses and are not
universally accepted. One might say that GSP substantiates Bayes rather than the
converse.

We could stop here, but it is instructive to look at priors for cases where we do
know something about the entity in advance.

D.1 ADVANCE KNOWLEDGE

Suppose we have an estimate of Q with a gestation period J and perhaps an
additional term for long-term decay rate that represents obsolescence. In this case
a good sanity check is to solve the equations for the prior probabilities of age and
duration and then compare their features to insure that they are reasonable.

Since differentiation is often easier than integration, let us use the differential
form of Equation D-13. With x as a dummy variable, it becomes

Pt(x) = —x%Pa(x) (D-17)

As practice for the next step, let us prove something already known: Pf(x) and
Pa(x) have equal normalizations Nt and Na, usually 1.0.

00 (oo} d
Nl:J Pttdt:—J
. (1) Y

Pa(x) dx

Integration by parts yields
Nt = —[xPa(x)]g" + J Pa(x)dx =0+ Na
0
The [square bracket] vanishes at oo if Pa(x) decays faster than 1/x, which it always
does; otherwise, normalization does not exist, which then proves that the two
normalizations are equal.
Let us now repeat this process to compare mean age (4) to mean duration (7'):

(T) = ro tPi(1) dt = — Jm t2 (%Pa(t)) dr

0 0

= [2Pa()|y + JOO 2tPa(t) dt = 2(A)
That is, ’

(4) =(T)/2 (D-18)

If observers arrive at random times in the duration of an entity and determine its age,
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then their average arrival time is half the duration, and so Equation D-18 reassures us
that the theory is working.
Substitute Equation D-17 into D-12 and find

d
ar G4 = Pa(A)

Integrate and find that G = Pa(T)/Pa(A4) + K. But when future F =0, T = 4,
G =1, hence the constant K = 0. Therefore,
Pa(T)

G(Tl4) = Pa(A)

(D-19)

Recall how G relates to the original prior survivability functions Q(T), essentially
Equation B-1:

o(T)
G(T|A) === D-20
(T14) = 5o (D-20)
Compare to Equation D-19. Since 4 and T are independent, the only solution is
Pa(x) = CQ(x) (D-21)

where x is a dummy variable that represents either duration 7 or age A, and the
constant C has dimensions of inverse time.

# # #

Let us examine one practical example of the prior probabilities Pa and Pt just to
verify that they behave as we might expect. We start with Q(T'), a survivability curve
of the sort shown in Section 2.3. A practical form is

J
o(T) CJ+T+n-T¢
Here J is the so-called “‘gestation” period in Equation 1 (which is actually the
reciprocal of the cutoff hazard rate). The 7 term in the denominator causes G to
decay faster after a time 7' = 1/171/(”_1). On a log-log plot of Q versus T like those in
Section 2.3, this term causes the slope to bend from —1 to —a, which is roughly what
we find for microcosm statistics in Figures 9 through 16 with « in the range 2 to 3.
This slope change represents imperfect statistical indifference. If you observe an entity
and recognize that it is very old, then you think it is more likely in the last quarter of
its life than the first because some process causes aging or obsolescence. Hence,
practical GSP decays a bit faster than the ideal in Equation 1.
Now Equation D-21 gives the prior for age:

Pa(A) = C- Q(A) (D-23)

(D-22)

and C is the constant that normalizes Pa:

C= 1/ ro Q(x) dx (D-24)

0
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Equation D-17 gives the prior probability for duration:

PT) = —C- TafiTQ(T) (D-25)

Finally, Figure D shows plots of Equations D-23 and D-25 with n = 0.1 and a = 2.5,
the final slope in Figure 16. Equation D-24 gives C = 0.516. For comparison Figure
D also shows the ideal curve (dotted) for the case of no obsolescence and an observer
who knows absolutely nothing about the process, namely,

Pit(x) = Pa(x) = 0.25/x (D-26)

The prior density for age peaks at 4 = 0 because an observation immediately
after birth is possible regardless of the unknown duration, whereas observation at an
old age is possible only if duration is even longer. The prior for duration goes to zero
at T = 0 because the benefit of gestation and/or a maximum hazard rate prevents the
process from expiring at the first instant after birth. (A stage production does not
expire as the first curtain rises.)

It looks plausible that (4) = (T')/2 in Figure D, which was proven in general in
the steps above Equation D-18. In fact, that equation is the most convincing output
of this whole exercise because common sense demands that it be exactly true: the
observer is just as likely to arrive in the first half of the duration as in the second.
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D.2 NONINFORMATIVE PRIOR PROBABILITY

The noninformative prior on the interval 0 to oo is worthy of additional comment. It
applies to the situation in which we know nothing about the process in question. This
prior cannot have parameters. For example, if the random variable is x, then the
expression

2a 1
T a® + x2

is a perfectly good probability density in some other problem, but not here because it
contains parameter a. If a is a property of the process, then knowing it would violate
the assumption that we know nothing. Otherwise, a would have to be some universal
constant, but there is no hint that any such constant exists. If it did, it would have to
apply to all scales, say lifetimes of everything from insects to mountains. Hence, for
lack of parameters the noninformative prior must be something very simple, namely a
power law:

Noninf(x) = C - x” (D-27)

If p = —1, this prior is improper because its integral

oo

JOO Noninf(x) dx = C JOC dx = In(x) (D-28)

0 0o X

0

is infinite at both limits, 0 and co. However, it is a very soft infinity. To make it finite,
simply replace x by the average of x' ™ and x' ¢, where ¢ is very small. Then putting
C = ¢/r gives a perfectly proper normalized probability density no matter how small
€ may be:

Noninf(.x) = %ﬁ, JO Noninf(.x) dx =1 (D'29)

Here ¢ looks suspiciously like a parameter, but not really because we can simply
choose ¢ so small that it has no practical effect in the problem at hand. Then the
problem of an improper prior is solved. Thus we may as well regard C/x as a
legitimate probability density in problems where C cancels out in a ratio as it does
when Equation B-3 is used in B-4.

Not so for other powers p in Equation D-10. If we test p > —1 in Equations D-27
and 28 it gives a hard infinity at the upper limit, or if p < —1, it gives a hard infinity at
the lower limit, neither of which is acceptable. Therefore, Jeffreys’ choice of 1/x for
prior probability density is surely the leading candidate for noninformative prior on
the interval 0 to co. Moreover, since this prior integrates to the logarithm, Equation
D-28, this says that all orders of magnitude are equally probable (as are octaves,
nepers, or any other interval based on powers of some number). This seems a very
convincing and satisfying way of saying that we know nothing about the process in
question.
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Stage productions running on specified dates

Here we develop the theory that produced Figure 16, the survivability Q of stage
productions derived from the statistics of shows playing on specified dates. In prep-
aration let us examine the rate at which new shows open. This rate may change during
the period in question. First, we must decide what shows to count. Many of them are
one-night stands and performances by groups that specialize in filling gaps in the
theaters’ calendar. Although they surely hope for a big hit, some are not serious
competitors for the long runs. Hence, we should drop the latter from the statistics,
but we have no conclusive criterion to distinguish them from the mainstream. Let us
test two cases, one that counts all shows, and one that counts all except the single
performances.

Figure E shows the cumulative number of starts counting from January 1890
through December 1959, the full range of Wearing’s calendar of stage shows. The
slopes of these curves are the start rates, which are constant throughout the period of
main interest, the twenties and early thirties. A straight line would fit rather well over
the full range including wartime, and its slope would be only slightly less. World War
IT hit the theater much harder than WWI even though the Spanish flu also hit in 1918.
The hump during the 1890s is probably an artifact because some of these productions
actually opened during the 1880s, but I have no data prior to 1890 with which to
make the correction.

In the end we obtain an effective start rate defined as the value that normalizes Q,
meaning Q(0) = 1.0 and Q(oo) = 0. This rate is only 131 shows/year, which says
that we should omit some two-night stands as well. Whatever the exact value of
the slope, its constancy is very fortunate for data reduction. The theory below
requires a start rate at the time each show opened. Had it not been constant, I would
have been forced to trace each show back to its beginning and look up the rate at that
time.
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Let p denote the statistic that we take from Wearing’s data for each show open on
the given date. It could denote any of three quantities:

e the number of performances prior to the given date
e the number after that date, or
e the total number, prior plus future.

I chose the third because Wearing or somebody has already done the hard work of
tallying the total from the detailed list of performance dates.

Let S(p) denote the number of shows playing on the given date that will
ultimately survive for at least p more performances. Let ¢ denote time prior to the
given date; in other words greater ¢ is earlier time. Let r denote the number of
performances per day on average. Let B (for birthrate) denote the constant start
rate discussed above. Then for productions starting during the interval d¢, the number
surviving on the given date is

dS; = B-Q(rt)dt, whenrt>p
When rt < p, the show must survive longer to qualify for the count S:

dS, = B-Q(p)dt, whenrt<p
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Integrating ¢ over both ranges gives

B o0
s) =2 (r0)+ | 00 ) (1)
p
The goal is to relate increments of .S, namely single performances, to increments of O
and then compare the result to graphs like Figure 15 and thereby extend our data to
long-running shows. Toward that end, differentiate Equation E-1 with respect to p
and simplify. The result is simply

ds = (Bp/r) dQ (E-2)
(This would have been something complicated had B not been constant.) We take
increments in S to be single performances listed by Wearing, and sum the corre-

sponding increments of Q on a spreadsheet to get Q(p). It works best to begin with
the longest running show and work backward to p = 0. For a single date we would

therefore use dS — AS = —1, but since we are summing five dates for smoother data,
we must undo that multiplier and use
AS =-1/5 (E-3)
Solving Equations E-2 and E-3 for AQ gives
r
AQ = — E-4
0= (E-4)

which is summed to Q using a spreadsheet.

The results are plotted in Figure 16 in Section 2.3. Theaters and performances on
the five dates appear in Table E-1 below. The spreadsheet in Table E-2 lists Wearing’s
raw data and also tallies Q from them. Certain long-running shows do not fit on this
spreadsheet. Table E-2 contains only the summary tally for them, while the details
appear in Table E-3.
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Short Name
Footnotes

7 who were Hanged
Rat Trap, The
Anyhouse
Painted Swan
Inheritors
Peace & Quiet
Man with a Heart
LondnPotiniereRevue
Love'sTerribleThing
Possessions
London Life
Bachelor Husbands
Fall Guy, The
Lash, The
Tricks |
Lure, The
Old Adam, The
After Dark
Dollar Princess
Don't Tell Timothy
ElsieJanis at Home
Bamboula
Scarlet Lady, The
Merely Molly
Omar Khayyam
Charlot Show, 1926
Lullaby
Evye of Siva
Just a Kiss
Boodle
Too Much Money
Mone but the Brave
Madras House
DoverStreet to Dixie
Robert E. Lee
Mary Stuart
Grand Duchess
Dancing Mothers
Still Dancing
Music Box Revue
Tyrant, The
Grounds for Divorce
Better Days
Nine.d56 [9.45]
Queen in the Parlour
Blue Kitten, The
Cur Mell
Collusion  [Terry]
Iris
Enter Kiki !

Life [Cowan et al]
Patricia
Lightnin®
2nd Li'l Revue..at 9
Tip-Toes
Betty in Mayfair
Cutsider, The
Padre, The

LT
Date
a

(SR oL R ORIV VRN IV O U SN N SN VR R U RN N SN R U RN RN RN Y AR T N SNSRI N SN R R R SVRE LR IV N LR S RS R SR LR SVRNE RS ST O LR ST RS R )

Run
Open

28-Apr-24
18-Oct-26
12-Mar-25
16-Mar-25
28-Dec-25
31-Jul-23
14-Mar-25
8-Oct-26
4-0ct-26
23/Mar/24
3-Jun-24
2-Jun-24
20-Sep-26
26-Oct-26
22-Dec-25
B/May/24
17-Nov-25
20-Sep-26
4-Feb-25
15-Dec-25
2-Jun-24
24-Mar-25
30-Sep-26
22-Sep-26
21-Aug-23
5-Oct-26
6-Mov-25
8-Aug-23
8-Sep-26
10-Mar-25
26/Dec/248
30-Jul-26
30/MNow25
31-May-23
20-Jun-23
30/Juli23
20-Feb-24
17-Mar-25
19-MNowv-25
15-May-23
18-Mar-25
21-Jan-25
19-Mar-25
22-Dec-25
24-Aug-26
23-Dec-25
16-Apr-24
1-Apr-24
21/Mar/24
2-Aug-23
30-Aug-26
31-Oct-24
27-Jan-25
18-Mar-24
31-Aug-26
11-Nowv-25
31-May-23
22-May-26

Run
Close

[4 Jun 24]
5-Mov-26
28-Mar-25
4-Apr-25
16-Jan-26
18/Aug/23
4-Apr-25
30-Oct-26
30-Oct-26
18/Apri25
5-Jul-24
28/Jun/24
30-Oct-26
4/Dec/26
13-Feb-26
21/Jun/24
16-Jan-26
B/Mowi26
4-Apr-25
27-Feb-26
9-Aug-24
30-May-25
11-Dec-26
4-Dec-26
3IMowi23
18-Dec-26
23-Jan-26
20/0ct/23
27-Mov-26
30-May-25
30/an/26
30-Oct-26
27/Febi26
1/Sep/23
22/Sepi23
18/Aug/23
4iApri2h
20-Jun-25
27-Feb-26
18/Aug/23
4-Jul-25
2/May/25
6-Jun-25
10/Apr/26
18-Dec-26
24-Apr-26
16/Aug/24
9-Aug-24
1/ Juli2s
16/Dec/23
4-Dec-26
28-Mar-25
6/Jun/25
16/Aug/24
12-Feb-27
24-Apr-26
1/Sep/23
6-Mov-26

Pris/\W'ch| 1st | 2nd | 3rd | 4th
Day | Run |Prfs |Prfs |Prfs |Prfs | 5B-AQ
c

b

1.14
1.15

alalalalalalalalamalalalalalalalalalalalamalamamalaalalalaalalalalalalalamalalalalalmalalalalalala o

d

2

i

42

97

22

150

23

66

Table E-2. Spreadsheet for computing survivability Q(p).

e

0.0668
0.0526
0.0588
0.0500
0.0500
0.0526
0.0455
0.0435
0.0370
0.0338
0.0303
0.0296
0.0244
0.0199
0.0185
0.0178
0.0164
0.0172
0.0167
0.0141
0.0145
0.0147
0.0137
0.0135
0.0133
0.0133
0.0127
0.0126
0.0123
0.0122
0.0112
0.0108
0.0101
0.0106
0.0105
0.0100
0.0103
0.0104
0.0099
0.0104
0.0092
0.0089
0.0125
0.0083
0.0085
0.0081
0.0077
0.0076
0.0095
0.0074
0.0103
0.0067
0.0066
0.0066
0.0060
0.0061
0.0061
0.0059

Total
HB-Q \Perfs
e
14164 | 14
1.3486 | 18
1.2960 | 20
12371 2
11871 21
11371 22
1.0845 | 25
1.0381 | 26
09956 |
0.9585 | 34
0.9248 | 39
0.8945 | 40
0.8648 | 48
0.8405 | 59
0.8205 | 61
0.8020 | 65
0.7842 | 67
0.7679 | 68
0.7507 | 69
07340 7
07198 | 72
0.7054 | 77
0.6907 | 84
0.6770 | 85
0.6635 | 86
0.6502 | 87
0.6369 | 88
06242 | 92
06116 | 93
05992 | 94
0.5870 | 104
05758 | 106
0.5651 | 107
0.5550 | 108
0.5444 | 109
05338 | 110
05238 | 110
05135 | 110
05031 | 114
04932 | 120
04828 | 126
04736 | 128
0.4647 | 135
04522 | 136
0.4439 | 137
04354 | 141
04272 | 148
0.4195 | 150
04119 | 153
0.4024 | 155
0.3950 | 167
0.3847 | 170
0.3780 | 172
03714 | 173
0.3648 | 181
0.3588 | 182
0.3527 | 186
0.3466 | 194

w o ~|o |3 |~ o |a|lm

w o ~|o |3 |~ o |a|lm

oo
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LT | Run Run |Prfs/|Weh| 1st |2nd | 3rd | 4th Total
Short Name  |\Date| Open Close |Day Run Prfs|Prfs|Prfs |Prfs|8B-AQ | 8B-Q \Perfs
Footnotes a b c d e e
To Have the Honour 2 | 22-Apr-24 | 11-Oct-24 | 113 1 196 0.0058 | 0.3407 | 196
Ask Beccles 5 | 20-Jul-26 | 20/MNowi26 | 1.15 1 143 | 42 | 12 0.0059 | 0.3349 | 197
Whole Town's Talking | & T-Sep-26 | 18/Dec/26 | 1.15 1 118 | 12 | 72 0.0057 | 03281 | 202 | 1
In the Mext Room 2 G-Jun-24 | 28/MNowi24 | 1.14 1 202 | 12 0.0053 | 0.3234 | 214
Charlot's Revue 3 | 23-Sep-24 | 28-Mar-25 | 1.16 1 216 0.0053 | 0.3181 | 216
Are You a Mason? 4 | 28/Dec/25 | 30Man/26 | 1.76 | 3 63 | 87 | 60 | 12 | 00079 | 0.3127 | 222 | 8
Androcles & Lion 4 | 26/Dec/25 | 30/Man/26 | 117 42 0.0052 | 0.3048 | 224 |13
Berkeley Square 5 6-Oct-26 | 5/Mar27 [ 1.19 1 179 | 47 0.0052 | 0.2996 | 226
Alfs Button 4 | 17/Dec/25 | 23/Jan/26 | 1.66 | 2 111 | B3 | &7 0.0072 | 02943 | 231 | 8
Riverside Mights 5 | 10-Apr-26 | B/Mow26 | 1.13 1 238 1 0.0047 | 0.2871 | 239
Likes of Her 1 | 15-Aug-23 | 1/Marf24 | 1.15 1 229 1 10 0.0048 | 0.2824 | 239
Unfair Sex, The 4 9-Sep-26 | 20/Marf26 | 117 | 1 226 | 3 12 0.0049 | 0.2776 | 241
Toni 2 | 12-May-24 | 13-Dec-24 | 1.16 1 250 0.0046 | 0.2728 | 250
Puppets | 2 2-Jan-24 | 25/Julf24 | 1.24 1 255 0.0049 | 0.2681 | 255
Primrose 3 | 11-Sep-24 | 25-Apr-25 | 112 1 255 0.0044 | 0.2633 | 255
Little Mellie Kelly 1 2-Jul-23 | 16/Feb/24 | 1.14 1 263 0.0043 | 0.2589 | 263
Ma. 17 4 | 12-Aug-25 | 13/Febv26 | 1.12 1 209 0 15 | 12 | 28 | 0.0043 | 0.2545 | 264 | 4
Rats | 1 | 21-Feb-23 | 22/Sep/23 | 1.23 1 264 0.0047 | 0.2503 | 264
Tell Me Mare 4 | 26-May-25 | 16-Jan-26 | 1.12 1 264 0.0042 | 0.2456 | 264
Yoicks | 2 | M-Jun-24 | 14-Feb-25 | 1.07 | 1 266 0.0040 | 0.2414 | 266
Fake, The 2 13-Mar-24 | 13/Sep/24 | 1.14 1 20 46 | 12 0.0042 | 0.2374 | 268
Spring Cleaning 3 | 29-Jan-25 | 2%Augi2s | 1.23 1 262 | 12 0.0045 | 0.2331 | 274
Escape 5 | 12/Aug/26 | 12/Mar27 [ 1.14 242 0.0041 | 0.2286 | 275 | 13
Yvonne 5 | 22-May-26 | 28-Jan-27 | 1.11 1 281 0.0040 | 0.2245 | 281
Fata Morgana 3 | 15-Sep-24 | 28/Mar/25 | 1.25 1 4304 M 0.0043 | 0.2205 | 288
Rosmersholm 5 | 30/Sep/26 | 13/MNowi26 | 1.16 52 0.0040 | 0.2162 | 291 | 13
Man..Load. Mischief | 4 | 114Jun/25 | 16/Janf26 | 119 | 2 R 0.0040 | 0.2122 | 293
R85 V. P 5 | 23Feb-26 | 6-MNov-26 | 1.14 1 294 0.0039 | 0.2082 | 294
So This is London! 1 11-Apr-23 | 8/Dec/23 | 115 1 278 | 7 12 0.0039 | 0.2043 | 297
Mask & the Face 2 | 2TMay/24 | 13/Deci24 | 115 | 2 41 | 232 28 0.0038 | 0.2004 | 301 | 2
Rising Generation 4 | 21/Dec/25 | 30Man/26 | 1.32 | 2 | 236 | A4 | 12 0.0044 | 0.1966 | 302
Rising Generation 2 3-Dec-23 | 240Mun/24 | 117 | 1 236 | 84 | 12 0.0039 | 01922 | 302 | 8
Young Person in Pink | 1 134uli23 | B/Octi2d (114 | 3 1 | 208 98 0.0037 | 0.1884 | 307
Lilies of the Field 1 S-Jun-23 | 26/anf24 | 1.14 1 269 | 38 0.0037 | 0.1847 | 307
Best People [G&H] 5 | 16-Mar-26 | 11-Dec-26 | 1.14 1 308 0.0037 | 0.1809 | 308
Sky High 3 | 30-Mar-25 | 26/Sep/25 | 1.71 1 309 0.0055 | 01773 | 309 | 9
Black-Birds 5 | 11-Sep-26 | 14/May/27 | 1.13 1 279 | 32 0.0036 | 01717 | 311 ['3
At Mrs. Beam's 1 20Aprf23 | 1/Dec/23 | 115 | 3 2 [21 F280 | 12 | 0.0036 | 0.1681 | 315
Blue Bird, The 4 | 19Dec/25 | 23/Jan/26 | 1.67 4o 0.0053 | 01644 | 315 | 8
Pally 1 | 30-Dec-22 | B/0ct/23 | 1.16 1 325 0.0036 | 0.1582 | 325
Lady, Be Good ! 5 | M4-Apr-26 | 22-Jan-27 | 114 1 325 0.0035 | 0.1856 | 325
Doll's House, A 4 | 20/Mowi25 | 23/Jan/26 7 1.00 i) 0.0031 | 01821 | 325 |13
Pelican, The 3 | 20-Oct-24 | 9/May/25 | 1.20 1 24312 | 72 0.0037 | 0.1480 | 327
Vortex, The 3 | 25-Nowv-24 | 27/Junf25 | 113 1 244 | 12 | 83 0.0033 | 01453 | 339 | F
Will, The 1 [ 15/Aug/23 | AMar24 F115 | 2 90 | 229 | 24 0.0033 | 01420 | 343 | o
Juno & the Paycock | 4 | 16-Mov-25 | 8/May/26 | 1.14 1 198 | 63 | 20 | B4 | 0.0033 | 01386 | 345 | o
Dancers, The 1 | 15-Feb-23 | 15/Dec/23 | 1.15 1 349 0.0033 | 01353 | 349 |t
Street Singer, The 3 | 27-Jun-24 | 5-May-25 | 1.12 1 349 0.0032 | 01320 | 349 | n
Princess Charming 5 | 21-0ct-26 | 3-Aug-27 | 1.26 1 361 0.0035 | 01288 | 361 | o
Quinney's 4 | 2/Dec/2s | 30Mani26 F122 | 2 | 286 | 73 | 10 0.0033 | 01254 | 369 | t
Hay Fever 4 8-Jun-25 | 31-Mar-26 | 1.13 1 337 | 26 | 18 0.0030 | 01221 | 381 | e
By the Way 3 | 22-Jan-25 | 28/Mow2s | 112 1 M7 3T 0.0029 | 01191 | 384 | s
Mine O'clock Revue 1 | 25-0ct-22 | 1/Sep/23 | 1.23 1 385 0.0032 | 01162 | 385 |10
Cuckoo in the Nest 4 | 22-Jul25 | 26/Muni26 | 1.11 1 ite | 12 0.0029 | 0.1130 | 388
Sport of Kings, The 3 8-Sep-24 | 13Jun/25 | 1.14 39 0.0029 | 01101 | 393 |13
Bohemian Girl 4 [FJan26 | 9.Jan26] | 0.86 2 0.0021 | 01072 | 400 12132
Just Married 3 | 15Dec-24 | 19-Dec-25 | 1.14 1 423 0.0027 | 0.1051 | 423
Green Goddess 2 6-Sep-23 | 6/Sep/24 | 1.13 1 416 | 12 0.0026 | 0.1024 | 428
Stop Fliting 2 [ 29/Mar/24 | 13/Dec/i24 075 | 2 | 229 [ 194 | 7 0.0017 | 0.0997 | 430
Stop Fliting 1 | 30-May-23 | 15/Dec/23 | 1.15 1 229 194 | 7 0.0027 | 0.0980 | 430 |14
Way of the World 2 7-Feb24 | 28/Jun/24 [ 1.10 158 0.0025 | 0.0953 | 436 | 13
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Short Name
Footnotes

Mercenary Mary
Rookery Mook
Manth in Country
Constant Mymph
Mme. Pompadour
Man...Dress Clothes
Ringer, The
Evn/Womanknows
Leap Year
Bluebeard's8th\Wife
Katja
Katja
Prisoner of Zenda
Brighter London
Saint Joan (B.Shaw)
Saint Joan (B.Shaw)
To-Might's the Might
It Pays to Advertise
It Pays to Advertise
Cur Betters
Punch Bowl, The
Punch Bowl, The
Whirl of the Waorld
Treasure Island
And so to Bed
Mo Mo Nannette
Mo Mo Nannette
Ghost Train, The
Ghost Train, The
Tons of Money
Rivals, The

Last of Mrs. Cheyney
Last of Mrs. Cheyney

Yellow Sands
Doctor's Dilemma
Great Adventure
Diplomacy
White Cargo
White Cargo
White Cargo
RoseMarie [H & H]
RoseMarie [H & H]
RoseMarie [H & H]
Romance [Sheldon]
Lilac Time
Lilac Time
Farmer's Wife
Farmer's Wife
Farmer's Wife
Farmer's Wife
Dick Whittington
Co-Optimists
Co-Optimists
When Knights...Bold
Peter Pan
Charley's Aunt

LT
Date

Run
Open

7-Oct-24
30-Jun-26
6/0ct/26
14-Sep-26
20-Dec-23
3Mowi2b
1-May-26
24/May/23
20-Mar-24
26-Aug-22
20-Feb-24
21-Feb-24
23/Aug/23
28-Mar-23
26-Mar-24
14/Jan/25
21/Apri24
1-Feb-24
1-Feb-24
12-Sep-23
21-May-24
21-May-24
14-Mar-24
26/Dec/248
6-Sep-26
11-Mar-25
11-Mar-25
23-Mov-25
23-Mov-25
13-Apr-22
5iMari25
22-Sep-25
22-Sep-25
3-MNov-26
17/Mowi26
5/Jun/24
B/Mar/24
15-May-24
15-May-24
15-May-24
20-Mar-25
20-Mar-25
20-Mar-25
27/0ct/26
22-Dec-22
26/Dec/248
11-Mar-24
11-Mar-24
11-Mar-24
11-Mar-24
26/Dec/248
26/Aug/25
25/Aug/26
21/Deci24
17/Deci25
22/Deci24

Table E-2 (cont.).

Run
Close

18-Sep-26
25 Jun/27
30/0ct/26
13/Aug/27
31/Janf25
12/Deci/25
23/Apri2T
26/Jan/24
20/Dec/24
20/0ct/23
12-May-26
12-May-26
17Mof23
18/Mar/24
26/0ct/24
IMay/25
30/Augi24
11/Juli2s
11/Juli2s
Ian/2s
22/Aug/25
22/Aug/25
21/Mar/25
23/Jan/26
18/Jun/27
16/0ct/26
16/0ct/26
16/Apr/27
16/Apr/27
29/Jan/24
23/May/25
18/Dec/26
18/Dec/26
26/Feb/28
18/Dec/26
18/0ctf24
24/Jan/25
18/May/26
18/May/26
18/May/26
26/Mar/27
26/Mar/27
26/Mar/27
19/Feb/27
21/ Jun/24
13/Mar/26
29/Jan/27
29/Jan/27
29/Jan/27
29/Jan/27
6/Mar/26
30/Jan/26
12/Feb/27
16/Jan/26
23/Jan/26
23/Jan/26

Pris/\W'ch| 1st | 2nd | 3rd | 4th
Day | Run |Prfs |Prfs |Prfs |Prfs | 5B-AQ

b

1.29
113
120
1.16
113
F2.08
1.14
F1.15
1.71
1.14
1.15
1.15
F1.26
1.70
1.14
1.14
1.14
113
113
1.14
1.21
1.21
1.70
7 0.86
117
1.14
1.14
1.28
1.28
113
1.16
113

c

1
1

JRENY B JRET R R N XY =y JRENY PR PR RN | Y REN X RN Y

Mo

[ S P Y Y

2iday

446
409

387
461
232
408

471
482
514
514

603

460
598
598
248
554
554
635

334
665
665

514
514

674
462

851
851
851
1047

1324
1324
1324
1324

d

12
28
52

284

60

323

17

20
97

149
149
149

60

120

269
269

33

e

0.0029
0.0025
0.0027
0.0025
0.0024
0.0044
0.0025
0.0024
0.0036
0.0024
0.0022
0.0022
0.0023
0.0028
0.0019
0.0019
0.0019
0.0018
0.0018
0.0018
0.0019
0.0019
0.0027
0.0013
0.0016
0.0015
0.0015
0.0016
0.0016
0.0014
0.0014
0.0014
0.0014
0.0015
0.0013
0.0013
0.0012
0.0011
0.0011
0.0011
0.0010
0.0010
0.0010
0.0010
0.0010
0.0010
0.0009
0.0009
0.0009
0.0009
0.0010
0.0007
0.0007
0.0004
0.0004
0.0005

Total

HB-Q \Perfs

e

0.0928
0.0899
0.0874
0.0847
0.0822
0.0798
0.0753
0.0728
0.0704
0.0668
0.0644
0.0622
0.0599
0.0576
0.0548
0.0529
0.0510
0.0491
0.0473
0.0455
0.0436
0.0417
0.0398
0.0371
0.0358
0.0342
0.0328
0.0313
0.0297
0.0280
0.0266
0.0252
0.0238
0.0224
0.0209
0.0195
0.0182
0.0170
0.0159
0.0148
0.0137
0.0126
0.0116
0.0105
0.0096
0.0086
0.0076
0.0067
0.0058
0.0049
0.0041
0.0030
0.0023
0.0016
0.0012
0.0008

446
449
452
457
461
462
462
468
471
482
514
514
241
603
607
607
610
618
618
620
630
630
635
659
729
780
780
785
785
797
506
§12
§12
654
865
887
914
1014
1014
1014
1100
1100
1100
1178
1179
1179
1407
1407
1407
1407
1643
1812
1812
2130
3250
3768

18
13

13
18

1
1

18
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The following nine stage productions lasted
much longer than Wearing's listings.
They are assigned ranks 1 through 9; hence
the ranks in the main table above begin with 10.
LT
Date

Cinderella 4
Merry Widow 12
Romeo & Juliet
MerryWives...Windsor
Hamlet
Macbeth
Henry VIII
Henry V
Aida

o oon e Lo R R

The following eight shows are missing from
Wearing's listing mostly because the
theaters did not meet his criteria that year.

Enemies of Women 1
French Season 2
Habit 5
Presevering Pat 3
North of 36 3
Ten Commandments 2 Footnotes
Khald 3 a London Times
Tame Cat 4 b Performances per day
¢ Which of the runs occurred on the L.T. date
d  ltalic numbers are perfs for listed date only. For details see Table E-3
e  See equations, especially E-4.

1 The 1937 production of Whole Town's Talking
was modified to a musical comedy, Oh! You Letty.
2 |Not the same show as "Masks and Faces."
3 No relation to "Blackbirds” 34.372, 34.255, 36.230, or 36.336.
4 No clue to run in 1926. Used 15 as average of revivals.
5  One-night stand assumed, typical of London Repertory Company.
6 Est. 12 perfs. for 10-day run.
7 Independent of “The Nine O'clock Revue" except same author.
8  Two performances per day.
9 No relation to "Sky High" 42.062 or 48.256.
10 Independent of "Second Little Revue Starts at Nine” except same author.
11 Twenty performances is an estimate.
12 Estimate of performances is based on fragmentary data.
13 Details appear in the table of Extra-Long Runs, next.
14 |Initial value for 5B-Q is a guestimate.
15  There are 19 duplicates out of 165 distinct shows. This is 12%.
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Appendix F

Extinction rates of prehistoric taxa

Recall three ways you can verify that a process/entity obeys Gott’s survival
predictor:

e Enact the whole process of making a prediction and watch it play out. This is too
slow—once is enough. Gott did that for his New York stage productions [11].

e Backing off one level, you can examine the statistics for the duration of a process
and thereby confirm the prior probability Q, Equation 1. Then GSP follows as in
Equation 2.

e Backing off one last step, you can show that extinction rate has uniform
probability density. This leads to the prior and then to GSP via the argument
in Appendix A.

The second is easiest. Chapter 2 treats the second method, and this appendix the
third. It shows that extinction rates of certain prehistoric taxa are distributed
uniformly if you are willing to make an assumption discussed below.

Leigh Van Valen has studied these rates and published extensive data [29]. His
Table 1 lists extinction rates for 20 families, 38 genera, and 3 species. I used his data
for genera simply because that sample is the biggest of the three.

Table F below shows these data rearranged in order of increasing extinction
rate. The first column shows the rates in a curious unit. One macarthur equals
In2/500 years, the rate that gives a half-life of 500 years. But the unit is irrelevant
here; we need only show that these rates are uniformly distributed. The second
column in the table shows the number of occurrences in Van Valen’s data. Clearly
the least rates occur more often than the greatest, but this is probably a sampling bias.
The longer a species survived, the more likely a scientist would discover its remains
millions of years later and find them statistically significant for inclusion in a
published table. Therefore, to adjust for those uncounted, I make a plausible but
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Table F. Van Valen’s data: extinction rates for prehistoric taxa.

Extinction rate in
micro-macarthurs

Number of occurrences
in Van Valen’s list

Product, which
removes sampling

Cumulative sum for
Figure F, which

of genera bias verifies uniform
distribution
20 5 100 100
25 6 150 250
30 7 210 460
35 3 105 565
45 1 45 610
50 3 150 760
60 1 60 820
80 1 80 900
120 3 360 1,260
150 3 450 1,710
160 1 160 1,870
170 1 170 2,040
180 1 180 2,220
200 1 200 2,420
220 1 220 2,640

speculative assumption that the actual abundance was proportional to the
occurrences multiplied by the hazard rate. Accordingly I multiply the second column
by the first, which gives the adjusted numbers in the third column.

In Figure F an inset shows a histogram of these products. It is consistent with a
uniform distribution, but statistical fluctuations mask that uniformity. A more
effective way to suppress statistical noise is to run a cumulative sum, the total
adjusted number of genera having an extinction rate less than each tabulated value.
This appears in the fourth column of Table F. For uniform distribution this cumu-
lative sum should increase linearly, and indeed it does as the main plot in Figure F
shows. The data fit the straight line as well as you can expect for a sample of 38 data.
It is amazing how all these critters know to die on schedule.
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Figure F. Uniform distribution of extinction rates for prehistoric taxa Histogram shows
number of genera in each interval, but statistical variations mask the uniformity. The cumu-
lative sum of the numbers (main graph) averages out the fluctuations, and the resulting straight
line makes a more convincing graphic.
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Disaggregated mortality

In Equations 6 through 9 and beyond we have exponents that express the relative
importance of hazards or classes of hazards. But “express’ is too vague. Suppose we
had abundant mortality data for things that have succumbed to multiple threats.
Then how can we calculate these exponents? Let us prepare by reviewing a very
simple case.

A big population P is exposed to two hazards with constant hazard rates A and p.
During time increment dt the risk is (A + p) dt, and so the number that expire is this
risk times the number still surviving:

dP = —(\+ p)Pdt (G-1)
Divide by P and integrate:
InP=—-A+pt+InP, (G-2)
A+ = [In(Py/P))/ (G-3)
P = Pyexp[—(A+ p)1] (G-4)

By counting survivors we can determine only the sum A+ g, not A and pu
separately, so we need more information. Let us (virtually) sort dead bodies by cause
of death. Let M (for mortality) denote the dead body count:

M=P,—P (G-5)
and by Equation G-1,
dM = —dP = (A + p)P dt (G-6)
Disaggregating by cause of death gives

dM, = \P dt; dM, = pP dt (G-7)
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Integrate this using Equation G-4:

T

Ahavzxaqgwm—@+um (G-8)
A1) = 1 (1 = expl=(+ ) T)) (G9)

and similar expressions for M. Note that M, + M, + P = P, thus accounting for
all of the original population.
If we use historical data for which the entire population has expired, then,

APO /,I,PO
M =20 =0 -1
o) = s M (o0) = S (G-10)
and the ratio is
M, (c0)/M,(00) = A/ (G-11)

No surprise here, the ratio of hazard rates is the same as the ratio of body counts.
We know A + p from the overall mortality rate, and so A and i can now be separately
determined, the desired result.

# # #

From here on we divide all populations and body counts by P, so that they
represent fractions of the initial population. Now Q = P/P, denotes the surviving
fraction, which we also interpret as survival probability.

For a Gott process we have Equation 6 in the main text instead of Equation G-4:

J \' K q .
0(1) = (J f T) (K . Z(T)) (copy of Equation 6)

Instead of Equation G-2,

mQ=(1-¢q)-[InJ—-In(J+T)]+¢q-[InK—In(K+ Z)] (G-12)

And instead of G-1, differentiate G-12 to get the dual hazard rates:
ldM _— 1dQ _1-gq q dzZ

QdT ~ QdT J+T  K+ZdT

(G-13)

Like the transition from Equation G-6 to G-7 we can break out mortality rates for the
separate hazards:

dM; l1—g¢q

ar ~%raT (G-14)
de N q

dZ  “K+Z (G-13)

Unlike A and p the hazard rates (the fractions following Q) are not constant. They
diminish slowly as frail entities die off leaving hardy survivors. (Recall that we are not
dealing with things that wear out in time. Instead they develop survival skills.)
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Integration gives the cumulative probability of succumbing to each hazard prior
to time 7. Using Equation 6 for Q, we find

_ gl-qgq ! (1—¢q)adt

MAT) =K | (G-10)
e [T q(dZ/dr) dt

My(T) = 71K L T+ 09K+ Z(1) ™ (G-17)

In general one must integrate these equations numerically because Z(¢) is an
arbitrary function. If we had historical mortality data like those in Sections 2.2, 2.3,
and 3.3 (but disaggregated by cause of death), then we could try many different values
of ¢ and converge on the one that gives the best fit to observed mortality.

# # #

In one special case where Z(T) = T, we can do the integration analytically.
This is the impresario’s case discussed in Section 3.2. The two classes of hazards
both depend on time but typically have different gestation periods. A brief look at this
case offers further insight.

Integration of Equations G-16 and G-17 gives

(e
st (222)]

One can show that M; + M) + Q = 1, thereby accounting for all the initial entities,
the live ones and two categories of dead ones.
For historical data with no survivors,

Jl—q _ Kl—q
Jq _ K‘j
M =g G-21
(o) — (G-21)
and the ratio is
Mi(c0) JT1 Ji— K4
R= = G-22
M;(c0) K1 jl-a — gl-q ( )
In the limit K — J,
R—(1-4q)/q (G-23)

Just like the simple exponential case, the ratio of body counts gives the ratio of
exponents. But this does not hold when the gestation times are unequal. In the limit
J>K,

R=(J/K)? (G-24)
This says that the hazard with the shorter gestation takes the greater toll, especially
when its exponent is big, because it strikes when the victim is still vulnerable before
the frail ones have died out.
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Stage productions with dual cum-risks

This appendix is a demonstration that a theoretical dual-risk formula works with real
statistics, namely survival data for stage productions that first opened in London
during the five years from 1920 through 1924.

The survival statistics of shows that expired long ago should approximate the
formula Q(S, T) given in Equation 9. Q is the probability of its survival beyond S
performances that have played over a period of T days. A long-running show has
small Q indicating that there are few survivors when it expires. Likewise a show that
fails after a few performances has a large Q indicating that most productions in its
cohort outlive it.

Equation 9 is a bivariate formula for Q having four parameters, J, K, ¢, and p.
I added two more, a and ¢, that make a small correction for obsolescence, which
makes a total of six as follows:

Q= <1 +1T/J>q<1 +S/Kj—a(S/K)9>p (H)

Evaluation begins by assigning a rank to each show: rank =1 for the longest
running, rank =2 for the next longest, and so forth up to one-night stands. Next,
choose a set of parameters to be tested for accuracy. Using the formula, evaluate Q
for all stage productions in the ensemble. If the formula is perfect and the ensemble
infinitely big, then Q for each show will equal its fractional rank in that ensemble. The
accuracy of the fit is simply the standard deviation of the calculated Qs from the set of
ranks. Finally, test other trial sets of parameters in a sequence that converges on the
optimum.

In Figure H-1 below the straight line represents the perfect formula and infinite
ensemble. The univariate formula based only on performances gives the points with
crosses, while the bivariate formula gives the improved fit shown as circles. With six
parameters to play with, you would expect a better fit just from having additional
adjustments available. However, the optimum parameter values are plausible in all
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709

Figure H-1. Stage
productions ranked
by computed
survivability. The
straight line
represents the limit
in which the
formula for Q is
perfect and the
sample size infinite.
The original simple
formula, Equation 2
in Section 1.4,
based on
performances only
gives the crosses.
An improved
formula with
duration and other
\ i \ i \ y , 1 adjustments gives
0 20 40 60 80 100 the circled points,
Prior survivability Q, % Equation H.

60

50

40

Rank

304

209

10

cases and consistent with earlier interpretations. In particular, both exponents p and ¢
are always positive, their sum is close to 1.0, and the gestations K and J are consistent
with plausible preparations and delays, all of which inspire confidence in the
formulation.

Recall that the criterion for identifying the optimum set of parameters is its
minimum standard deviation o from the ideal straight line in Figure H-1. The search
for this minimum has an interesting quirk. As you scan along some line or curve in
parameter space, o briefly varies smoothly until Q for one show passes Q for another,
at which point they swap ranks in the list of Os, which makes a small discontinuity.
Many of these discontinuities produce jagged plots of o as shown in Figure H-2. This
particular scan is especially interesting because it demonstrates that the sum of
exponents is very close to 1.0. As discussed in Section 3.1 and elsewhere, the sum
must be 1.0 for fundamental reasons, and indeed this plot shows the minimum at
about 1.012, which is well within the margin of error. Again, this builds confidence in
the formulation, but nothing ever proves it rigorously.

Most computer programs for optimization expect continuous functions. I know
of none that I would trust to correctly manage anything this jagged, nor have I any
confidence in my ability to write one. Therefore, I found the minimum o quasi-
manually by using the computer only to make plots like Figure H-2 and then
choosing an “eyeball” minimum for the next plot. Iterations converged nicely to a
unique minimum.
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1.55+

1.54+
Figure H-2.

One of many
scans through
parameter space
showing the
minimum that
optimizes the
formula for Q
in the case of
occasional . .
productions 1.52+
p/q = 1735, . . . ..
K =159; « o

J = 1510; B T T T T T T = T T T T ]
a=0.324; 0.98 0.99 1 1.01 1.02 1.03 1.04
g = 3.36. Sum of exponents holding their ratio constant

1.53+ .

Standard deviation from linear Q

For the occasional productions Figure H-3 shows a scan along the J-axis,
which is particularly jagged. However, one can still pick a reasonable midpoint in
the cluster of points at the bottom and call it the effective minimum. This optimum
occurs at about four years, which is longer than I expected. However, on second
thought this may be about the time a typical production in this class faces recurring
costs for a second revival and a tough decision as to whether the risks are worth
taking.

The J-axis scan for shows in the main sequence appears in Figure H-4. It has by
far the most poorly defined minimum in this investigation. We can reasonably expect
some quantity to be poorly defined for this ensemble because it does not have a good
spread in the T', S plane, Figure 17. Instead, all points lie almost in line on that scatter
diagram. And yet the curve does have a minimum, and it works quite well to produce
the plausible results that appear in Section 3.3. For example, the statistical weight of
duration is much stronger for occasional shows, which are more vulnerable to loss of
personnel and public interest.

Finally, Tables H-1 and H-2 list the raw data from Wearing’s book The London
Stage, 1920 to 1929. Let us define occasional productions as those that had fewer than
two performances per week over the long-term average. These appear in Table H-1.
For example, the first entry Gallant Cassian opened in 1920 with serial number
20.163, column 10. It played only once more in 1928 with serial number 28.064.
The ratio of days elapsed to number of performances was 1,421, column 9, which is
just about as infrequent as one ever finds.
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Figure H-3.
Scan along the
J-axis for
occasional
productions
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K =158;
a=0.329;

g =331

Figure H-4.
Same scan as
Figure H-3
except using the
ensemble of
main sequence
productions.
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The shows called main sequence were performed more frequently. They are listed
in Table H-2. Typically they played eight times per week, six nights and two matinees.
For both tables the entries are listed in order of increasing frequency, which means
decreasing ratio of days to performances. Both tables have a column of “Links”,
which gives Wearing’s serial number for other shows performed the same day in the
same theater and included in the price of admission. For example, in the fourth row
of Table H-1, From Life appeared as 24.049 linked with a group of six short shows
numbered 20.047 through 20.054. Then the show reappeared on its own in 1928. Had
it not reappeared solo, I would not have listed it because its survival would pre-
sumably depend on the popularity of the other shows in the group.

“Rank™ in column 5 of both tables refers to the production’s survival rank
beginning with 1 for the show that survived the most cum-risk and ending with
316 for the one that succumbed to the least.
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Appendix 1

Opverall plan for survivability calculation

The main text contains a logic diagram in two parts that describes the overall
calculation of survivability. Part 1 is in the introduction to Chapter 2; Part 2 in
Section 3.4. The following outline puts it all together with additional detail. The
numbering here is ad hoc lacking any simple connection to chapter and section
numbers in the main text.

1.0 Find the simplest survival formula for hazards that are constant in time,
Equation 1.

2.0

3.0

1.1

1.2

Theoretical methods:

1.1.1 Best estimate when the hazard rate is unknown or random,
Section 1.1 in text.

1.1.2  Formula based on an observer’s random arrival time (related to
doomsday argument), Section 1.5.

1.1.3  Formula based on Bayes’ theorem, Appendix D.

Substantiating statistics:

1.2.1  Survival of business firms, Section 2.2 in text.

1.2.2  Survival of stage productions, Section 2.3.

1.2.3  Other clues:
1.2.3.1 Extinction rates of prehistoric taxa, Appendix F.
1.2.3.2 Relationship to Zipf’s law, Section 2.4

The simplest formula is now well established. Generalize to hazards that vary
with time, as do man-made high-tech hazards to human survival. Theory is
based primarily on 1.1.1 (above), secondarily on 1.1.2. Survival depends on risk
exposure (cum-risk) prior to observation.

Generalize again to include two independent risk rates, Chapter 3. Normally
one is constant in time, which represents natural hazards. The second is
accelerating, as are man-made hazards.
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4.0

5.0

6.0

Substantiate both 2.0 and 3.0 (above) using London stage productions.

4.1 Main cum-risk is number of performances, which depletes paying
attendance.

4.2 Secondary cum-risk is duration, which involves issues of steady
employment for the team and/or startup costs for revivals.

Formulate survivability of the human race using 2.0 and 3.0 (above), and
Chapter 4 in the text.
5.1 For natural hazards cum-risk is time.
5.2 Find a formula for cum-risk due to man-made hazards, Section 4.2 in the
text.
5.2.1 Formula for economic development
5.2.2 Tables of world population, gross world product, various
indicators of progress in hazardous technologies
5.2.3  Statistics of development in hazardous technologies

Calculate survivability as it depends on population-time (pop-time).

6.1 Survival of civilization, Section 4.4

6.2 Survival of the human race, Section 4.5

6.3 Calculate the probability that civilization’s collapse will rescue the human
race by taking out man-made threats.



Appendix J

Multiple hazards

In Equation A-1 the system’s probability of survival for time ¢ is exp(—A?), where A is
the constant risk per unit time. In general, A varies with time, in which case this
becomes

00113 = exp( | 36) ) (-1)

The integral is a cum-risk, which reverts to A when \ is constant.

As an example of time-dependent risk, consider the survival of an old house
designated as a historic landmark. Urban sprawl has recently surrounded it. Since
this has increased the price of land, the curator is concerned that the city council may
sell the property to a developer for much needed cash. She assumes that the incentive
to sell at time 7 is A = r - m(¢), where r is a constant, and m is the market value of the
property, which a friendly appraiser updates quarterly.

Now Equation J-1 becomes

Q(t|r) =exp(—rM), where M(t) = Jm(t) dt (J-2)

This integral is a cum-risk, which the curator maintains in her numerical risk model.
Whenever she calculates a GSP, she uses the appropriate values for past and future:

0 T,
M, = J m(t)di and M, = J " m(t) di (J-3)
-7, 0
Time zero here is the time of her observation, and the two integrals separate the
overall cum-risk into past and future.
Unfortunately the curator cannot estimate r in Equation J-2 without getting
inside the minds of politicians, who answer her questions with evasive platitudes.
The best she can do is to assume a probability density F(r), which gives an estimate
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analogous to Equation A-2:
0n= | FO)exp(-rar)ar (74)

0

For reasons that will soon be apparent, she uses
Firy=r"""  0<p<l (J-5)

Normalization of this pdf is not important because it cancels out in the posterior
probability as we have seen with the prior constant/7, Equation B-3. Putting
Equation J-5 in J-4 gives the prior probability:

0, = F(M)/MM (J'6)

a fractional power like those in Equation 8, which explains Equation J-5.

Another threat to the historic house is public apathy, the relatively few people
who urge their elected officials to preserve it. The curator estimates an apathy hazard
rate as the reciprocal of v(7), the number of visitors who sign the guest book each
month. The corresponding cum-risk is

dt
A=|— J-7
s 7
By analogy to Equations J-2 through J-6, J-7 leads to
0,=T(a)/A°, 0<axl (J-8)

Natural hazards such as fire, flood and earthquake are statistically constant—as
likely to occur one day as another. So their risk variable is time 7', hence:

0,=T(r)/T7, 0<r<l (J-9)

The overall prior probability of survival is the product Q = Q,,0,0,. Substituting
this in Equation B-4 converts the prior into the generalized GSP that we need:

Y Loy RN
G/lp) = (1+Mf/Mp> '<1+A/-/Ap> '(1+T//Tp); pratr=1

(J-10)

Compare this to Equation 8. The correspondence provides the same theoretical
support for the multivariate case that Appendix A provides for Gott’s original
predictor, Equation 2.

The sizes of exponents y, a, T indicate the relative importance of the correspond-
ing hazards. Chances are that the curator does not know their values. Then the rule is
to average over them while maintaining their sum = 1.0. This should be a weighted
average governed by common sense. For example, 7 = 0 means no natural hazard.
Since this never happens, it gets zero statistical weight in the average.

To conclude our story, the curator publishes an appeal with her gloomy GSP
analysis, and shortly thereafter the council votes to auction the property. Our heroine
chains herself on the front porch to a pillar supporting the second story. Meanwhile, a
wealthy philanthropist reads her appeal. He rushes to the auction and makes the
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winning bid in the last second before the final gavel. Of course he falls in love with the
curator. They marry and live happily for a few years until they realize that GSP for

year 7 of their marriage has dropped below 30% confidence, and so they divorce and
live happily until their next marriages.



Appendix K

Cum-risks for man-made hazards

The GSP for human survivability is given by the equation G(f | p) = G177 x GY, from
Section 4.1. It is the geometric average of two quantities: G, for natural threats and
G,, for man-made. From Equation 10 the latter is explicitly

Z
G, = L K-1
"7 17, (K-1)

The main task here is to find a mathematical formula for cum-risk Z, and then divide
it into past and future to plug into this equation.

World population p is the pool of potential perpetrators, whether extinction is
the work of a single mad scientist or the result of everybody’s collective bad habits. So
the hazard rate dZ/dt is proportional to the product of p by some measure U of the
power and expertise humans have to commit the ultimate crime, whether it be
deliberate or accidental. In calculus notation the equation AZ = p x U from Section

4.1 becomes
dZ =U-pdt (K-2)

We need not worry about the units for measuring Z or any constant multiplier,
because they cancel out in the ratio in Equation K-1. We shall express U in terms
of population-time, which is defined as

1
X(1) = J p(y)dy hence dX = p dt (K-3)
and Equation K-2 becomes
dZ =UdX (K-4)

According to Equation 11, the equation for hazardous technology U is

dd_l[]:C-p-U”; hence U™ dU = CdX (K-5)
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where C is a constant; population p is the pool of innovators; and U* is positive
feedback from existing technology, which leverages further progress.

Let M(¢) denote all people-years lived after some date 7, at which the
technological feedback began, which turns out to be 1530 AD:

M(t) = X(1) — X(Tp);  dM =dX (K-6)

Using Equation K-6 in K-5 and repeating K-4 gives the following fundamental
equations to be solved:

dZ=UdM; U "dU=CdM (K-7)

There are five different solutions depending on the value of u. All of them have
elementary solutions listed in Table K below along with remarks on their behavior.
To verify them, differentiate Z and U with respect to M and show that the results
satisfy Equations K-7. During this process discard various annoying constant multi-
pliers because they drop out anyhow in the ratio in Equation K-1. In the solution of
Equations K-7, the constants of integration should make U(0) = 0 and Z(0) = 0.
This holds in all cases when 1 < 1, but for o > 1, the technology U needs a seed to get
started. For this same range, » > 1, there is some parameter (B or L) that needs to be
evaluated, which reflects the unknown size of the seed. I do not know a systematic
way to get this except by curve fitting when some technology spurts rapidly enough to
call attention to the problem. In any case p > 1 is quite rare.

The quantity w, which appears in the table, is given in Equation 12 from Section
4.2 copied as follows:

1 1

w hence p=1— " (K-8)

Let us discuss four of the five solutions (rows) in Table K one at a time. The main
case treated in the text, u = 0.38 and w = 1.6, falls in the first feedback range. It
applies to the majority of hazards:

U=(w+ )M  Z=M" (K-9)

The next solution, u = 1, is exponential growth. A classic example is Moore’s law
for the growth of computer processing power, which doubles every few years. Well,
not quite exponential, because it used to double every year.

The next solution, 1 < p < 2, is scary because a few remote hazards could extend
into this super-exponential range, and this solution has a finite pop-time at which
U— o00,Z— 00,G — 0, in other words, a drop-dead date! Obviously in the real
world nothing is infinite; this is merely an indication that our simplistic mathematical
model fails at this point. However, the period where this occurs may be a time of crisis
with a major paradigm shift. If I knew how, I should disaggregate this case from all
the other man-made hazards in the manner of Equation 8. But I do not know
appropriate statistical weights, so I can only comment that my results may err on
the side of optimism for survival.

Let us skip to the last solution, 1z > 2. Nothing physical prevents this case, but it
seems remote from most of the world. Curiously, this case gives the cum-risk a jolt at
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Table K. Cum-risk and haz-dev as functions of modern pop-time M.

Feedback range Formula for technology U Formula for cum-risk Z
p<l,w>0 (w+ )M Mt
n=1w=o00 exp(cX) exp(cX) — 1

(_w _ 1) 1 (—w—1) 1\ (=1
1 <2,w< -1 —_— — =
SH<LW (L— M)~ L-M L
Both (—w) and (—w—1) >0 (—w —1) is positive
U— oo0as M — limit L Killer: Z — oo as M — finite L
1 L
=2, w=-1 Y, lnL—M
U— oo0as M — limit L Killer: Z — oo as M — finite L
w41
>2, —-1<w<0 —_— Lot — (L — M)“H!
> 2, w L= M)~ ( )
Note: 0 <w+ 1< 1. Note: 0 <w+ 1< 1.
U— ooas M — limit L. Survivable: Z stays finite as
Practically, analysis fails M — L, but analysis stops due
at a paradigm shift to paradigm shift; see U

a finite future time, but only a finite jolt. Evidently the system passes through crisis so
quickly that exposure is minimal and survival feasible. Analysis cannot continue
after the jolt because U = oo at that point, or in practical terms some cataclysmic
paradigm shift violates our assumptions and completely changes the nature of the
problem.

# # #

Let us apply the first case in Table K, the only one we develop, to find a formula
for the survival predictor G,,, Equation K-1, also Equation 10. First let us split the
cum-risk Z and the relative pop-time M into past and future. Then by the second of
Equations K-9

Z

L =MEYY and  Z, 4+ Zp = (M, + M)tV (K-10)

Substitution into Equation 10 (first equality), also K-1, evaluates GSP for man-made
risks:

Gy = (1+ My /M,) "1 (K-11)

# # #

Finally, let us restore the factor for natural hazards, G, = 1/(1 + T;/T,) from
Section 4.1, to display the complete predictor, G(f |p) = Gl x G4, for the case in
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which the exponent ¢ is known:

G e L LY etow Eq. 14

,q)=G6,"1-Gl =———+ N elow Eq.
1pa () () Coovma o

The next to last paragraph in Section 3.1 explains that the negative exponents
must sum to 1.0. In Section 3.3 statistics of London stage productions confirmed this.
Here the exponents sum to 1 4 gw. This apparent discrepancy happens because M is
not the cum-risk. The real cum-risk is Z in Equation 10, and in this case the exponents
do sum to 1.0. It is merely a coincidence that the conversion from Z to M, Equation
K-10, causes the second parenthesis in the equation above to look like a cum-risk
factor.



Appendix L

Statistical weights for types of hazard

Sometimes we need a probability distribution that reflects no information about
the process in question but merely lack of bias. Typically these are used as prior
probabilities. For the interval 0 to 1, renowned scientist Harold Jeffreys favored

uniform pdf: W(q) =1, (L-1)
and
1

m/q(1 —q)

In Equation L-2, 1/7 makes the total probability = 1.0. Note that this equation is
singular (infinite) at both boundaries (¢ =0 and 1). This seems appropriate for
biological populations (humans included) because they are unstable: prone to boom
or bust. (The classic example is lemmings, but I recall a day when I could not walk
along the driveway in front of my house without stepping on baby frogs. This was in
foothills, not a swamp.)

An example will help choose between L-1 and L-2. Suppose you know nothing
about electrical conductivity. When you first encounter the subject, you might inquire
about the relative conductivity of zinc and lead. In that case you would find them
similar, zinc four times as much as lead, but that is not typical. If you inquire about
aluminum and glass, you would find aluminum 3,000,000,000,000,000,000 times as
conductive as glass, the opposite extreme. Similarly, consider an alien scientist
arriving on Earth with no knowledge of our species. He would have no reason to
think that ¢ and 1 — ¢ have comparable magnitudes, say ¢ = 0.3 or 0.8. He would not
be surprised if ¢ is 0.007 or 0.9994. Hence, Equation L-2 with its two singularities
makes more sense than Equation L-1 because they put heavy weight on extreme
ratios between ¢ and 1 — ¢.

Unlike the alien we have a bit of knowledge and should modify Equation L-2
accordingly. First consider statistical weights for extinction; collapse of civilization
comes later.

singular pdf: W (q) = (L-2)
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In Equation L-2 the singularity at ¢ = 0 is appropriate, since zero implies no
man-made threat. It represents the case in which human perpetrators lack the power
or worldwide coverage to consummate extinction, which is entirely possible as
discussed in Section 4.2. However, at ¢ = 1, the singularity must change to a zero,
W (1) =0, because there is no chance that natural hazards vanish. If we keep the
square root, the result is

21—
Wip(q) = A /Tq; mean: (¢),, = 1/4=10.25 (L-3)

The subscript 2 denotes square root and sp denotes species survival. This formula is
our basic uncontrived, statistically indifferent weight for the survivability estimates in
Section 4.5. However, we should also look at a slightly contrived formula to test
sensitivity, how much the final result deviates as a result of assumptions about
statistical weight. An obvious choice is to substitute the cube root:

Wigp(q) = o T;

mean: (¢)s,, = 1/3 =0.33 (L-4)
This appears as the dashed curve in Figure 23. The reduced mean ¢ makes this a more
hazardous case, which is appropriate to offset biases in the less hazardous direction.

# # #

Finally we must modify W (gq) for the survivability of civilization. Recall that the
two W, above have singularities at ¢ = 0 because there may be no artificial hazard
powerful enough to consummate complete extinction. However, to merely destroy
civilization, a disaster need not reach the most remote places. A man-made hazard
may suffice without nature’s assistance. By simply removing the singularity from
Equation L-3, we get the most obvious unbiased expressions:

3
Waa =3 VT =@ mean: (q)ag, = 2/5 = 0.40 (L-5)

4
Wiy = 3 V1-gq; mean: (¢);., = 3/7 = 0.43 (L-6)
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Extinction thwarted by civilization’s collapse

Equation 14 in the text gives Gott’s predictor for human survival since G = G,,, in our
approximation. Recall that M denotes accrued population-time since about 1530 AD.
Let us modify the notation to use fewer subscripts and make the future M, look more
like a variable of integration:

M

P, — M; My —m

Then Equation 14 becomes

M \Hwd
¢= (M + m) (M-1)

Depending on ¢ in the exponent, this applies either to civilization’s collapse G, or to
species’ extinction G,. For the moment let us pretend that ¢ is known. Later we can
take the actual uncertainty into account by averaging as in Equation 16.

We want to know how survival depends on future time, but Equation M-1 tells us
only how survival depends on future cum-risk m. To deduce m from time or vice
versa, we use projections of future population, economy, technology, and such. These
projections are more or less valid as long as things run smoothly. However, they
break down completely if and when we suffer a cataclysmic event, such as collapse of
its civilization. In the aftermath the world will be very safe owing to losses of popu-
lation, economic activity, and technology. That is, dm/dr =~ 0. However, the projec-
tions have made no allowance for this event, we must devise our own. For use with
projections let us define G; as the survivability that takes into account the probability
of civilization’s collapse; see Section 4.4, Figure 26.

To find G;, we start with the rate of species expiration, —dG,/dm, and reduce it by
the fraction of surviving species that are actually at risk, namely G./G,. The remain-
ing fraction has been rescued by the collapse that stops the threats. The adjusted
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expiration rate is
dG; G dG,
dm G, dm

(M-2)

First let us calculate the factor dG,/G, using Equation M-1 and the fact that this is the
derivative of its logarithm:

dG, —(14+w)q
To use Equation M-1 for G, it needs a new symbol p in its exponent to distinguish it
from G,:
M plw+l)
G, = M-4
= (3r5) (M-4)

Note that p > ¢ because civilization’s collapse cannot be slower than the species.
Without species there is nothing left to collapse.

Substitution of Equations M-3 and M-4 into M-2 gives an expression for the rate
of expiration dG,—/dm in terms of m, which one can integrate to find G, the desired
result. One evaluates the constant of integration by requiring G;(0) = 1.0. The result

is
q M p(1+w)
Gj:l_l_v{l_<M+m> (M-5)

Next, we must face the fact that we do not actually know p and ¢ and must
instead take a weighted average as in Equation 16. A vague probability density
W (p,q) expresses what little we do know. Apart from the restriction p > ¢, let us
multiply separate probabilities as though p and ¢ were independent. Let us therefore
multiply the two preferred probability density functions W, (¢) and W, (p) given
by Eqns. K-3 and K-5 in Appendix K but renormalize them for the restriction p > q.
The result is

45 |(1-p)(1—q)
W =< 32 q ’

0, otherwise

0<qg<p<«l (M-6)

The final result is the average of survivability G;, Equation M-5 using M-6:

1

G = [ | W.0)-Gp.q.m) dp g (M-7)
q<p JO
Putting m = oo in Equation M-5 gives the long-term asymptotic survival. The

result is
1

(Gy(o0)) = 1 — J ) jﬂ W, Ldp dg (M-8)

Curiously this is a single number, namely 70%, independent of both M and w.
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The initial expiration rate is especially important because it is about all we need

to know for the next twenty years. Equations M-2 and M-3 are handy because
G, =G, =1 and m = 0. The result is

dG,; 1
Initial hazard rate = — — _({+e) q (M-9)
m M

m=0



Appendix N

Initial hazard rates

To find the initial hazard rates for natural and artificial hazards, first rewrite
Equation 15 in the form

G=(F) (N-1)

q

where (...) denotes a weighted arithmetic mean, and F is given by
T 1—q M (w+1)g
r~(eir) " Govm) )
I, + 1 M, + My

InF=(1-¢)[InT,—In(T,+ T;)] + g(w+ 1)[In M, — In(M, + M;)] (N-3)

Next:

Let us introduce the prime notation for time derivatives, for example

X' =dx/dr,
then:
d F’ -1 1
e Tl (N-4
f rHap rt Mp

Since M = [ p dt, M} = p. Evaluate Equation N-4 at T; = 0 noting that F(0) = 1:

Py =10 (N-5)
V4 14

Finally, take the average of Equation N-5 as indicated in Equation N-1 to find the
initial hazard rate:
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The first term on the right pertains to natural hazards, the second to man-made.
They may be separated; in particular the first term is negligible, and the second term
is the expression reported in Section 4.6 in the main text, the initial hazard rate for
man-made threats.
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