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"The world around us moves in complicated and wonderful ways. We
spend the earlier parts of our lives learning about our environment
through perception and interaction. We expect the physical world around
us to behave consistently with our perceptual memory, e.g. if we drop a
rock it will fall due to gravity, if a gust of wind blows, lighter objects will
be tossed by the wind further. This class focuses on understanding,
simulating, and incorporating motion-based elements of our physical
world into the digital worlds that we create. Our hope is to create
intuitive, rich, and more satisfying experiences by drawing from the
perceptual memories of our users."

— James Tu Dynamic Bodies course description, Spring 2003, ITP
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A.1 A little bit of historyA.1 A little bit of history
In 2003, as a graduate student at the Interactive Telecommunications Program (ITP) in the
Tisch School of the Arts at New York University, I enrolled in a course called Dynamic
Bodies. The course was taught by interaction designer and ITP adjunct professor James Tu.
At the time, my work was focused on a series of software experiments that generated real-
time “non-photorealistic” imagery. The applications involved capturing images from a live
source and “painting” the colors with elements that moved about the screen according to
various rules. The Dynamic Bodies course—which covered vectors, forces, oscillations,
particle systems, recursion, steering, and springs—aligned perfectly with my work.

I had been using these concepts informally in my own projects, but had never taken the
time to closely examine the science behind the algorithms or learn object-oriented
techniques to formalize their implementation. That very semester, I also enrolled in
Foundations of Generative Art Systems, a course taught by Philip Galanter, that focused on
the theory and practice of generative art, covering topics such as chaos, cellular automata,
genetic algorithms, neural networks, and fractals. Both Tu’s course and Galanter’s course
opened my eyes to a world of simulation algorithms and techniques that carried me through
the next several years of work and teaching, and served as the foundation and inspiration
for this book.

But there’s another piece of the puzzle missing from this story.

Galanter’s course was mostly theory-based, while Tu’s was taught using Macromedia
Director and the Lingo programming language. That semester, I learned many of the
algorithms by translating them into C++ (the language I was using quite awkwardly at the
time, well before C++ creative coding environments like openFrameworks and Cinder had
arrived). Towards the end of the semester, I discovered something called Processing
(http://www.processing.org). Processing was in alpha then (version 0055) and, having had
some experience with Java, it intrigued me enough to ask the question: Could this open-
source, artist-friendly programming language and environment be the right place to develop
a suite of tutorials and examples about programming and simulation? With the support of
the ITP and Processing communities, I embarked on what has now been an almost eight-
year journey of teaching a variety of programming concepts and their applications using
Processing.

I’d like to first thank Red Burns, ITP’s founder, who has supported and encouraged me in my
work for over ten years. Dan O’Sullivan, the chair of ITP, has been my teaching mentor and
was the first to suggest that I try teaching a course on Processing, giving me a reason to
start assembling programming tutorials in the first place. Shawn Van Every, developer
extraordinaire and author of Pro Android Media, has also been a rich source of help and
inspiration at ITP over the years. ITP faculty members Clay Shirky, Danny Rozin, Katherine
Dillon, Marianne Petit, Marina Zurkow, and Tom Igoe have provided a great deal of support
and feedback throughout the writing of this book. The rest of the faculty and staff at ITP
have also made this possible: Brian Kim, Edward Gordon, George Agudow, John Duane,
Marlon Evans, Matt Berger, Megan Demarest, Midori Yasuda, and Rob Ryan.
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The students of ITP, too numerous to mention, have been an amazing source of feedback
throughout this process. Much of the material in this book comes from my course of the same
title, which I’ve now taught for five years. I have stacks of draft printouts of the book with
notes scrawled along the margins as well as a vast archive of student emails with corrections,
comments, and generous words of encouragement.

I am also indebted to the energetic and supportive community of Processing programmers
and artists. I wouldn’t be writing this book if it weren’t for Casey Reas and Ben Fry, who
created Processing. I’ve learned half of what I know simply from reading through the
Processing source code; the elegant simplicity of the Processing language, website, and IDE
has made programming accessible and fun for all of my students. I’ve received advice and
inspiration from many Processing programmers including Andrés Colubri, Jer Thorp, Marius
Watz, Karsten Schmidt, Robert Hodgin, Seb-Lee Delisle, and Ira Greenberg. Heather Dewey-
Hagborg provided a great deal of excellent feedback on Chapter 10 (Neural Networks). Scott
Murray provided some really helpful advice about inline SVGs over e-mail. Many of the titles in
the Further Reading section were suggested by Golan Levin.

I am indebted to Shannon Fry, who edited this book every step of the way. The knowledge
that I would always have her careful and thoughtful feedback on my writing allowed me to
plow ahead, aware that everything would come out sounding better after she got her hands
on my chapters.

A special mention goes to Zannah Marsh who worked tirelessly to create over a hundred
illustrations for this book, developing a friendly and informal look. I especially want to thank
her for her patience and willingness to go with the flow as we changed the illustration
requirements several times. I also want to thank David Wilson, who came to my rescue at the
last minute and designed the interior layout and cover for the book. I am particularly grateful
to Steve Klise, who designed and built the book’s web site, helping me to develop a "pay what
you want" model for the digital PDF.

As I’ll explain a bit more in the preface, this book was generated with a new open-source
system for publishing called “The Magic Book.” A crack team of ITP programmers, designers,
and artists worked over the course of more than a year to develop this system, which
generates a book in a variety of formats (PDF, HTML, and more) from one single ASCIIDOC
file, all designed with CSS layout. Rune Madsen began the project and developed the original
Ruby / Sinatra framework. I am pretty sure I’d be struggling with putting the pieces of the book
together well into 2013 if it wasn’t for Rune’s dedication to seeing the project through to the
end. Steve Klise contributed countless bug fixes and engineered the system that allows us to
restyle code comments to the side of the code blocks themselves. Miguel Bermudez, Evan
Emolo, and Luisa Pereira Hors contributed in many ways, learning the ins and outs of
ASCIIDOC as well as CSS Paged Media. ITP researcher Greg Borenstein provided a
tremendous amount of advice and support along the way regarding the areas of publishing for
the web and print. Prince (http://princexml) is the engine the Magic Book uses to generate a
PDF from an HTML document and I’d like to thank Michael Day, CEO of PrinceXML, who was
answered many of our questions (at lightning speed) along the way.
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Finally I’d like to thank my family: my wife, Aliki Caloyeras, who supported this project
throughout while having her own giant tome to write, and my children, Elias and Olympia,
motivation for finishing this up so that I could spend more time hanging out with them. I’d
also like to thank my father, Bernard Shiffman, who generously lent his mathematical
expertise and provided feedback along the way, as well as my mother, Doris Yaffe Shiffman,
and brother, Jonathan Shiffman, who were always tremendously supportive in asking the
question: “How is the book coming along?”

A.2 KickstarterA.2 Kickstarter
There is another organization and community that has made this book possible: Kickstarter.

In 2008, I completed work on my first book, Learning Processing, published by Morgan
Kaufmann/Elsevier. Learning Processing took almost three years to finish. I didn’t take a lot
of care in choosing a publisher or thinking about the terms. I just thought — “Really? You
want to publish a book by me? OK, I’ll do it.” Unfortunately, my experience was not entirely
positive. I had five different editors assigned to me throughout the process, and I received
little to no feedback on the content itself. The publisher outsourced the typesetting, which
resulted in a great deal of mistakes and inconsistencies in production. In addition, I found
the pricing of the book to be off the mark. My goal was to write a friendly, inexpensive
(black and white), paperback introduction to programming in Processing, and the book
ended up retailing for a "textbook" price of $50.

Now, I want to emphasize that my publisher had good intentions. They honestly wanted to
produce the best book possible, one that I would be happy with, that they would be happy
with, and that readers would enjoy. And they worked hard to make this happen.
Unfortunately, they had to work within a very tight budget, and as a result were stretched
extremely thin. In addition, I don’t think they were terribly familiar with the world of open-
source “creative” coding environments like Processing; their world is computer science
textbooks.

As a result, for this Nature of Code book, I felt it was important to try self-publishing. Since I
didn’t get editing support from the publisher, why not hire an editor? I wasn’t happy with the
pricing, so why not set the price myself (or, in the case of the PDF, let the buyer set the
price)? Then there’s the question of marketing — does a publisher add value and help you
reach an audience? In some cases, the answer is yes. The O’Reilly “Make” series, for
example, does a wonderful job of creating a community around their books and products.
Still, in the case of learning to program in Processing, reaching the audience is as simple as
one URL — processing.org.

Unfortunately, I quickly discovered that there is one thing a publisher offers that I was not
getting from my self-publishing path. One very important, highly crucial detail — a deadline.
On my own, I floundered for two years, saying I was going to write the Nature of Code book
but only drafting a little bit here and there. On my list of things I needed to do, it was always
at the bottom. Then along came Kickstarter, and with an audience sitting and waiting (and
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having spent cash money), I lived in fear of not meeting my deadline. And the fact that you are
reading this now is an indication that it worked.

Most importantly, self-publishing the book has allowed me a great deal of flexibility in how I
price and distribute the content. On Elsevier’s web site, you can purchase Learning
Processing as an e-book for $53.95. That’s right, fifty-three dollars and ninety-five cents.
Incidentally, for each e-book sold I get a royalty of 5%, which is $2.70. That’s right, two dollars
and seventy cents. If I self-publish, I can make the book massively cheaper. Selling a digital
copy for $10, I’m reducing the cost to the reader by over eighty percent and tripling the money
paid to me. I’m taking this even further with the PDF and allowing buyers to set the price
themselves.

In addition, by owning all the content, I am able to release the entire book online for free as
well as experiment with new digital formats. The raw text of the book, as well as all the code
and illustrations, is licensed under a Creative Commons Attribution-NonCommercial license
and is available on Github, where readers can submit issues (not to mention pull requests!)
with corrections and comments. Finally, by using more flexible print-on-demand services, I can
more easily make changes and keep the book current, releasing new editions as often as I
like. (A one-time purchase of a digital copy of the book includes lifetime upgrades for free.)

So thank you to Kickstarter, both the company (especially Fred Benenson, who convinced me
to take the plunge in the first place and advised me on how to license the book) as well as all
the backers who took a chance on this book. Some of these backers, through generosity
beyond the call of duty, earned an extra thank-you as part of their reward:

• Alexandre B.

• Robert Hodgin

• JooYoun Paek

• Angela McNamee (Boyhan)

• Bob Ippolito

All of the backers directly contributed to the finishing of this book. Just the sheer act of
signing up to contribute money for draft and final versions lit a fire in me to finish, not to
mention provided me with the resources to pay for design and editing work (and some
babysitting during Saturday morning writing sessions).

In addition to contributing funds, Kickstarter backers read pre-release versions of the chapters
and provided tons of feedback, catching many errors and pointing out confusing sections of
the book. Two such readers that I’d like to thank are Frederik Vanhoutte and Hans de Wolf,
whose expert knowledge of Newtonian physics was enormously helpful in the revising of
Chapters 2 and 3.
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PrefacePreface
P.1 What is this book?P.1 What is this book?
At ITP (http://itp.nyu.edu), I teach a course entitled Introduction to Computational Media. In
this course, the students learn the basics of programming (variables, conditionals, loops,
objects, arrays) as well as a survey of applications related to making interactive projects
(images, pixels, computer vision, networking, data, 3D). The course mostly follows the
material found in my intro book Learning Processing; in many ways, The Nature of Code
serves as a follow-up. Once you’ve learned the basics and seen an array of applications,
your next step might be to delve deeply into a particular area. For example, you could focus
on computer vision (and read a book like Greg Borenstein’s Making Things See). In the most
basic sense, this book is one possible next step in a world of many. It picks up exactly
where Learning Processing leaves off, demonstrating more advanced programming
techniques with Processing that focus on algorithms and simulation.

The goal of this book is simple. We want to take a look at something that naturally occurs in
our physical world, then determine how we can write code to simulate that occurrence.

So then what is this book exactly? Is it a science book? The answer is a resounding no.
True, we might examine topics that come from physics or biology, but it won’t be our job to
investigate these topics with a particularly high level of academic rigor. Instead, we’re going
to glance at scientific concepts and grab the parts that we need in the service of building a
particular software example.

Is this an art or design book? I would also say no; after all, we are going to focus on
algorithms and their affiliated programming techniques. Sure, the results will all be visual in
nature (manifested as animated Processing sketches), but they will exist more as
demonstrations of the algorithms and programming techniques themselves, drawn only with
simple shapes and grayscale. It is my hope, however, that designers and artists can
incorporate all of the material here into their practice to make new, engaging work.
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In the end, if this book is anything, it is really just a good old-fashioned programming book.
While a scientific topic may seed a chapter (Newtonian physics, cellular growth, evolution) or
the results might inspire an artistic project, the content itself will always boil down to the code
implementation, with a particular focus on object-oriented programming.

P.2 A word about ProcessingP.2 A word about Processing
I am using Processing in this book for a number of reasons. For one, it’s the language and
environment with which I am most comfortable, and it’s what I enjoy using for my personal
work. Two, it’s free, open-source, and well suited to beginners. There is an active, energetic
community of people who program with Processing; for many, it’s the first programming
language they’ve learned. In this sense, I hope that I can reach a wide audience and
demonstrate the concepts in a friendly manner by using Processing.

All that said, there is nothing that ties what we are doing in this book strictly to Processing.
This book could have been written using ActionScript, JavaScript, Java (without Processing),
or any number of other open-source “creative coding” environments like openFrameworks,
Cinder, or the newly released pocode. It is my hope that after I’ve completed this book, I’ll be
able to release versions of the examples that run in other environments. If anyone is
interested in helping to port the examples, please feel free to contact me
(daniel@shiffman.net).

All of the examples in this book have been tested with Processing 2.0b6, but for the most
part, they should also work with earlier versions of Processing. I’ll be keeping them up-to-date
with whatever the latest version is. The most recent code can always be found on GitHub
(http://github.com/shiffman/The-Nature-of-Code-Examples).

P.3 What do you need to know?P.3 What do you need to know?
The prerequisite for understanding the material in this book could be stated as: “one semester
of programming instruction with Processing (including familiarity with object-oriented
programming).” That said, there’s no reason why you couldn’t read this book having learned
programming using a different language or development environment. The key here is that
you have experience with programming.

If you’ve never written any code before, you are going to struggle, because this book
assumes knowledge of all the basics. I would suggest picking up an introductory book on
Processing, a number of which are listed on the Processing website (http://processing.org/
learning/books/).

If you are an experienced programmer, but haven’t worked with Processing, you can probably
pick it up by downloading Processing (http://processing.org/download/), poking through the
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examples, and reading through the Getting Started (http://processing.org/learning/
gettingstarted/) page.

I should also point out that experience with object-oriented programming is crucial. We’ll
review some of the basics in the book’s introduction, but I would suggest reading the
Processing tutorial on objects (http://processing.org/learning/objects) first.

P.4 What are you using to read this book?P.4 What are you using to read this book?
Are you reading this book on a Kindle? Printed paper? On your laptop in PDF form? On a
tablet showing an animated HTML5 version? Are you strapped to a chair, absorbing the
content directly into your brain via a series of electrodes, tubes, and cartridges?

The book you are reading right now was generated with the Magic Book project
(http://www.magicbookproject.com). The Magic Book is an open-source framework for self-
publishing developed at ITP (http://itp.nyu.edu). The idea here is that you only need to write
the book once as a simple text file. Once you’ve written your content, you press a magic
button, and out comes your book in a variety of formats—PDF, HTML5, printed hardcopy,
Kindle, etc. Everything is designed and styled using CSS. As of the first release, the only
versions available will be digital PDF, printed hardcopy, and HTML5 (which will include
animated versions of the examples using Processing.js). Hopefully over the course of the
next year, the book will be available in additional formats. If you’d like to help with this,
please contact me (daniel@shiffman.net).

P.5 The “story” of this bookP.5 The “story” of this book
If you glance over the book’s table of contents, you’ll notice there are ten chapters, each
one covering a different topic. And in one sense, this book is just that—a survey of ten
concepts and associated code examples. Nevertheless, in putting together the material, I
had always imagined something of a linear narrative. Before you begin reading the
chapters, I’d like to walk you through this story. I think it’s important to first have a sense of
the overall journey.
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Part I: Inanimate Objects.Part I: Inanimate Objects.

A soccer ball lies in the grass. A kick launches it into the air. Gravity pulls it back down. A
heavy gust of wind keeps it afloat a moment longer until it falls and bounces off the head of a
jumping player. The soccer ball is not alive; it makes no choices as to how it will move
throughout the world. Rather, it is an inanimate object waiting to be pushed and pulled by the
forces of its environment.

How would we model a soccer ball moving in Processing? If you’ve ever programmed a circle
moving across a window, then you’ve probably written the following line of code.

You draw some shape at location x. With each frame of animation, you increment the value of
x, redraw the shape and voila—the illusion of motion! Maybe you took it a step or two further,
and included a y location, as well as variables for speed along the x and y axes.

Part I of this story will take us one step further. We’re going to take these variables xspeed
and yspeed and learn how together they form a vector (Chapter 1Chapter 1), the building block of
motion. We won’t get any new functionality out of this, but it will build a solid foundation for
the rest of the book.

Once we know a little something about vectors, we’re going to quickly realize that a force
(Chapter 2Chapter 2) is a vector. Kick a soccer ball and you are applying a force. What does a force
cause an object to do? According to Isaac Newton, force equals mass times acceleration. That
force causes an object to accelerate. Modeling forces will allow us to create systems with
dynamic motion where objects move according to a variety of rules.

Now, that soccer ball to which you applied a force might have also been spinning. If an object
moves according to its acceleration, it can spin according to its angular acceleration (ChapterChapter
33). Understanding the basics of angles and trigonometry will allow us to model rotating
objects as well as grasp the principles behind oscillating motion, like a pendulum swinging or
a spring bouncing.

Once we’ve tackled the basics of motion and forces for an individual inanimate object, we’ll
learn how to make thousands upon thousands of those objects and manage them in a single
system called a particle system (Chapter 4Chapter 4). Particle systems will allow us to look at some
advanced features of object-oriented programming, namely inheritance and polymorphism.

In Chapters 1 through 4, all of the examples will be written from “scratch”—meaning the code
for the algorithms driving the motion of the objects will be written directly in Processing. We’re
certainly not the first programmers ever to consider the idea of simulating physics in
animation, so next we’ll examine how physics libraries (Chapter 5Chapter 5) can be used to model more

x = x + 1;

x = x + xspeed;
y = y + yspeed;
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advanced and sophisticated behaviors. We’ll look at Box2D (http://www.box2d.org) and
toxiclibs' Verlet Physics package (http://toxiclibs.org/).

Part II: It’s alive!Part II: It’s alive!

What does it mean to model life? Not an easy question to answer, but we can begin by
building objects that have an ability to perceive their environment. Let’s think about this for
a moment. A block that falls off a table moves according to forces, as does a dolphin
swimming through the water. But there is a key difference. The block cannot decide to leap
off that table. The dolphin can decide to leap out of the water. The dolphin can have dreams
and desires. It can feel hunger or fear, and those feelings can inform its movements. By
examining techniques behind modeling autonomous agents (Chapter 6Chapter 6), we will breathe life
into our inanimate objects, allowing them to make decisions about their movements
according to their understanding of their environment.

Through combining the concept of autonomous agents with what we learned about
modeling systems in Chapter 4, we’ll look at models of group behavior that exhibit the
properties of complexity. A complex system is typically defined as a system that is “more
than the sum of its parts.” While the individual elements of the system may be incredibly
simple and easily understood, the behavior of the system as a whole can be highly complex,
intelligent, and difficult to predict. This will lead us away from thinking purely about
modeling motion and into the realm of rule-based systems. What can we model with cellular
automata (Chapter 7Chapter 7), a system of cells living on a grid? What types of patterns can we
generate with fractals (Chapter 8Chapter 8), the geometry of nature?

Part III: IntelligencePart III: Intelligence

We made things move. Then we gave those things hopes and dreams and fears, along with
rules to live by. The last step in this book will be to make our creations even smarter. Can
we apply the biological process of evolution to computational systems (Chapter 9Chapter 9) in order
to evolve our objects? Taking inspiration from the human brain, can we program an artificial
neural network (Chapter 10Chapter 10) that can learn from its mistakes and allow our objects to adapt
to their environment?

Week 1Week 1 Introduction and Vectors (Chapter 1)

Week 2Week 2 Forces (Chapter 2)

P.6 This book as a syllabusP.6 This book as a syllabus
While the content in this book certainly makes for an intense and highly compressed
semester, I have designed it to fit into a fourteen-week course. Nevertheless, it’s worth
mentioning that I find that the book chapters sometimes work better expanded across
multiple weeks. For example, the syllabus for my course generally works out as follows:
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Week 3Week 3 Oscillations (Chapter 3)

Week 4Week 4 Particle Systems (Chapter 4)

Week 5Week 5 Physics Libraries Part I (Chapter 5)

Week 6Week 6 Physics Libraries Part II & Steering (Chapters 5-6)

Week 7Week 7 Present midterm projects about motion

Week 8Week 8 Complex Systems: Flocking and 1D Cellular Automata (Chapters 6-7)

Week 9Week 9 Complex Systems: 2D Cellular Automata and Fractals (Chapters 7-8)

Week 10Week 10 Genetic Algorithms (Chapter 9)

Week 11Week 11 Neural Networks (Chapter 10)

Weeks 12-13Weeks 12-13 Final project workshop

Week 14Week 14 Final project presentation

If you are considering using this text for a course or workshop, please feel free to contact me.
I hope to eventually release a companion set of videos and slide presentations as
supplementary educational materials.

P.7 The Ecosystem ProjectP.7 The Ecosystem Project
As much as I’d like to pretend you could learn everything by curling up in a comfy chair and
reading some prose about programming, to learn programming, you’re really going to have to
do some programming. You might find it helpful to keep in mind a project idea (or two) to
develop as a set of exercises while going from chapter to chapter. In fact, when teaching the
Nature of Code course at ITP, I have often found that students enjoy building a single project,
step by step, week by week, over the course of a semester.

At the end of each chapter, you’ll find a series of exercises for one such project—exercises
that build on each other, one topic at a time. Consider the following scenario. You’ve been
asked by a science museum to develop the software for a new exhibit—The Digital Ecosystem,
a world of animated, procedural creatures that live on a projection screen for visitors to enjoy
as they enter the museum. I don’t mean to suggest that this is a particularly innovative or
creative concept. Rather, we’ll use this example project idea as a literal representation of the
content in the book, demonstrating how the elements fit together in a single software project.
I encourage you to develop your own idea, one that is more abstract and creative in its
thinking.

P.8 Where do I find the code online and submitP.8 Where do I find the code online and submit
feedback?feedback?
For all things book-related, please visit the Nature of Code website
(http://www.natureofcode.com). The raw source text of the book and all of the illustrations are
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on GitHub (http://github.com/shiffman/The-Nature-of-Code). Please leave feedback and
submit corrections using GitHub issues.

The source code for all of the examples (and exercises) is also available on GitHub
(http://github.com/shiffman/The-Nature-of-Code-Examples). The chapters themselves
include code snippets in-line with the text. However, I want to mention that in many cases, I
have shortened or simplified the code snippets in order to illustrate a specific point. In all
cases, the full code with comments can be found via GitHub.

If you have questions about the code itself, I would suggest posting them on the Processing
forum (http://forum.processing.org).
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IntroductionIntroduction
“I am two with nature.”

— Woody Allen

Here we are: the beginning. Well, almost the beginning. If it’s been a while since you’ve done
any programming in Processing (or any math, for that matter), this introduction will get your
mind back into computational thinking before we approach some of the more difficult and
complex material.

In Chapter 1, we’re going to talk about the concept of a vector and how it will serve as the
building block for simulating motion throughout this book. But before we take that step, let’s
think about what it means for something to simply move around the screen. Let’s begin with
one of the best-known and simplest simulations of motion—the random walk.

I.1 Random WalksI.1 Random Walks
Imagine you are standing in the middle of a balance beam. Every ten seconds, you flip a coin.
Heads, take a step forward. Tails, take a step backward. This is a random walk—a path defined
as a series of random steps. Stepping off that balance beam and onto the floor, you could
perform a random walk in two dimensions by flipping that same coin twice with the following
results:
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Flip 1Flip 1 Flip 2Flip 2 ResultResult

Heads Heads Step forward.

Heads Tails Step right.

Tails Heads Step left.

Tails Tails Step backward.

Yes, this may seem like a particularly unsophisticated algorithm. Nevertheless, random
walks can be used to model phenomena that occur in the real world, from the movements of
molecules in a gas to the behavior of a gambler spending a day at the casino. As for us, we
begin this book studying a random walk with three goals in mind.

1. We need to review a programming concept central to this book—object-oriented
programming. The random walker will serve as a template for how we will use
object-oriented design to make things that move around a Processing window.

2. The random walk instigates the two questions that we will ask over and over again
throughout this book: “How do we define the rules that govern the behavior of our
objects?” and then, “How do we implement these rules in Processing?”

3. Throughout the book, we’ll periodically need a basic understanding of
randomness, probability, and Perlin noise. The random walk will allow us to
demonstrate a few key points that will come in handy later.

I.2 The Random Walker ClassI.2 The Random Walker Class

Let’s review a bit of object-oriented programming (OOP) first by building a Walker object.
This will be only a cursory review. If you have never worked with OOP before, you may want
something more comprehensive; I’d suggest stopping here and reviewing the basics on the
Processing website (http://processing.org/learning/objects/) before continuing.

An objectobject in Processing is an entity that has both data and functionality. We are looking to
design a Walker object that both keeps track of its data (where it exists on the screen) and
has the capability to perform certain actions (such as draw itself or take a step).

A classclass is the template for building actual instances of objects. Think of a class as the
cookie cutter; the objects are the cookies themselves.

Let’s begin by defining the Walker class—what it means to be a Walker object. The Walker
only needs two pieces of data—a number for its x-location and one for its y-location.

class Walker {
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Every class must have a constructor, a special function that is called when the object is first
created. You can think of it as the object’s setup(). There, we’ll initialize the Walker’s starting
location (in this case, the center of the window).

Finally, in addition to data, classes can be defined with functionality. In this example, a Walker
has two functions. We first write a function that allows the object to display itself (as a white
dot).

The second function directs the Walker object to take a step. Now, this is where things get a
bit more interesting. Remember that floor on which we were taking random steps? Well, now
we can use a Processing window in that same capacity. There are four possible steps. A step
to the right can be simulated by incrementing x (x++); to the left by decrementing x (x--);
forward by going down a pixel (y++); and backward by going up a pixel (y--). How do we pick
from these four choices? Earlier we stated that we could flip two coins. In Processing,
however, when we want to randomly choose from a list of options, we can pick a random
number using random().

The above line of code picks a random floating point number between 0 and 4 and converts it
to an integer, with a result of 0, 1, 2, or 3. Technically speaking, the highest number will never
be 4.0, but rather 3.999999999 (with as many 9s as there are decimal places); since the
process of converting to an integer lops off the decimal place, the highest int we can get is 3.
Next, we take the appropriate step (left, right, up, or down) depending on which random
number was picked.

Objects have data.int x;
int y;

Objects have a constructor where they are
initialized.

Walker() {
x = width/2;
y = height/2;

}

Objects have functions.void display() {
stroke(0);
point(x,y);

}

void step() {

0, 1, 2, or 3int choice = int(random(4));
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Now that we’ve written the class, it’s time to make an actual Walker object in the main part
of our sketch—setup() and draw(). Assuming we are looking to model a single random
walk, we declare one global variable of type Walker.

Then we create the object in setup() by calling the constructor with the new operator.

Example I.1: Traditional random walk

Each time you see the above Example heading in this book, it means there is a
corresponding code example available on GitHub (http://github.com/shiffman/The-Nature-
of-Code-Examples).

Finally, during each cycle through draw(), we ask the Walker to take a step and draw a dot.

Since we only draw the background once in setup(), rather than clearing it continually
each time through draw(), we see the trail of the random walk in our Processing window.

The random “choice” determines our step.if (choice == 0) {
x++;

} else if (choice == 1) {
x--;

} else if (choice == 2) {
y++;

} else {
y--;

}

}
}

A Walker objectWalker w;

void setup() {
size(640,360);

Create the Walker.w = new Walker();

background(255);
}

void draw() {

Call functions on the Walker.w.step();
w.display();

}
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There are a couple improvements we could make to the random walker. For one, this
Walker’s step choices are limited to four options—up, down, left, and right. But any given pixel
in the window has eight possible neighbors, and a ninth possibility is to stay in the same
place.

To implement a Walker object that can step to any neighboring pixel (or stay put), we could
pick a number between 0 and 8 (nine possible choices). However, a more efficient way to
write the code would be to simply pick from three possible steps along the x-axis (-1, 0, or 1)
and three possible steps along the y-axis.

Taking this further, we could use floating point numbers (i.e. decimal numbers) for x and y
instead and move according to an arbitrary random value between -1 and 1.

Figure I.1

void step() {

Yields -1, 0, or 1int stepx = int(random(3))-1;
int stepy = int(random(3))-1;

x += stepx;
y += stepy;

}

void step() {

Yields any floating point number between
-1.0 and 1.0

float stepx = random(-1, 1);
float stepy = random(-1, 1);
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All of these variations on the “traditional” random walk have one thing in common: at any
moment in time, the probability that the Walker will take a step in a given direction is equal
to the probability that the Walker will take a step in any direction. In other words, if there
are four possible steps, there is a 1 in 4 (or 25%) chance the Walker will take any given step.
With nine possible steps, it’s a 1 in 9 (or 11.1%) chance.

Conveniently, this is how the random() function works. Processing’s random number
generator (which operates behind the scenes) produces what is known as a “uniform”
distribution of numbers. We can test this distribution with a Processing sketch that counts
each time a random number is picked and graphs it as the height of a rectangle.

Example I.2: Random number distribution

x += stepx;
y += stepy;

}

An array to keep track of how often random
numbers are picked

int[] randomCounts;

void setup() {
size(640,240);
randomCounts = new int[20];

}

void draw() {
background(255);

Pick a random number and increase the
count.

int index = int(random(randomCounts.length));

randomCounts[index]++;

stroke(0);
fill(175);
int w = width/randomCounts.length;
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The above screenshot shows the result of the sketch running for a few minutes. Notice how
each bar of the graph differs in height. Our sample size (i.e. the number of random numbers
we’ve picked) is rather small and there are some occasional discrepancies, where certain
numbers are picked more often. Over time, with a good random number generator, this would
even out.

Pseudo-Random NumbersPseudo-Random Numbers

The random numbers we get from the random() function are not truly random;
therefore they are known as “pseudo-random.” They are the result of a mathematical
function that simulates randomness. This function would yield a pattern over time, but
that time period is so long that for us, it’s just as good as pure randomness!

Graphing the resultsfor (int x = 0; x < randomCounts.length; x++) {
rect(x*w,height-randomCounts[x],w-1,randomCounts[x]);

}

}

Create a random walker that has a tendency to move down and to the right. (We’ll see
the solution to this in the next section.)

Exercise I.1Exercise I.1

I.3 Probability and Non-Uniform DistributionsI.3 Probability and Non-Uniform Distributions
Remember when you first started programming in Processing? Perhaps you wanted to draw a
lot of circles on the screen. So you said to yourself: “Oh, I know. I’ll draw all these circles at
random locations, with random sizes and random colors.” In a computer graphics system, it’s
often easiest to seed a system with randomness. In this book, however, we’re looking to build
systems modeled on what we see in nature. Defaulting to randomness is not a particularly
thoughtful solution to a design problem—in particular, the kind of problem that involves
creating an organic or natural-looking simulation.

With a few tricks, we can change the way we use random() to produce “non-uniform”
distributions of random numbers. This will come in handy throughout the book as we look at a
number of different scenarios. When we examine genetic algorithms, for example, we’ll need a
methodology for performing “selection”—which members of our population should be
selected to pass their DNA to the next generation? Remember the concept of survival of the
fittest? Let’s say we have a population of monkeys evolving. Not every monkey will have a
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equal chance of reproducing. To simulate Darwinian evolution, we can’t simply pick two
random monkeys to be parents. We need the more “fit” ones to be more likely to be chosen.
We need to define the “probability of the fittest.” For example, a particularly fast and strong
monkey might have a 90% chance of procreating, while a weaker one has only a 10%
chance.

Let’s pause here and take a look at probability’s basic principles. First we’ll examine single
event probability, i.e. the likelihood that a given event will occur.

If you have a system with a certain number of possible outcomes, the probability of the
occurrence of a given event equals the number of outcomes that qualify as that event
divided by the total number of all possible outcomes. A coin toss is a simple example—it has
only two possible outcomes, heads or tails. There is only one way to flip heads. The
probability that the coin will turn up heads, therefore, is one divided by two: 1/2 or 50%.

Take a deck of fifty-two cards. The probability of drawing an ace from that deck is:

number of aces / number of cards = 4 / 52 = 0.077 = ~ 8%

The probability of drawing a diamond is:

number of diamonds / number of cards = 13 / 52 = 0.25 = 25%

We can also calculate the probability of multiple events occurring in sequence. To do this,
we simply multiply the individual probabilities of each event.

The probability of a coin turning up heads three times in a row is:

(1/2) * (1/2) * (1/2) = 1/8 (or 0.125)

…meaning that a coin will turn up heads three times in a row one out of eight times (each
“time” being three tosses).

There are a couple of ways in which we can use the random() function with probability in
code. One technique is to fill an array with a selection of numbers—some of which are
repeated—then choose random numbers from that array and generate events based on
those choices.

What is the probability of drawing two aces in a row from a deck of fifty-two cards?

Exercise I.2Exercise I.2

int[] stuff = new int[5]

1 is stored in the array twice, making it
more likely to be picked.

stuff[0] = 1;
stuff[1] = 1;

Introduction

8



Running this code will produce a 40% chance of printing the value 1, a 20% chance of printing
2, and a 40% chance of printing 3.

We can also ask for a random number (let’s make it simple and just consider random floating
point values between 0 and 1) and allow an event to occur only if our random number is within
a certain range. For example:

This method can also be applied to multiple outcomes. Let’s say that Outcome A has a 60%
chance of happening, Outcome B, a 10% chance, and Outcome C, a 30% chance. We
implement this in code by picking a random float and seeing into what range it falls.

• between 0.00 and 0.60 (60%) –> Outcome A

• between 0.60 and 0.70 (10%) –> Outcome B

• between 0.70 and 1.00 (30%) –> Outcome C

We could use the above methodology to create a random walker that tends to move to the
right. Here is an example of a Walker with the following probabilities:

• chance of moving up: 20%

stuff[2] = 2;
stuff[3] = 3;
stuff[4] = 3;

Picking a random element from an arrayint index = int(random(stuff.length));

A probability of 10%float prob = 0.10;

A random floating point value between 0
and 1

float r = random(1);

If our random number is less than 0.1, try
again!

if (r < prob) {
// try again!

}

float num = random(1);

If random number is less than 0.6if (num < 0.6) {

println("Outcome A");

Between 0.6 and 0.7} else if (num < 0.7) {

println("Outcome B");

Greater than 0.7} else {

println("Outcome C");
}
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9



• chance of moving down: 20%

• chance of moving left: 20%

• chance of moving right: 40%

Example I.3: Walker that tends to move to the right

void step() {

float r = random(1);

A 40% chance of moving to the right!if (r < 0.4) {
x++;

} else if (r < 0.6) {
x--;

} else if (r < 0.8) {
y++;

} else {
y--;

}
}

Create a random walker with dynamic probabilities. For example, can you give it a
50% chance of moving in the direction of the mouse?

Exercise I.3Exercise I.3
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I.4 A Normal Distribution of Random NumbersI.4 A Normal Distribution of Random Numbers
Let’s go back to that population of simulated Processing monkeys. Your program generates a
thousand Monkey objects, each with a height value between 200 and 300 (as this is a world
of monkeys that have heights between 200 and 300 pixels).

Does this accurately depict the heights of real-world beings? Think of a crowded sidewalk in
New York City. Pick any person off the street and it may appear that their height is random.
Nevertheless, it’s not the kind of random that random() produces. People’s heights are not
uniformly distributed; there are a great deal more people of average height than there are
very tall or very short ones. To simulate nature, we may want it to be more likely that our
monkeys are of average height (250 pixels), yet still allow them to be, on occasion, very short
or very tall.

A distribution of values that cluster around an average (referred to as the “mean”) is known as
a “normal” distribution. It is also called the Gaussian distribution (named for mathematician
Carl Friedrich Gauss) or, if you are French, the Laplacian distribution (named for Pierre-Simon
Laplace). Both mathematicians were working concurrently in the early nineteenth century on
defining such a distribution.

When you graph the distribution, you get something that looks like the following, informally
known as a bell curve:

The curve is generated by a mathematical function that defines the probability of any given
value occurring as a function of the mean (often written as μ, the Greek letter mu) and
standard deviation (σ, the Greek letter sigma).

The mean is pretty easy to understand. In the case of our height values between 200 and
300, you probably have an intuitive sense of the mean (i.e. average) as 250. However, what if
I were to say that the standard deviation is 3 or 15? What does this mean for the numbers? The

float h = random(200,300);

Figure I.2 Figure I.3
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graphs above should give us a hint. The graph on the left shows us the distribution with a
very low standard deviation, where the majority of the values cluster closely around the
mean. The graph on the right shows us a higher standard deviation, where the values are
more evenly spread out from the average.

The numbers work out as follows: Given a population, 68% of the members of that
population will have values in the range of one standard deviation from the mean, 98%
within two standard deviations, and 99.7% within three standard deviations. Given a
standard deviation of 5 pixels, only 0.3% of the monkey heights will be less than 235 pixels
(three standard deviations below the mean of 250) or greater than 265 pixels (three
standard deviations above the mean of 250).

Calculating Mean and Standard DeviationCalculating Mean and Standard Deviation

Consider a class of ten students who receive the following scores (out of 100) on a
test:

85, 82, 88, 86, 85, 93, 98, 40, 73, 83

The mean is the average: 81.3The mean is the average: 81.3

The standard deviation is calculated as the square root of the average of the squares
of deviations around the mean. In other words, take the difference from the mean for
each person and square it (variance). Calculate the average of all these values and
take the square root as the standard deviation.

ScoreScore Difference from MeanDifference from Mean VarianceVariance

85 85-81.3 = 3.7 (3.7)2 = 13.69

40 40-81.3 = -41.3 (-41.3)2 = 1705.69

etc.

Average Variance:Average Variance: 254.23254.23

The standard deviation is the square root of the average variance: 15.13The standard deviation is the square root of the average variance: 15.13

Luckily for us, to use a normal distribution of random numbers in a Processing sketch, we
don’t have to do any of these calculations ourselves. Instead, we can make use of a class
known as Random, which we get for free as part of the default Java libraries imported into
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Processing (see the JavaDocs (http://docs.oracle.com/javase/6/docs/api/java/util/
Random.html) for more information).

To use the Random class, we must first declare a variable of type Random and create the
Random object in setup().

If we want to produce a random number with a normal (or Gaussian) distribution each time we
run through draw(), it’s as easy as calling the function nextGaussian().

Here’s the thing. What are we supposed to do with this value? What if we wanted to use it, for
example, to assign the x-position of a shape we draw on screen?

The nextGaussian() function returns a normal distribution of random numbers with the
following parameters: a mean of zero and a standard deviation of one. Let’s say we want a
mean of 320 (the center horizontal pixel in a window of width 640) and a standard deviation of
60 pixels. We can adjust the value to our parameters by multiplying it by the standard
deviation and adding the mean.

Example I.4: Gaussian distribution

We use the variable name “generator”
because what we have here can be thought
of as a random number generator.

Random generator;

void setup() {
size(640,360);
generator = new Random();

}

void draw() {

Asking for a Gaussian random number.
(Note nextGaussian() returns a double and
must be converted to float.)

float num = (float) generator.nextGaussian();

}

void draw() {
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By drawing the ellipses on top of each other with some transparency, we can actually see
the distribution. The brightest spot is near the center, where most of the values cluster, but
every so often circles are drawn farther to the right or left of the center.

Note that nextGaussian() returns a double.float num = (float) generator.nextGaussian();

float sd = 60;
float mean = 320;

Multiply by the standard deviation and add
the mean.

float x = sd * num + mean;

noStroke();
fill(255,10);
ellipse(x,180,16,16);

}

Consider a simulation of paint splatter drawn as a collection of colored dots. Most of
the paint clusters around a central location, but some dots do splatter out towards the
edges. Can you use a normal distribution of random numbers to generate the
locations of the dots? Can you also use a normal distribution of random numbers to
generate a color palette?

Exercise I.4Exercise I.4

A Gaussian random walk is defined as one in which the step size (how far the object
moves in a given direction) is generated with a normal distribution. Implement this
variation of our random walk.

Exercise I.5Exercise I.5

I.5 A Custom Distribution of Random NumbersI.5 A Custom Distribution of Random Numbers
There will come a time in your life when you do not want a uniform distribution of random
values, or a Gaussian one.Let’s imagine for a moment that you are a random walker in
search of food. Moving randomly around a space seems like a reasonable strategy for
finding something to eat. After all, you don’t know where the food is, so you might as well
search randomly until you find it. The problem, as you may have noticed, is that random
walkers return to previously visited locations many times (this is known as “oversampling.”)
One strategy to avoid such a problem is to, every so often, take a very large step. This
allows the walker to forage randomly around a specific location while periodically jumping
very far away to reduce the amount of oversampling. This variation on the random walk
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(known as a Lévy flight) requires a custom set of probabilities. Though not an exact
implementation of a Lévy flight, we could state the probability distribution as follows: the
longer the step, the less likely it is to be picked; the shorter the step, the more likely.

Earlier in this prologue, we saw that we could generate custom probability distributions by
filling an array with values (some duplicated so that they would be picked more frequently) or
by testing the result of random(). We could implement a Lévy flight by saying that there is a
1% chance of the walker taking a large step.

However, this reduces the probabilities to a fixed number of options. What if we wanted to
make a more general rule—the higher a number, the more likely it is to be picked? 3.145
would be more likely to be picked than 3.144, even if that likelihood is just a tiny bit greater. In
other words, if x is the random number, we could map the likelihood on the y-axis with y = x.

If we can figure out how to generate a distribution of random numbers according to the above
graph, then we will be able to apply the same methodology to any curve for which we have a
formula.

One solution is to pick two random numbers instead of one. The first random number is just
that, a random number. The second one, however, is what we’ll call a “qualifying random
value.” It will tell us whether to use the first one or throw it away and pick another one.
Numbers that have an easier time qualifying will be picked more often, and numbers that
rarely qualify will be picked infrequently. Here are the steps (for now, let’s consider only
random values between 0 and 1):

1. Pick a random number: R1

float r = random(1);

A 1% chance of taking a large stepif (r < 0.01) {
xstep = random(-100,100);
ystep = random(-100,100);

} else {
xstep = random(-1,1);
ystep = random(-1,1);

}

Figure I.4
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2. Compute a probability P that R1 should qualify. Let’s try: P = R1.

3. Pick another random number: R2

4. If R2 is less than P, then we have found our number—R1!

5. If R2 is not less than P, go back to step 1 and start over.

Here we are saying that the likelihood that a random value will qualify is equal to the
random number itself. Let’s say we pick 0.1 for R1. This means that R1 will have a 10% chance
of qualifying. If we pick 0.83 for R1 then it will have a 83% chance of qualifying. The higher
the number, the greater the likelihood that we will actually use it.

Here is a function (named for the Monte Carlo method, which was named for the Monte
Carlo casino) that implements the above algorithm, returning a random value between 0 and
1.

float montecarlo() {

We do this “forever” until we find a
qualifying random value.

while (true) {

Pick a random value.float r1 = random(1);

Assign a probability.float probability = r1;

Pick a second random value.float r2 = random(1);

Does it qualify? If so, we’re done!if (r2 < probability) {
return r1;

}

}
}
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Use a custom probability distribution to vary the size of a step taken by the random
walker. The step size can be determined by influencing the range of values picked. Can
you map the probability exponentially—i.e. making the likelihood that a value is picked
equal to the value squared?

(Later we’ll see how to do this more efficiently using vectors.)

A uniform distribution of step sizes.
Change this!

float stepsize = random(0,10);

float stepx = random(-stepsize,stepsize);
float stepy = random(-stepsize,stepsize);

x += stepx;
y += stepy;

Exercise I.6Exercise I.6

I.6 Perlin Noise (A Smoother Approach)I.6 Perlin Noise (A Smoother Approach)
A good random number generator produces numbers that have no relationship and show no
discernible pattern. As we are beginning to see, a little bit of randomness can be a good thing
when programming organic, lifelike behaviors. However, randomness as the single guiding
principle is not necessarily natural. An algorithm known as “Perlin noise,” named for its
inventor Ken Perlin, takes this concept into account. Perlin developed the noise function while
working on the original Tron movie in the early 1980s; it was designed to create procedural
textures for computer-generated effects. In 1997 Perlin won an Academy Award in technical
achievement for this work. Perlin noise can be used to generate various effects with natural
qualities, such as clouds, landscapes, and patterned textures like marble.

Perlin noise has a more organic appearance because it produces a naturally ordered
(“smooth”) sequence of pseudo-random numbers. The graph on the left below shows Perlin
noise over time, with the x-axis representing time; note the smoothness of the curve. The
graph on the right shows pure random numbers over time. (The code for generating these
graphs is available in the accompanying book downloads.)
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Processing has a built-in implementation of the Perlin noise algorithm: the function noise().
The noise() function takes one, two, or three arguments, as noise is computed in one, two,
or three dimensions. Let’s start by looking at one-dimensional noise.

Noise DetailNoise Detail

The Processing noise reference (http://processing.org/reference/noise_.html) tells us
that noise is calculated over several “octaves.” Calling the noiseDetail()
(http://processing.org/reference/noiseDetail_.html) function will change both the
number of octaves and their importance relative to one another. This in turn changes
how the noise function behaves.

An online lecture by Ken Perlin lets you learn more about how noise works from
Perlin himself (http://www.noisemachine.com/talk1/).

Consider drawing a circle in our Processing window at a random x-location.

Now, instead of a random x-location, we want a Perlin noise x-location that is “smoother.”
You might think that all you need to do is replace random() with noise(), i.e.

While conceptually this is exactly what we want to do—calculate an x-value that ranges
between 0 and the width according to Perlin noise—this is not the correct implementation.
While the arguments to the random() function specify a range of values between a
minimum and a maximum, noise() does not work this way. Instead, the output range is

Figure I.5: Noise Figure I.6: Random

A random x-locationfloat x = random(0,width);

ellipse(x,180,16,16);

A noise x-location?float x = noise(0,width);
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fixed—it always returns a value between 0 and 1. We’ll see in a moment that we can get
around this easily with Processing’s map() function, but first we must examine what exactly
noise() expects us to pass in as an argument.

We can think of one-dimensional Perlin noise as a linear sequence of values over time. For
example:

TimeTime Noise ValueNoise Value

0 0.365

1 0.363

2 0.363

3 0.364

4 0.366

Now, in order to access a particular noise value in Processing, we have to pass a specific
"moment in time" to the noise() function. For example:

According to the above table, noise(3) will return 0.364 at time equals 3. We could improve
this by using a variable for time and asking for a noise value continuously in draw().

The above code results in the same value printed over and over. This happens because we
are asking for the result of the noise() function at the same point in time—3—over and over.
If we increment the time variable t, however, we’ll get a different result.

float n = noise(3);

float t = 3;

void draw() {

We need the noise value for a specific
moment in time.

float n = noise(t);

println(n);
}

Typically we would start at time = 0, though
this is arbitrary.

float t = 0;

void draw() {
float n = noise(t);
println(n);
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How quickly we increment t also affects the smoothness of the noise. If we make large
jumps in time, then we are skipping ahead and the values will be more random.

Try running the code several times, incrementing t by 0.01, 0.02, 0.05, 0.1, 0.0001, and you
will see different results.

Now, we move forward in time!t += 0.01;

}

Figure I.7

Mapping NoiseMapping Noise

Now we’re ready to answer the question of what to do with the noise value. Once we have
the value with a range between 0 and 1, it’s up to us to map that range to what we want. The
easiest way to do this is with Processing’s map() function. The map() function takes five
arguments. First up is the value we want to map, in this case n. Then we have to give it the
value’s current range (minimum and maximum), followed by our desired range.

In this case, we know that noise has a range between 0 and 1, but we’d like to draw our
circle with a range between 0 and the window’s width.

Figure I.8
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We can apply the exact same logic to our random walker, and assign both its x- and y-values
according to Perlin noise.

Example I.5: Perlin noise walker

float t = 0;

void draw() {
float n = noise(t);

Using map() to customize the range of
Perlin noise

float x = map(n,0,1,0,width);

ellipse(x,180,16,16);

t += 0.01;
}

class Walker {
float x,y;

float tx,ty;

Walker() {
tx = 0;
ty = 10000;

}

void step() {

x- and y-location mapped from noisex = map(noise(tx), 0, 1, 0, width);
y = map(noise(ty), 0, 1, 0, height);

Move forward through “time.”tx += 0.01;
ty += 0.01;

}
}
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Notice how the above example requires an additional pair of variables: tx and ty. This is
because we need to keep track of two time variables, one for the x-location of the Walker
object and one for the y-location. But there is something a bit odd about these variables.
Why does tx start at 0 and ty at 10,000? While these numbers are arbitrary choices, we
have very specifically initialized our two time variables with different values. This is because
the noise function is deterministic: it gives you the same result for a specific time t each
and every time. If we asked for the noise value at the same time t for both x and y, then x
and y would always be equal, meaning that the Walker object would only move along a
diagonal. Instead, we simply use two different parts of the noise space, starting at 0 for x
and 10,000 for y so that x and y can appear to act independently of each other.

In truth, there is no actual concept of time at play here. It’s a useful metaphor to help us
understand how the noise function works, but really what we have is space, rather than
time. The graph above depicts a linear sequence of noise values in a one-dimensional
space, and we can ask for a value at a specific x-location whenever we want. In examples,
you will often see a variable named xoff to indicate the x-offset along the noise graph,
rather than t for time (as noted in the diagram).

Figure I.9

In the above random walker, the result of the noise function is mapped directly to the
Walker’s location. Create a random walker where you instead map the result of the
noise() function to a Walker’s step size.

Exercise I.7Exercise I.7

Two-Dimensional NoiseTwo-Dimensional Noise

This idea of noise values living in a one-dimensional space is important because it leads us
right into a discussion of two-dimensional space. Let’s think about this for a moment. With
one-dimensional noise, we have a sequence of values in which any given value is similar to
its neighbor. Because the value is in one dimension, it only has two neighbors: a value that
comes before it (to the left on the graph) and one that comes after it (to the right).
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Two-dimensional noise works exactly the same way conceptually. The difference of course is
that we aren’t looking at values along a linear path, but values that are sitting on a grid. Think
of a piece of graph paper with numbers written into each cell. A given value will be similar to
all of its neighbors: above, below, to the right, to the left, and along any diagonal.

If you were to visualize this graph paper with each value mapped to the brightness of a color,
you would get something that looks like clouds. White sits next to light gray, which sits next to
gray, which sits next to dark gray, which sits next to black, which sits next to dark gray, etc.

This is why noise was originally invented. You tweak the parameters a bit or play with color to
make the resulting image look more like marble or wood or any other organic texture.

Let’s take a quick look at how to implement two-dimensional noise in Processing. If you
wanted to color every pixel of a window randomly, you would need a nested loop, one that
accessed each pixel and picked a random brightness.

Figure I.10: 1D Noise Figure I.11: 2D Noise

loadPixels();
for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

A random brightness!float bright = random(255);

pixels[x+y*width] = color(bright);
}

}
updatePixels();
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To color each pixel according to the noise() function, we’ll do exactly the same thing, only
instead of calling random() we’ll call noise().

This is a nice start conceptually—it gives you a noise value for every (x,y) location in our
two-dimensional space. The problem is that this won’t have the cloudy quality we want.
Jumping from pixel 200 to pixel 201 is too large of a jump through noise. Remember, when
we worked with one-dimensional noise, we incremented our time variable by 0.01 each
frame, not by 1! A pretty good solution to this problem is to just use different variables for
the noise arguments. For example, we could increment a variable called xoff each time we
move horizontally, and a yoff variable each time we move vertically through the nested
loops.

Example I.6: 2D Perlin noise

A Perlin noise brightness!float bright = map(noise(x,y),0,1,0,255);

Start xoff at 0.float xoff = 0.0;

for (int x = 0; x < width; x++) {

For every xoff, start yoff at 0.float yoff = 0.0;

for (int y = 0; y < height; y++) {

Use xoff and yoff for noise().float bright =
map(noise(xoff,yoff),0,1,0,255);

Use x and y for pixel location.pixels[x+y*width] = color(bright);

Increment yoff.yoff += 0.01;

}

Increment xoff.xoff += 0.01;

}

Play with color, noiseDetail(), and the rate at which xoff and yoff are
incremented to achieve different visual effects.

Exercise I.8Exercise I.8
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We’ve examined several traditional uses of Perlin noise in this section. With one-dimensional
noise, we used smooth values to assign the location of an object to give the appearance of
wandering. With two-dimensional noise, we created a cloudy pattern with smoothed values on
a plane of pixels. It’s important to remember, however, that Perlin noise values are just
that—values. They aren’t inherently tied to pixel locations or color. Any example in this book
that has a variable could be controlled via Perlin noise. When we model a wind force, its
strength could be controlled by Perlin noise. Same goes for the angles between the branches
in a fractal tree pattern, or the speed and direction of objects moving along a grid in a flow
field simulation.

Add a third argument to noise that increments once per cycle through draw() to
animate the two-dimensional noise.

Exercise I.9Exercise I.9

Use the noise values as the elevations of a landscape. See the screenshot below as a
reference.

Exercise I.10Exercise I.10
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Figure I.12: Tree with Perlin noise Figure I.13: Flow field with Perlin noise

I.7 OnwardI.7 Onward
We began this chapter by talking about how randomness can be a crutch. In many ways, it’s
the most obvious answer to the kinds of questions we ask continuously—how should this
object move? What color should it be? This obvious answer, however, can also be a lazy
one.

As we finish off the introduction, it’s also worth noting that we could just as easily fall into
the trap of using Perlin noise as a crutch. How should this object move? Perlin noise! What
color should it be? Perlin noise! How fast should it grow? Perlin noise!

The point of all of this is not to say that you should or shouldn’t use randomness. Or that
you should or shouldn’t use Perlin noise. The point is that the rules of your system are
defined by you, and the larger your toolbox, the more choices you’ll have as you implement
those rules. The goal of this book is to fill your toolbox. If all you know is random, then your
design thinking is limited. Sure, Perlin noise helps, but you’ll need more. A lot more.

I think we’re ready to begin.
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Chapter 1. VectorsChapter 1. Vectors
“Roger, Roger. What’s our vector, Victor?”

— Captain Oveur (Airplane)

This book is all about looking at the world around us and coming up with clever ways to
simulate that world with code. Divided into three parts, the book will start by looking at basic
physics—how an apple falls from a tree, a pendulum swings in the air, the earth revolves
around the sun, etc. Absolutely everything contained within the first five chapters of this book
requires the use of the most basic building block for programming motion—the vectorvector. And so
this is where we begin our story.

Now, the word vector can mean a lot of different things. Vector is the name of a New Wave
rock band formed in Sacramento, CA in the early 1980s. It’s the name of a breakfast cereal
manufactured by Kellogg’s Canada. In the field of epidemiology, a vector is used to describe
an organism that transmits infection from one host to another. In the C++ programming
language, a vector (std::vector) is an implementation of a dynamically resizable array data
structure. While all these definitions are interesting, they’re not what we’re looking for. What
we want is called a Euclidean vectorEuclidean vector (named for the Greek mathematician Euclid and also
known as a geometric vector). When you see the term “vector” in this book, you can assume it
refers to a Euclidean vector, defined as an entity that has both magnitude and direction.

A vector is typically drawn as a arrow; the direction is indicated by where the arrow is
pointing, and the magnitude by the length of the arrow itself.
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In the above illustration, the vector is drawn as an arrow from point A to point B and serves
as an instruction for how to travel from A to B.

Figure 1.1: A vector (drawn as an arrow) has magnitude (length of arrow) and direction (which way
it is pointing).

1.1 Vectors, You Complete Me1.1 Vectors, You Complete Me
Before we dive into more of the details about vectors, let’s look at a basic Processing
example that demonstrates why we should care about vectors in the first place. If you’ve
read any of the introductory Processing textbooks or taken a class on programming with
Processing (and hopefully you’ve done one of these things to help prepare you for this
book), you probably, at one point or another, learned how to write a simple bouncing ball
sketch.

If you are reading this book as a PDF or in print, then you will only see screenshots of the code.
Motion, of course, is a key element of our discussion, so to the extent possible, the static screenshots
will include trails to give a sense of the behavior. For more about how to draw trails, see the code
examples available for download.
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LocationLocation x and y

SpeedSpeed xspeed and yspeed

Example 1.1: Bouncing ball with no vectors

In the above example, we have a very simple world—a blank canvas with a circular shape (a
“ball”) traveling around. This ball has some properties, which are represented in the code as
variables.

In a more advanced sketch, we could imagine having many more variables:

Variables for location and speed of ball.float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

Remember how Processing works? setup()
is executed once when the sketch starts
and draw() loops forever and ever (until you
quit).

void setup() {
size(200,200);
smooth();
background(255);

}

void draw() {
background(255);

Move the ball according to its speed.x = x + xspeed;
y = y + yspeed;

Check for bouncing.if ((x > width) || (x < 0)) {
xspeed = xspeed * -1;

}
if ((y > height) || (y < 0)) {

yspeed = yspeed * -1;
}

stroke(0);
fill(175);

Display the ball at the location (x,y).ellipse(x,y,16,16);

}
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AccelerationAcceleration xacceleration and yacceleration

Target locationTarget location xtarget and ytarget

WindWind xwind and ywind

FrictionFriction xfriction and yfriction

It’s becoming clearer that for every concept in this world (wind, location, acceleration, etc.),
we’ll need two variables. And this is only a two-dimensional world. In a 3D world, we’ll need
x, y, z, xspeed, yspeed, zspeed, and so on.

Wouldn’t it be nice if we could simplify our code and use fewer variables?

Instead of:

We could simply have…

Taking this first step in using vectors won’t allow us to do anything new. Just adding vectors
won’t magically make your Processing sketches simulate physics. However, they will
simplify your code and provide a set of functions for common mathematical operations that
happen over and over and over again while programming motion.

As an introduction to vectors, we’re going to live in two dimensions for quite some time (at
least until we get through the first several chapters). All of these examples can be fairly
easily extended to three dimensions (and the class we will use—PVector—allows for three
dimensions.) However, it’s easier to start with just two.

float x;
float y;
float xspeed;
float yspeed;

Vector location;
Vector speed;

1.2 Vectors for Processing Programmers1.2 Vectors for Processing Programmers
One way to think of a vector is the difference between two points. Consider how you might
go about providing instructions to walk from one point to another.

Here are some vectors and possible translations:

Chapter 1. Vectors

30



(-15, 3)(-15, 3) Walk fifteen steps west; turn and walk three steps north.

(3, 4)(3, 4) Walk three steps east; turn and walk five steps north.

(2, -1)(2, -1) Walk two steps east; turn and walk one step south.

You’ve probably done this before when programming motion. For every frame of animation
(i.e. a single cycle through Processing’s draw() loop), you instruct each object on the screen
to move a certain number of pixels horizontally and a certain number of pixels vertically.

For every frame:

new location = velocity applied to current locationnew location = velocity applied to current location

If velocity is a vector (the difference between two points), what is location? Is it a vector too?
Technically, one might argue that location is not a vector, since it’s not describing how to
move from one point to another—it’s simply describing a singular point in space.

Figure 1.2

Figure 1.3
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locationlocation x,y

velocityvelocity xspeed,yspeed

Nevertheless, another way to describe a location is the path taken from the origin to reach
that location. Hence, a location can be the vector representing the difference between
location and origin.

Let’s examine the underlying data for both location and velocity. In the bouncing ball
example, we had the following:

Notice how we are storing the same data for both—two floating point numbers, an x and a y.
If we were to write a vector class ourselves, we’d start with something rather basic:

At its core, a PVector is just a convenient way to store two values (or three, as we’ll see in
3D examples).

And so this …

Figure 1.4

class PVector {

float x;
float y;

PVector(float x_, float y_) {
x = x_;
y = y_;

}

}
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becomes …

Now that we have two vector objects (location and velocity), we’re ready to implement the
algorithm for motion—location = location + velocitylocation = location + velocity. In Example 1.1, without vectors, we had:

In an ideal world, we would be able to rewrite the above as:

However, in Processing, the addition operator + is reserved for primitive values (integers,
floats, etc.) only. Processing doesn’t know how to add two PVector objects together any more
than it knows how to add two PFont objects or PImage objects. Fortunately for us, the
PVector class includes functions for common mathematical operations.

float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

PVector location = new PVector(100,100);
PVector velocity = new PVector(1,3.3);

Add each speed to each location.x = x + xspeed;
y = y + yspeed;

Add the velocity vector to the location
vector.

location = location + velocity;

1.3 Vector Addition1.3 Vector Addition

Before we continue looking at the PVector class and its add() method (purely for the sake of
learning since it’s already implemented for us in Processing itself), let’s examine vector
addition using the notation found in math and physics textbooks.

Vectors are typically written either in boldface type or with an arrow on top. For the purposes
of this book, to distinguish a vectorvector from a scalarscalar (scalar refers to a single value, such as an
integer or a floating point number), we’ll use the arrow notation:

• Vector: u→

• Scalar: x

Let’s say I have the following two vectors:
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Each vector has two components, an x and a y. To add two vectors together, we simply add
both x’s and both y’s.

In other words:

w→ = u→ + v→

can be written as:

wx = ux + vx
wy = uy + vy

Then, replacing u and v with their values from Figure 1.6, we get:

wx = 5 + 3

which means that:

Finally, we write that as a vector:

w→ = (8, 6)

Figure 1.5

Figure 1.6
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Now that we understand how to add two vectors together, we can look at how addition is
implemented in the PVector class itself. Let’s write a function called add() that takes another
PVector object as its argument.

Now that we see how add() is written inside of PVector, we can return to our bouncing ball
example with its location + velocitylocation + velocity algorithm and implement vector addition:

And here we are, ready to rewrite the bouncing ball example using PVector.

Example 1.2: Bouncing ball with PVectors!

class PVector {

float x;
float y;

PVector(float x_, float y_) {
x = x_;
y = y_;

}

New! A function to add another PVector to
this PVector. Simply add the x components
and the y components together.

void add(PVector v) {
y = y + v.y;
x = x + v.x;

}

}

Add the current velocity to the location.location = location + velocity;

location.add(velocity);

Instead of a bunch of floats, we now just
have two PVector variables.

PVector location;
PVector velocity;

void setup() {
size(200,200);
smooth();
location = new PVector(100,100);
velocity = new PVector(2.5,5);

}

void draw() {
background(255);

location.add(velocity);
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Now, you might feel somewhat disappointed. After all, this may initially appear to have
made the code more complicated than the original version. While this is a perfectly
reasonable and valid critique, it’s important to understand that we haven’t fully realized the
power of programming with vectors just yet. Looking at a simple bouncing ball and only
implementing vector addition is just the first step. As we move forward into a more complex
world of multiple objects and multiple forcesforces (which we’ll introduce in Chapter 2), the
benefits of PVector will become more apparent.

We should, however, note an important aspect of the above transition to programming with
vectors. Even though we are using PVector objects to describe two values—the x and y of
location and the x and y of velocity—we still often need to refer to the x and y components
of each PVector individually. When we go to draw an object in Processing, there’s no
means for us to say:

The ellipse() function does not allow for a PVector as an argument. An ellipse can only
be drawn with two scalar values, an x-coordinate and a y-coordinate. And so we must dig
into the PVector object and pull out the x and y components using object-oriented dot
syntax.

The same issue arises when testing if the circle has reached the edge of the window, and
we need to access the individual components of both vectors: location and velocity.

We still sometimes need to refer to the
individual components of a PVector and
can do so using the dot syntax: location.x,
velocity.y, etc.

if ((location.x > width) || (location.x < 0)) {
velocity.x = velocity.x * -1;

}
if ((location.y > height) || (location.y < 0)) {

velocity.y = velocity.y * -1;
}

stroke(0);
fill(175);
ellipse(location.x,location.y,16,16);

}

ellipse(location,16,16);

ellipse(location.x,location.y,16,16);

if ((location.x > width) || (location.x < 0)) {
velocity.x = velocity.x * -1;

}
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Find something you’ve previously made in Processing using separate x and y variables
and use PVectors instead.

Exercise 1.1Exercise 1.1

Take one of the walker examples from the introduction and convert it to use PVectors.

Exercise 1.2Exercise 1.2

Extend the bouncing ball with vectors example into 3D. Can you get a sphere to bounce
around a box?

Exercise 1.3Exercise 1.3

1.4 More Vector Math1.4 More Vector Math
Addition was really just the first step. There are many mathematical operations that are
commonly used with vectors. Below is a comprehensive list of the operations available as
functions in the PVector class. We’ll go through a few of the key ones now. As our examples
get more sophisticated in later chapters, we’ll continue to reveal the details of more functions.

• add() — add vectors

• sub() — subtract vectors

• mult() — scale the vector with multiplication

• div() — scale the vector with division

• mag() — calculate the magnitude of a vector

• setMag() - set the magnitude of a vector

• normalize() — normalize the vector to a unit length of 1

• limit() — limit the magnitude of a vector

• heading2D() — the heading of a vector expressed as an angle

• rotate() — rotate a 2D vector by an angle
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• lerp() — linear interpolate to another vector

• dist() — the Euclidean distance between two vectors (considered as points)

• angleBetween() — find the angle between two vectors

• dot() — the dot product of two vectors

• cross() — the cross product of two vectors (only relevant in three dimensions)

• random2D() - make a random 2D vector

• random3D() - make a random 3D vector

Having already covered addition, let’s start with subtraction. This one’s not so bad; just take
the plus sign and replace it with a minus!

Vector subtractionVector subtraction

w→ = u→ − v→

can be written as:

wx = ux − vx
wy = uy − vy

and so the function inside PVector looks like:

The following example demonstrates vector subtraction by taking the difference between
two points—the mouse location and the center of the window.

Figure 1.7: Vector Subtraction

void sub(PVector v) {
x = x - v.x;
y = y - v.y;

}
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Example 1.3: Vector subtraction

Basic Number Properties with VectorsBasic Number Properties with Vectors

Both addition and subtraction with vectors follow the same algebraic rules as with real
numbers.

The commutative rule:The commutative rule: u→ + v→ = v→ + u→

The associative rule:The associative rule: u→ + ( v→ + w→) = (u→ + v→) + w→

Fancy terminology and symbols aside, this is really quite a simple concept. We’re just
saying that common sense properties of addition apply to vectors as well.

3 + 2 = 2 + 3
(3 + 2) + 1 = 3 + (2 + 1)

void setup() {
size(200,200);

}

void draw() {
background(255);

Two PVectors, one for the mouse location
and one for the center of the window

PVector mouse = new PVector(mouseX,mouseY);
PVector center = new PVector(width/2,height/2);

PVector subtraction!mouse.sub(center);

Draw a line to represent the vector.translate(width/2,height/2);

line(0,0,mouse.x,mouse.y);
}
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Vector multiplicationVector multiplication

Moving on to multiplication, we have to think a little bit differently. When we talk about
multiplying a vector, what we typically mean is scalingscaling a vector. If we wanted to scale a
vector to twice its size or one-third of its size (leaving its direction the same), we would say:
“Multiply the vector by 2” or “Multiply the vector by 1/3.” Note that we are multiplying a
vector by a scalar, a single number, not another vector.

To scale a vector, we multiply each component (x and y) by a scalar.

w→ = u→ * n

can be written as:

wx = ux * n
wy = uy * n

Let’s look at an example with vector
notation.

u→ = (−3, 7)
n = 3

w→ = u→ * n
wx = − 3 * 3
wy = 7 * 3

w→ = (−9, 21)

Therefore, the function inside the PVector
class is written as:

And implementing multiplication in code is as simple as:

Figure 1.8: Scaling a vector

void mult(float n) {

With multiplication, the components of the
vector are multiplied by a number.

x = x * n;
y = y * n;

}

PVector u = new PVector(-3,7);

This PVector is now three times the size
and is equal to (-9,21).

u.mult(3);
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Example 1.4: Multiplying a vector

Division works just like multiplication—we
simply replace the multiplication sign
(asterisk) with the division sign (forward
slash).

void setup() {
size(200,200);
smooth();

}

void draw() {
background(255);

PVector mouse = new PVector(mouseX,mouseY);
PVector center = new PVector(width/2,height/2);
mouse.sub(center);

Multiplying a vector! The vector is now half
its original size (multiplied by 0.5).

mouse.mult(0.5);

translate(width/2,height/2);
line(0,0,mouse.x,mouse.y);

}

Figure 1.9

void div(float n) {
x = x / n;
y = y / n;

}

PVector u = new PVector(8,-4);
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More Number Properties with VectorsMore Number Properties with Vectors

As with addition, basic algebraic rules of multiplication and division apply to vectors.

The associative rule: (n *m) * v→ = n * (m * v→)
The distributive rule with 2 scalars, 1 vector: (n *m) * v→ = n * v→ + m * v→

The distributive rule with 2 vectors, 1 scalar: (u→ + v→) * n = u→ * n + v→ * n

Dividing a vector! The vector is now half its
original size (divided by 2).

u.div(2);

1.5 Vector Magnitude1.5 Vector Magnitude
Multiplication and division, as we just saw, are means by which the length of the vector can
be changed without affecting direction. Perhaps you’re wondering: “OK, so how do I know
what the length of a vector is? I know the components (x and y), but how long (in pixels) is
the actual arrow?” Understanding how to calculate the length (also known as magnitudemagnitude) of
a vector is incredibly useful and important.

Notice in the above diagram how the
vector, drawn as an arrow and two
components (x and y), creates a right
triangle. The sides are the components and
the hypotenuse is the arrow itself. We’re
very lucky to have this right triangle,
because once upon a time, a Greek
mathematician named Pythagoras
developed a lovely formula to describe the
relationship between the sides and
hypotenuse of a right triangle.

The Pythagorean theorem is a squared
plus b squared equals c squared.

Armed with this formula, we can now
compute the magnitude of v→ as follows:

∥ v→ ∥ = vx * vx + vy * vy

or in PVector:

Figure 1.10: The length or “magnitude” of a
vector v→ is often written as: ∥v→∥

Figure 1.11: The Pythagorean Theorem
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Example 1.5: Vector magnitude

float mag() {
return sqrt(x*x + y*y);

}

void setup() {
size(200,200);
smooth();

}

void draw() {
background(255);

PVector mouse = new PVector(mouseX,mouseY);
PVector center = new PVector(width/2,height/2);
mouse.sub(center);

The magnitude (i.e. length) of a vector can
be accessed via the mag() function. Here it
is used as the width of a rectangle drawn at
the top of the window.

float m = mouse.mag();
fill(0);
rect(0,0,m,10);

translate(width/2,height/2);
line(0,0,mouse.x,mouse.y);

}

1.6 Normalizing Vectors1.6 Normalizing Vectors
Calculating the magnitude of a vector is only the beginning. The magnitude function opens
the door to many possibilities, the first of which is normalizationnormalization. Normalizing refers to the
process of making something “standard” or, well, “normal.” In the case of vectors, let’s
assume for the moment that a standard vector has a length of 1. To normalize a vector,
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therefore, is to take a vector of any length and, keeping it pointing in the same direction,
change its length to 1, turning it into what is called a unit vectorunit vector.

Since it describes a vector’s direction
without regard to its length, it’s useful to
have the unit vector readily accessible.
We’ll see this come in handy once we start
to work with forces in Chapter 2.

For any given vector u→, its unit vector
(written as u∧) is calculated as follows:

u∧ = u→
∥ u→ ∥

In other words, to normalize a vector, simply divide each component by its magnitude. This
is pretty intuitive. Say a vector is of length 5. Well, 5 divided by 5 is 1. So, looking at our
right triangle, we then need to scale the hypotenuse down by dividing by 5. In that process
the sides shrink, divided by 5 as well.

In the PVector class, we therefore write
our normalization function as follows:

Of course, there’s one small issue. What if the magnitude of the vector is 0? We can’t divide
by 0! Some quick error checking will fix that right up:

Figure 1.12

Figure 1.13

void normalize() {
float m = mag();
div(m);

}

void normalize() {
float m = mag();
if (m != 0) {

div(m);
}

}
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Example 1.6: Normalizing a vector

void draw() {
background(255);

PVector mouse = new PVector(mouseX,mouseY);
PVector center = new PVector(width/2,height/2);
mouse.sub(center);

In this example, after the vector is
normalized, it is multiplied by 50 so that it is
viewable onscreen. Note that no matter
where the mouse is, the vector will have the
same length (50) due to the normalization
process.

mouse.normalize();

mouse.mult(50);
translate(width/2,height/2);
line(0,0,mouse.x,mouse.y);

}

1.7 Vector Motion: Velocity1.7 Vector Motion: Velocity
All this vector math stuff sounds like something we should know about, but why? How will it
actually help us write code? The truth of the matter is that we need to have some patience. It
will take some time before the awesomeness of using the PVector class fully comes to light.
This is actually a common occurrence when first learning a new data structure. For example,
when you first learn about an array, it might seem like much more work to use an array than to
just have several variables stand for multiple things. But that plan quickly breaks down when
you need a hundred, or a thousand, or ten thousand things. The same can be true for
PVector. What might seem like more work now will pay off later, and pay off quite nicely. And
you don’t have to wait too long, as your reward will come in the next chapter.

For now, however, we want to focus on simplicity. What does it mean to program motion using
vectors? We’ve seen the beginning of this in Example 1.2 (see page 35): the bouncing ball. An
object on screen has a location (where it is at any given moment) as well as a velocity
(instructions for how it should move from one moment to the next). Velocity is added to
location:

The Nature of Code (v005)

45



And then we draw the object at that location:

This is Motion 101.

1. Add velocity to locationAdd velocity to location

2. Draw object at locationDraw object at location

In the bouncing ball example, all of this code happened in Processing’s main tab, within
setup() and draw(). What we want to do now is move towards encapsulating all of the
logic for motion inside of a classclass. This way, we can create a foundation for programming
moving objects in Processing. In section I.2 of the introduction (see page 2), “The Random
Walker Class,” we briefly reviewed the basics of object-oriented-programming (“OOP”).
Beyond that short introduction, this book assumes experience with objects and classes in
Processing. If you need a refresher, I encourage you to check out the Processing objects
tutorial (http://processing.org/learning/objects/).

In this case, we’re going to create a generic Mover class that will describe a thing moving
around the screen. And so we must consider the following two questions:

1. What data does a mover have?What data does a mover have?

2. What functionality does a mover have?What functionality does a mover have?

Our Motion 101 algorithm tells us the answers to these questions. A Mover object has two
pieces of data: location and velocity, which are both PVector objects.

Its functionality is just about as simple. The Mover needs to move and it needs to be seen.
We’ll implement these needs as functions named update() and display(). We’ll put all of
our motion logic code in update() and draw the object in display().

location.add(velocity);

ellipse(location.x,location.y,16,16);

class Mover {

PVector location;
PVector velocity;

void update() {

The Mover moves.location.add(velocity);

}

void display() {
stroke(0);
fill(175);
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We’ve forgotten one crucial item, however: the object’s constructorconstructor. The constructor is a
special function inside of a class that creates the instance of the object itself. It is where you
give instructions on how to set up the object. It always has the same name as the class and is
called by invoking the newnew operator:

In our case, let’s arbitrarily decide to initialize our Mover object by giving it a random location
and a random velocity.

If object-oriented programming is at all new to you, one aspect here may seem a bit
confusing. After all, we spent the beginning of this chapter discussing the PVector class. The
PVector class is the template for making the location object and the velocity object. So
what are they doing inside of yet another object, the Mover object? In fact, this is just about
the most normal thing ever. An object is simply something that holds data (and functionality).
That data can be numbers (integers, floats, etc.) or other objects! We’ll see this over and over
again in this book. For example, in Chapter 4 (see page 144) we’ll write a class to describe a
system of particles. That ParticleSystem object will have as its data a list of Particle
objects…and each Particle object will have as its data several PVector objects!

Let’s finish off the Mover class by incorporating a function to determine what the object should
do when it reaches the edge of the window. For now let’s do something simple, and just have
it wrap around the edges.

The Mover is displayed.ellipse(location.x,location.y,16,16);

}

}

Mover m = new Mover();

Mover() {
location = new PVector(random(width),random(height));
velocity = new PVector(random(-2,2),random(-2,2));

}

void checkEdges() {

When it reaches one edge, set location to
the other.

if (location.x > width) {
location.x = 0;

} else if (location.x < 0) {
location.x = width;

}

if (location.y > height) {
location.y = 0;

} else if (location.y < 0) {
location.y = height;

}
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Now that the Mover class is finished, we can look at what we need to do in our main
program. We first declare a Mover object:

Then initialize the mover in setup():

and call the appropriate functions in draw():

Here is the entire example for reference:

Example 1.7: Motion 101 (velocity)

}

Mover mover;

mover = new Mover();

mover.update();
mover.checkEdges();
mover.display();

Declare Mover object.Mover mover;

void setup() {
size(200,200);
smooth();

Create Mover object.mover = new Mover();

}

void draw() {
background(255);
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Call functions on Mover object.mover.update();
mover.checkEdges();
mover.display();

}

class Mover {

Our object has two PVectors: location and
velocity.

PVector location;
PVector velocity;

Mover() {
location = new PVector(random(width),random(height));
velocity = new PVector(random(-2,2),random(-2,2));

}

void update() {

Motion 101: Location changes by velocity.location.add(velocity);

}

void display() {
stroke(0);
fill(175);
ellipse(location.x,location.y,16,16);

}

void checkEdges() {
if (location.x > width) {

location.x = 0;
} else if (location.x < 0) {

location.x = width;
}

if (location.y > height) {
location.y = 0;

} else if (location.y < 0) {
location.y = height;

}
}

}

1.8 Vector Motion: Acceleration1.8 Vector Motion: Acceleration

OK. At this point, we should feel comfortable with two things: (1) what a PVector is and (2) how
we use PVectors inside of an object to keep track of its location and movement. This is an
excellent first step and deserves a mild round of applause. Before standing ovations and
screaming fans, however, we need to make one more, somewhat bigger step forward. After
all, watching the Motion 101 example is fairly boring—the circle never speeds up, never slows
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down, and never turns. For more interesting motion, for motion that appears in the real
world around us, we need to add one more PVector to our class—acceleration.

The strict definition of accelerationacceleration we’re using here is: the rate of change of velocity. Let’s
think about that definition for a moment. Is this a new concept? Not really. Velocity is
defined as the rate of change of location. In essence, we are developing a “trickle-down”
effect. Acceleration affects velocity, which in turn affects location (for some brief
foreshadowing, this point will become even more crucial in the next chapter, when we see
how forces affect acceleration, which affects velocity, which affects location). In code, this
reads:

As an exercise, from this point forward, let’s make a rule for ourselves. Let’s write every
example in the rest of this book without ever touching the value of velocity and location
(except to initialize them). In other words, our goal now for programming motion is: Come up
with an algorithm for how we calculate acceleration and let the trickle-down effect work its
magic. (In truth, you’ll find reasons to break this rule, but it’s important to illustrate the
principles behind our motion algorithm.) And so we need to come up with some ways to
calculate acceleration:

velocity.add(acceleration);
location.add(velocity);

Acceleration Algorithms!Acceleration Algorithms!

1. A constant acceleration

2. A totally random acceleration

3. Acceleration towards the mouse

Algorithm #1, a constant acceleration, is not particularly interesting, but it is the simplest
and will help us begin incorporating acceleration into our code. The first thing we need to
do is add another PVector to the Mover class:

And incorporate acceleration into the update() function:

class Mover {

PVector location;
PVector velocity;

A new PVector for accelerationPVector acceleration;

void update() {

Our motion algorithm is now two lines of
code!

velocity.add(acceleration);
location.add(velocity);

}
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We’re almost done. The only missing piece is initialization in the constructor.

Let’s start the Mover object in the middle of the window…

…with an initial velocity of zero.

This means that when the sketch starts, the object is at rest. We don’t have to worry about
velocity anymore, as we are controlling the object’s motion entirely with acceleration.
Speaking of which, according to Algorithm #1, our first sketch involves constant acceleration.
So let’s pick a value.

Maybe you’re thinking, “Gosh, those values seem awfully small!” That’s right, they are quite
tiny. It’s important to realize that our acceleration values (measured in pixels) accumulate over
time in the velocity, about thirty times per second depending on our sketch’s frame rate. And
so to keep the magnitude of the velocity vector within a reasonable range, our acceleration
values should remain quite small. We can also help this cause by incorporating the PVector
function limit().

This translates to the following:

What is the magnitude of velocity? If it’s less than 10, no worries; just leave it as is. If it’s more
than 10, however, reduce it to 10!

Mover() {

location = new PVector(width/2,height/2);

velocity = new PVector(0,0);

acceleration = new PVector(-0.001,0.01);
}

The limit() function constrains the magnitude
of a vector.

velocity.limit(10);
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Let’s take a look at the changes to the Mover class, complete with acceleration and
limit().

Example 1.8: Motion 101 (velocity and constant acceleration)

Write the limit() function for the PVector class.

void limit(float max) {
if (_______ > _______) {

_________();
____(max);

}
}

Exercise 1.4Exercise 1.4

class Mover {

PVector location;
PVector velocity;

Acceleration is the key!PVector acceleration;

The variable topspeed will limit the
magnitude of velocity.

float topspeed;

Mover() {
location = new PVector(width/2,height/2);
velocity = new PVector(0,0);
acceleration = new PVector(-0.001,0.01);
topspeed = 10;

}

void update() {

Velocity changes by acceleration and is
limited by topspeed.

velocity.add(acceleration);
velocity.limit(topspeed);
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Now on to Algorithm #2, a totally random acceleration. In this case, instead of initializing
acceleration in the object’s constructor, we want to pick a new acceleration each cycle, i.e.
each time update() is called.

Example 1.9: Motion 101 (velocity and random acceleration)

Because the random vector is a normalized one, we can try scaling it:

(a) scaling the acceleration to a constant value

location.add(velocity);
}

display() is the same.void display() {}

checkEdges() is the same.void checkEdges() {}

}

Create a simulation of a car (or runner) that accelerates when you press the up key and
brakes when you press the down key.

Exercise 1.5Exercise 1.5

void update() {

The random2D() function will give us a
PVector of length 1 pointing in a random
direction.

acceleration = PVector.random2D();

velocity.add(acceleration);
velocity.limit(topspeed);
location.add(velocity);

}

acceleration = PVector.random2D();
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(b) scaling the acceleration to a random value

While this may seem like an obvious point, it’s crucial to understand that acceleration does
not merely refer to the speeding up or slowing down of a moving object, but rather any
change in velocity in either magnitude or direction. Acceleration is used to steer an object,
and we’ll see this again and again in future chapters as we begin to program objects that
make decisions about how to move about the screen.

Constantacceleration.mult(0.5);

acceleration = PVector.random2D();

Randomacceleration.mult(random(2));

Referring back to the Introduction (see page 17), implement acceleration according to
Perlin noise.

Exercise 1.6Exercise 1.6

1.9 Static vs. Non-Static Functions1.9 Static vs. Non-Static Functions
Before we get to Algorithm #3 (accelerate towards the mouse), we need to cover one more
rather important aspect of working with vectors and the PVector class: the difference
between using staticstatic methods and non-staticnon-static methods.

Forgetting about vectors for a moment, take a look at the following code:

Pretty simple, right? x has the value of 0, we add y to it, and now x is equal to 5. We could
write the corresponding code pretty easily based on what we’ve learned about PVector.

The vector v has the value of (0,0), we add u to it, and now v is equal to (4,5). Easy, right?

Let’s take a look at another example of some simple floating point math:

float x = 0;
float y = 5;

x = x + y;

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
v.add(u);
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x has the value of 0, we add y to it, and store the result in a new variable z. The value of x
does not change in this example (neither does y)! This may seem like a trivial point, and one
that is quite intuitive when it comes to mathematical operations with floats. However, it’s not
so obvious with mathematical operations in PVector. Let’s try to write the code based on what
we know so far.

The above might seem like a good guess, but it’s just not the way the PVector class works. If
we look at the definition of add() . . .

we see that this code does not accomplish our goal. First, it does not return a new PVector
(the return type is “void”) and second, it changes the value of the PVector upon which it is
called. In order to add two PVector objects together and return the result as a new PVector,
we must use the static add() function.

Functions that we call from the class name itself (rather than from a specific object instance)
are known as static functionsstatic functions. Here are two examples of function calls that assume two
PVector objects, v and u:

Since you can’t write static functions yourself in Processing, you might not have encountered
them before. PVector's static functions allow us to perform generic mathematical operations
on PVector objects without having to adjust the value of one of the input PVectors. Let’s look
at how we might write the static version of add():

float x = 0;
float y = 5;

float z = x + y;

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);

Don’t be fooled; this is incorrect!!!PVector w = v.add(u);

void add(PVector v) {
x = x + v.x;
y = y + v.y;

}

Static: called from the class name.PVector.add(v,u);

Not static: called from an object instance.v.add(u);
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There are several differences here:

• The function is labeled as staticstatic.

• The function does not have a voidvoid return type, but rather returns a PVector.

• The function creates a new PVector (v3) and returns the sum of the components
of v1 and v2 in that new PVector.

When you call a static function, instead of referencing an actual object instance, you simply
reference the name of the class itself.

The PVector class has static versions of add(), sub(), mult(), and div().

The static version of add allows us to add
two PVectors together and assign the
result to a new PVector while leaving the
original PVectors (v and u above) intact.

static PVector add(PVector v1, PVector v2) {

PVector v3 = new PVector(v1.x + v2.x, v1.y + v2.y);
return v3;

}

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
PVector w = v.add(u);
PVector w = PVector.add(v,u);

Translate the following pseudocode to code using static or non-static functions where
appropriate.

• The PVector v equals (1,5).
• The PVector u equals v multiplied by 2.
• The PVector w equals v minus u.
• Divide the PVector w by 3.

PVector v = new PVector(1,5);
PVector u = ________._____(__,__);
PVector w = ________._____(__,__);
___________;

Exercise 1.7Exercise 1.7
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1.10 Interactivity with Acceleration1.10 Interactivity with Acceleration
To finish out this chapter, let’s try something
a bit more complex and a great deal more
useful. We’ll dynamically calculate an
object’s acceleration according to a rule
stated in Algorithm #3 — the object
accelerates towards the mouse.

Anytime we want to calculate a vector based
on a rule or a formula, we need to compute
two things: magnitudemagnitude and directiondirection. Let’s start with direction. We know the acceleration
vector should point from the object’s location towards the mouse location. Let’s say the object
is located at the point (x,y) and the mouse at (mouseX,mouseY).

In Figure 1.15, we see that we can get a
vector (dx,dy) by subtracting the object’s
location from the mouse’s location.

• dx = mouseX - x

• dy = mouseY - y

Let’s rewrite the above using PVector
syntax. Assuming we are in the Mover class
and thus have access to the object’s PVector location, we then have:

We now have a PVector that points from the mover’s location all the way to the mouse. If the
object were to actually accelerate using that vector, it would appear instantaneously at the
mouse location. This does not make for good animation, of course, and what we want to do
now is decide how quickly that object should accelerate toward the mouse.

In order to set the magnitude (whatever it may be) of our acceleration PVector, we must first
___ that direction vector. That’s right, you said it. Normalize. If we can shrink the vector down
to its unit vector (of length one) then we have a vector that tells us the direction and can easily
be scaled to any value. One multiplied by anything equals anything.

Figure 1.14

Figure 1.15

PVector mouse = new PVector(mouseX,mouseY);

Look! We’re using the static reference to
sub() because we want a new PVector
pointing from one point to another.

PVector dir = PVector.sub(mouse,location);

float anything = ?????
dir.normalize();
dir.mult(anything);
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To summarize, we take the following steps:

1. Calculate a vector that points from the object to the target location (mouse)

2. Normalize that vector (reducing its length to 1)

3. Scale that vector to an appropriate value (by multiplying it by some value)

4. Assign that vector to acceleration

And here are those steps in the update() function itself:

Example 1.10: Accelerating towards the mouse

You may be wondering why the circle doesn’t stop when it reaches the target. It’s important
to note that the object moving has no knowledge about trying to stop at a destination; it
only knows where the destination is and tries to go there as quickly as possible. Going as

void update() {

PVector mouse = new PVector(mouseX,mouseY);

Step 1: Compute directionPVector dir = PVector.sub(mouse,location);

Step 2: Normalizedir.normalize();

Step 3: Scaledir.mult(0.5);

Step 4: Accelerateacceleration = dir;

velocity.add(acceleration);
velocity.limit(topspeed);
location.add(velocity);

}
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quickly as possible means it will inevitably overshoot the location and have to turn around,
again going as quickly as possible towards the destination, overshooting it again, and so on
and so forth. Stay tuned; in later chapters we’ll learn how to program an object to arrivearrive at a
location (slow down on approach).

This example is remarkably close to the concept of gravitational attraction (in which the object
is attracted to the mouse location). Gravitational attraction will be covered in more detail in the
next chapter. However, one thing missing here is that the strength of gravity (magnitude of
acceleration) is inversely proportional to distance. This means that the closer the object is to
the mouse, the faster it accelerates.

Let’s see what this example would look like with an array of movers (rather than just one).

Example 1.11: Array of movers accelerating towards the mouse

Try implementing the above example with a variable magnitude of acceleration,
stronger when it is either closer or farther away.

Exercise 1.8Exercise 1.8

An array of objectsMover[] movers = new Mover[20];

void setup() {
size(200,200);
smooth();
background(255);
for (int i = 0; i < movers.length; i++) {
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Initialize each object in the array.movers[i] = new Mover();

}
}

void draw() {
background(255);

for (int i = 0; i < movers.length; i++) {

Calling functions on all the objects in the
array

movers[i].update();
movers[i].checkEdges();
movers[i].display();

}
}

class Mover {

PVector location;
PVector velocity;
PVector acceleration;
float topspeed;

Mover() {
location = new PVector(random(width),random(height));
velocity = new PVector(0,0);
topspeed = 4;

}

void update() {

Our algorithm for calculating
acceleration:

Find the vector pointing towards the
mouse.

PVector mouse = new PVector(mouseX,mouseY);
PVector dir = PVector.sub(mouse,location);

Normalize.dir.normalize();

Scale.dir.mult(0.5);

Set to acceleration.acceleration = dir;

Motion 101! Velocity changes by
acceleration. Location changes by velocity.

velocity.add(acceleration);
velocity.limit(topspeed);
location.add(velocity);

}
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Display the Movervoid display() {

stroke(0);
fill(175);
ellipse(location.x,location.y,16,16);

}

What to do at the edgesvoid checkEdges() {

if (location.x > width) {
location.x = 0;

} else if (location.x < 0) {
location.x = width;

}

if (location.y > height) {
location.y = 0;

} else if (location.y < 0) {
location.y = height;

}
}

}
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The Ecosystem ProjectThe Ecosystem Project

As mentioned in the preface, one way to use this book is to build a single project
over the course of reading it, incorporating elements from each chapter one step
at a time. We’ll follow the development of an example project throughout this
book—a simulation of an ecosystem. Imagine a population of computational
creatures swimming around a digital pond, interacting with each other according
to various rules.

Step 1 Exercise:

Develop a set of rules for simulating the real-world behavior of a creature, such as
a nervous fly, swimming fish, hopping bunny, slithering snake, etc. Can you
control the object’s motion by only manipulating the acceleration? Try to give the
creature a personality through its behavior (rather than through its visual design).

Figure 1.16: The Ecosystem Project
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Chapter 2. ForcesChapter 2. Forces
“Don’t underestimate the Force.”

— Darth Vader

In the final example of Chapter 1, we saw how we could calculate a dynamic acceleration
based on a vector pointing from a circle on the screen to the mouse location. The resulting
motion resembled a magnetic attraction between circle and mouse, as if some force were
pulling the circle in towards the mouse. In this chapter we will formalize our understanding of
the concept of a force and its relationship to acceleration. Our goal, by the end of this chapter,
is to understand how to make multiple objects move around the screen and respond to a
variety of environmental forces.

2.1 Forces and Newton’s Laws of Motion2.1 Forces and Newton’s Laws of Motion
Before we begin examining the practical realities of simulating forces in code, let’s take a
conceptual look at what it means to be a force in the real world. Just like the word “vector,”
“force” is often used to mean a variety of things. It can indicate a powerful intensity, as in “She
pushed the boulder with great force” or “He spoke forcefully.” The definition of forceforce that we
care about is much more formal and comes from Isaac Newton’s laws of motion:

A force is a vector that causes an object with mass to accelerate.
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The good news here is that we recognize the first part of the definition: a force is a vector.
Thank goodness we just spent a whole chapter learning what a vector is and how to
program with PVectors!

Let’s look at Newton’s three laws of motion in relation to the concept of a force.

Newton’s First LawNewton’s First Law

Newton’s first law is commonly stated as:

An object at rest stays at rest and an object in motion stays in motion.

However, this is missing an important element related to forces. We could expand it by
stating:

An object at rest stays at rest and an object in motion stays in motion at a
constant speed and direction unless acted upon by an unbalanced force.

By the time Newton came along, the prevailing theory of motion—formulated by
Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort
of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it
will simply slow down or stop. Right?

This, of course, is not true. In the absence of any forces, no force is required to keep an
object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down
because of air resistance (a force). An object’s velocity will only remain constant in the
absence of any forces or if the forces that act on it cancel each other out, i.e. the net force
adds up to zero. This is often referred to as equilibriumequilibrium. The falling ball will reach a terminal
velocity (that stays constant) once the force of air resistance equals the force of gravity.

Figure 2.1: The pendulum doesn't move because all the forces cancel each other out (add up to a net
force of zero).
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In our Processing world, we could restate Newton’s first law as follows:

An object’s PVector velocity will remain constant if it is in a state of
equilibrium.

Skipping Newton’s second law (arguably the most important law for our purposes) for a
moment, let’s move on to the third law.

Newton’s Third LawNewton’s Third Law

This law is often stated as:

For every action there is an equal and opposite reaction.

This law frequently causes some confusion in the way that it is stated. For one, it sounds like
one force causes another. Yes, if you push someone, that someone may actively decide to
push you back. But this is not the action and reaction we are talking about with Newton’s third
law.

Let’s say you push against a wall. The wall doesn’t actively decide to push back on you. There
is no “origin” force. Your push simply includes both forces, referred to as an “action/reaction
pair.”

A better way of stating the law might be:

Forces always occur in pairs. The two forces are of equal strength, but in
opposite directions.

Now, this still causes confusion because it sounds like these forces would always cancel each
other out. This is not the case. Remember, the forces act on different objects. And just
because the two forces are equal, it doesn’t mean that the movements are equal (or that the
objects will stop moving).

Try pushing on a stationary truck. Although the truck is far more powerful than you, unlike a
moving one, a stationary truck will never overpower you and send you flying backwards. The
force you exert on it is equal and opposite to the force exerted on your hands. The outcome
depends on a variety of other factors. If the truck is a small truck on an icy downhill, you’ll
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probably be able to get it to move. On the other hand, if it’s a very large truck on a dirt road
and you push hard enough (maybe even take a running start), you could injure your hand.

And if you are wearing roller skates when you push on that truck?

You’ll accelerate away from the truck, sliding along the road while the truck stays put. Why
do you slide but not the truck? For one, the truck has a much larger mass (which we’ll get
into with Newton’s second law). There are other forces at work too, namely the friction of
the truck’s tires and your roller skates against the road.

Figure 2.2

Newton’s Third Law (as seen through the eyes of Processing)Newton’s Third Law (as seen through the eyes of Processing)

If we calculate a PVector f that is a force of object A on object B, we must
also apply the force—PVector.mult(f,-1);—that B exerts on object A.

We’ll see that in the world of Processing programming, we don’t always have to stay true to
the above. Sometimes, such as in the case of see gravitational attraction between bodies
(see page 94), we’ll want to model equal and opposite forces. Other times, such as when
we’re simply saying, “Hey, there’s some wind in the environment,” we’re not going to bother
to model the force that a body exerts back on the air. In fact, we’re not modeling the air at
all! Remember, we are simply taking inspiration from the physics of the natural world, not
simulating everything with perfect precision.
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2.2 Forces and Processing—Newton’s Second Law2.2 Forces and Processing—Newton’s Second Law
as a Functionas a Function
And here we are at the most important law for the Processing programmer.

Newton’s Second LawNewton’s Second Law

This law is stated as:

Force equals mass times acceleration.

Or:

F
→
= M × A

→

Why is this the most important law for us? Well, let’s write it a different way.

A
→
= F
→ /M

Acceleration is directly proportional to force and inversely proportional to mass. This means
that if you get pushed, the harder you are pushed, the faster you’ll move (accelerate). The
bigger you are, the slower you’ll move.

Weight vs. MassWeight vs. Mass
• The massmass of an object is a measure of the amount of matter in the object

(measured in kilograms).
• WeightWeight, though often mistaken for mass, is technically the force of gravity on

an object. From Newton’s second law, we can calculate it as mass times the
acceleration of gravity (w = m * g). Weight is measured in newtons.

• DensityDensity is defined as the amount of mass per unit of volume (grams per cubic
centimeter, for example).

Note that an object that has a mass of one kilogram on earth would have a mass of one
kilogram on the moon. However, it would weigh only one-sixth as much.

Now, in the world of Processing, what is mass anyway? Aren’t we dealing with pixels? To start
in a simpler place, let’s say that in our pretend pixel world, all of our objects have a mass
equal to 1. F/ 1 = F. And so:
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A
→
= F
→

The acceleration of an object is equal to force. This is great news. After all, we saw in
Chapter 1 that acceleration was the key to controlling the movement of our objects on
screen. Location is adjusted by velocity, and velocity by acceleration. Acceleration was
where it all began. Now we learn that force is truly where it all begins.

Let’s take our Mover class, with location, velocity, and acceleration.

Now our goal is to be able to add forces to this object, perhaps saying:

or:

where wind and gravity are PVectors. According to Newton’s second law, we could
implement this function as follows.

class Mover {
PVector location;
PVector velocity;
PVector acceleration;

}

mover.applyForce(wind);

mover.applyForce(gravity);

void applyForce(PVector force) {

Newton’s second law at its simplest.acceleration = force;

}

2.3 Force Accumulation2.3 Force Accumulation
This looks pretty good. After all, acceleration = force is a literal translation of Newton’s
second law (without mass). Nevertheless, there’s a pretty big problem here. Let’s return to
what we are trying to accomplish: creating a moving object on the screen that responds to
wind and gravity.

Ok, let’s be the computer for a moment. First, we call applyForce() with wind. And so the
Mover object’s acceleration is now assigned the PVector wind. Second, we call

mover.applyForce(wind);
mover.applyForce(gravity);
mover.update();
mover.display();
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applyForce() with gravity. Now the Mover object’s acceleration is set to the gravity PVector.
Third, we call update(). What happens in update()? Acceleration is added to velocity.

We’re not going to see any error in Processing, but zoinks! We’ve got a major problem. What
is the value of acceleration when it is added to velocity? It is equal to the gravity force. Wind
has been left out! If we call applyForce() more than once, it overrides each previous call.
How are we going to handle more than one force?

The truth of the matter here is that we started with a simplified statement of Newton’s second
law. Here’s a more accurate way to put it:

Net Force equals mass times acceleration.

Or, acceleration is equal to the sum of all forces divided by mass. This makes perfect sense.
After all, as we saw in Newton’s first law, if all the forces add up to zero, an object
experiences an equilibrium state (i.e. no acceleration). Our implementation of this is through a
process known as force accumulationforce accumulation. It’s actually very simple; all we need to do is add all of
the forces together. At any given moment, there might be 1, 2, 6, 12, or 303 forces. As long as
our object knows how to accumulate them, it doesn’t matter how many forces act on it.

Now, we’re not finished just yet. Force accumulation has one more piece. Since we’re adding
all the forces together at any given moment, we have to make sure that we clear acceleration
(i.e. set it to zero) before each time update() is called. Let’s think about wind for a moment.
Sometimes the wind is very strong, sometimes it’s weak, and sometimes there’s no wind at all.
At any given moment, there might be a huge gust of wind, say, when the user holds down the
mouse.

When the user releases the mouse, the wind will stop, and according to Newton’s first law, the
object will continue to move at a constant velocity. However, if we had forgotten to reset
acceleration to zero, the gust of wind would still be in effect. Even worse, it would add onto
itself from the previous frame, since we are accumulating forces! Acceleration, in our
simulation, has no memory; it is simply calculated based on the environmental forces present

velocity.add(acceleration);

void applyForce(PVector force) {

Newton’s second law, but with force
accumulation. We now add each force to
acceleration, one at a time.

acceleration.add(force);

}

if (mousePressed) {
PVector wind = new PVector(0.5,0);
mover.applyForce(wind);

}
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at a moment in time. This is different than, say, location, which must remember where the
object was in the previous frame in order to move properly to the next.

The easiest way to implement clearing the acceleration for each frame is to multiply the
PVector by 0 at the end of update().

void update() {
velocity.add(acceleration);
location.add(velocity);
acceleration.mult(0);

}

Using forces, simulate a helium-filled balloon floating upward and bouncing off the
top of a window. Can you add a wind force that changes over time, perhaps
according to Perlin noise?

Exercise 2.1Exercise 2.1

2.4 Dealing with Mass2.4 Dealing with Mass
OK. We’ve got one tiny little addition to make before we are done with integrating forces
into our Mover class and are ready to look at examples. After all, Newton’s second law is
really F

→
= M × A

→
, not A

→
= F
→. Incorporating mass is as easy as adding an instance variable to

our class, but we need to spend a little more time here because a slight complication will
emerge.

First we just need to add mass.

class Mover {
PVector location;
PVector velocity;
PVector acceleration;

Adding mass as a floatfloat mass;
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Units of MeasurementUnits of Measurement

Now that we are introducing mass, it’s important to make a quick note about units of
measurement. In the real world, things are measured in specific units. We say that two
objects are 3 meters apart, the baseball is moving at a rate of 90 miles per hour, or this
bowling ball has a mass of 6 kilograms. As we’ll see later in this book, sometimes we
will want to take real-world units into consideration. However, in this chapter, we’re
going to ignore them for the most part. Our units of measurement are in pixels (“These
two circles are 100 pixels apart”) and frames of animation (“This circle is moving at a
rate of 2 pixels per frame”). In the case of mass, there isn’t any unit of measurement for
us to use. We’re just going to make something up. In this example, we’re arbitrarily
picking the number 10. There is no unit of measurement, though you might enjoy
inventing a unit of your own, like “1 moog” or “1 yurkle.” It should also be noted that, for
demonstration purposes, we’ll tie mass to pixels (drawing, say, a circle with a radius of
10). This will allow us to visualize the mass of an object. In the real world, however, size
does not definitely indicate mass. A small metal ball could have a much higher mass
than a large balloon due to its higher density.

Mass is a scalar (float), not a vector, as it’s just one number describing the amount of matter in
an object. We could be fancy about things and compute the area of a shape as its mass, but
it’s simpler to begin by saying, “Hey, the mass of this object is…um, I dunno…how about 10?”

This isn’t so great since things only become interesting once we have objects with varying
mass, but it’ll get us started. Where does mass come in? We use it while applying Newton’s
second law to our object.

Yet again, even though our code looks quite reasonable, we have a fairly major problem here.
Consider the following scenario with two Mover objects, both being blown away by a wind
force.

Mover() {
location = new PVector(random(width),random(height));
velocity = new PVector(0,0);
acceleration = new PVector(0,0);
mass = 10.0;

}

void applyForce(PVector force) {

Newton’s second law (with force
accumulation and mass)

force.div(mass);
acceleration.add(force);

}
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Again, let’s be the computer. Object m1 receives the wind force—(1,0)—divides it by mass
(10), and adds it to acceleration.

m1 equals wind force: (1,0)
Divided by mass of 10: (0.1,0)

OK. Moving on to object m2. It also receives the wind force—(1,0). Wait. Hold on a second.
What is the value of the wind force? Taking a closer look, the wind force is actually
now—(0.1,0)!! Do you remember this little tidbit about working with objects? When you pass
an object (in this case a PVector) into a function, you are passing a reference to that object.
It’s not a copy! So if a function makes a change to that object (which, in this case, it does by
dividing by mass) then that object is permanently changed! But we don’t want m2 to receive
a force divided by the mass of object m1. We want it to receive that force in its original
state—(1,0). And so we must protect ourselves and make a copy of the PVector f before
dividing it by mass. Fortunately, the PVector class has a convenient method for making a
copy—get(). get() returns a new PVector object with the same data. And so we can
revise applyForce() as follows:

There’s another way we could write the above function, using the static method div(). For
help with this exercise, review static methods in Chapter 1 (see page 54).

Mover m1 = new Mover();
Mover m2 = new Mover();

PVector wind = new PVector(1,0);

m1.applyForce(wind);
m2.applyForce(wind);

void applyForce(PVector force) {

Making a copy of the PVector before using
it!

PVector f = force.get();

f.div(mass);
acceleration.add(f);

}

Rewrite the applyForce() method using the static method div() instead of get().

void applyForce(PVector force) {
PVector f = _______.___(_____,____);
acceleration.add(f);

}

Exercise 2.2Exercise 2.2
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2.5 Creating Forces2.5 Creating Forces
Let’s take a moment to remind ourselves where we are. We know what a force is (a vector),
and we know how to apply a force to an object (divide it by mass and add it to the object’s
acceleration vector). What are we missing? Well, we have yet to figure out how we get a force
in the first place. Where do forces come from?

In this chapter, we’ll look at two methods for creating forces in our Processing world.

1. Make up a force!Make up a force! After all, you are the programmer, the creator of your world.
There’s no reason why you can’t just make up a force and apply it.

2. Model a force!Model a force! Yes, forces exist in the real world. And physics textbooks often
contain formulas for these forces. We can take these formulas, translate them into
source code, and model real-world forces in Processing.

The easiest way to make up a force is to just pick a number. Let’s start with the idea of
simulating wind. How about a wind force that points to the right and is fairly weak? Assuming
a Mover object m, our code would look like:

The result isn’t terribly interesting, but it is a good place to start. We create a PVector object,
initialize it, and pass it into an object (which in turn will apply it to its own acceleration). If we
wanted to have two forces, perhaps wind and gravity (a bit stronger, pointing down), we might
write the following:

Example 2.1

PVector wind = new PVector(0.01,0);
m.applyForce(wind);

PVector wind = new PVector(0.01,0);
PVector gravity = new PVector(0,0.1);
m.applyForce(wind);
m.applyForce(gravity);
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Now we have two forces, pointing in different directions with different magnitudes, both
applied to object m. We’re beginning to get somewhere. We’ve now built a world for our
objects in Processing, an environment to which they can actually respond.

Let’s look at how we could make this example a bit more exciting with many objects of
varying mass. To do this, we’ll need a quick review of object-oriented programming. Again,
we’re not covering all the basics of programming here (for that you can check out any of the
intro Processing books listed in the introduction). However, since the idea of creating a
world filled with objects is pretty fundamental to all the examples in this book, it’s worth
taking a moment to walk through the steps of going from one object to many.

This is where we are with the Mover class as a whole. Notice how it is identical to the Mover
class created in Chapter 1, with two additions—mass and a new applyForce() function.

class Mover {

PVector location;
PVector velocity;
PVector acceleration;

The object now has mass!float mass;

Mover() {

And for now, we’ll just set the mass equal
to 1 for simplicity.

mass = 1;

location = new PVector(30,30);
velocity = new PVector(0,0);
acceleration = new PVector(0,0);

}

Newton’s second law.void applyForce(PVector force) {

Receive a force, divide by mass, and add
to acceleration.

PVector f = PVector.div(force,mass);
acceleration.add(f);

}

void update() {

Motion 101 from Chapter 1velocity.add(acceleration);
location.add(velocity);

Now add clearing the acceleration each
time!

acceleration.mult(0);

}

void display() {
stroke(0);
fill(175);

ellipse(location.x,location.y,mass*16,mass*16);

} Scaling the size according to mass.
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Now that our class is set, we can choose to create, say, one hundred Mover objects with an
array.

And then we can initialize all of those Mover objects in setup() with a loop.

But now we have a small issue. If we refer back to the Mover object’s constructor…

…we discover that every Mover object is made exactly the same way. What we want are Mover
objects of varying mass that start at varying locations. Here is where we need to increase the
sophistication of our constructor by adding arguments.

Somewhat arbitrarily, we are deciding that
an object bounces when it hits the edges of
a window.

void checkEdges() {

if (location.x > width) {
location.x = width;
velocity.x *= -1;

} else if (location.x < 0) {
velocity.x *= -1;
location.x = 0;

}

if (location.y > height) {

Even though we said we shouldn't touch
location and velocity directly, there are some
exceptions. Here we are doing so as a quick
and easy way to reverse the direction of our
object when it reaches the edge.

velocity.y *= -1;

location.y = height;
}

}
}

Mover[] movers = new Mover[100];

void setup() {
for (int i = 0; i < movers.length; i++) {

movers[i] = new Mover();
}

}

Mover() {

Every object has a mass of 1 and a location
of (30,30).

mass = 1;
location = new PVector(30,30);

velocity = new PVector(0,0);
acceleration = new PVector(0,0);

}

Mover(float m, float x , float y) {

Now setting these variables with argumentsmass = m;
location = new PVector(x,y);
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Notice how the mass and location are no longer set to hardcoded numbers, but rather
initialized via arguments passed through the constructor. This means we can create a
variety of Mover objects: big ones, small ones, ones that start on the left side of the screen,
ones that start on the right, etc.

With an array, however, we want to initialize all of the objects with a loop.

For each mover created, the mass is set to a random value between 0.1 and 5, the starting
x-location is set to 0, and the starting y-location is set to 0. Certainly, there are all sorts of
ways we might choose to initialize the objects; this is just a demonstration of one possibility.

Once the array of objects is declared, created, and initialized, the rest of the code is simple.
We run through every object, hand them each the forces in the environment, and enjoy the
show.

velocity = new PVector(0,0);
acceleration = new PVector(0,0);

}

A big Mover on the left side of the windowMover m1 = new Mover(10,0,height/2);

A small Mover on the right side of the
window

Mover m1 = new Mover(0.1,width,height/2);

void setup() {
for (int i = 0; i < movers.length; i++) {

Initializing many Mover objects, all with
random mass (and all starting at 0,0)

movers[i] = new Mover(random(0.1,5),0,0);

}
}
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Example 2.2

Note how in the above image, the smaller circles reach the right of the window faster than the
larger ones. This is because of our formula: acceleration = force divided by mass. The larger
the mass, the smaller the acceleration.

void draw() {
background(255);

PVector wind = new PVector(0.01,0);

Make up two forces.PVector gravity = new PVector(0,0.1);

Loop through all objects and apply both
forces to each object.

for (int i = 0; i < movers.length; i++) {
movers[i].applyForce(wind);
movers[i].applyForce(gravity);

movers[i].update();
movers[i].display();
movers[i].checkEdges();

}
}

Instead of objects bouncing off the edge of the wall, create an example in which an
invisible force pushes back on the objects to keep them in the window. Can you weight
the force according to how far the object is from an edge—i.e., the closer it is, the
stronger the force?

Exercise 2.3Exercise 2.3

2.6 Gravity on Earth and Modeling a Force2.6 Gravity on Earth and Modeling a Force
You may have noticed something woefully inaccurate about this last example. The smaller the
circle, the faster it falls. There is a logic to this; after all, we just stated (according to Newton’s
second law) that the smaller the mass, the higher the acceleration. But this is not what
happens in the real world. If you were to climb to the top of the Leaning Tower of Pisa and
drop two balls of different masses, which one will hit the ground first? According to legend,
Galileo performed this exact test in 1589, discovering that they fell with the same acceleration,
hitting the ground at the same time. Why is this? As we will see later in this chapter, the force
of gravity is calculated relative to an object’s mass. The bigger the object, the stronger the
force. So if the force is scaled according to mass, it is canceled out when acceleration is
divided by mass. We can implement this in our sketch rather easily by multiplying our made-up
gravity force by mass.
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Example 2.3

While the objects now fall at the same rate, because the strength of the wind force is
independent of mass, the smaller objects still accelerate to the right more quickly.

Making up forces will actually get us quite far. The world of Processing is a pretend world of
pixels and you are its master. So whatever you deem appropriate to be a force, well by
golly, that’s the force it should be. Nevertheless, there may come a time where you find
yourself wondering: “But how does it really all work?”

Open up any high school physics textbook and you will find some diagrams and formulas
describing many different forces—gravity, electromagnetism, friction, tension, elasticity, and
more. In this chapter we’re going to look at two forces—friction and gravity. The point we’re
making here is not that friction and gravity are fundamental forces that you always need to
have in your Processing sketches. Rather, we want to evaluate these two forces as case
studies for the following process:

• Understanding the concept behind a force

• Deconstructing the force’s formula into two parts:

◦ How do we compute the force’s direction?

for (int i = 0; i < movers.length; i++) {

PVector wind = new PVector(0.001,0);
float m = movers[i].mass;

Scaling gravity by mass to be more
accurate

PVector gravity = new PVector(0,0.1*m);

movers[i].applyForce(wind);
movers[i].applyForce(gravity);

movers[i].update();
movers[i].display();
movers[i].checkEdges();

}
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◦ How do we compute the force’s magnitude?

• Translating that formula into Processing code that calculates a PVector to be sent
through our Mover's applyForce() function

If we can follow the above steps with two forces, then hopefully if you ever find yourself
Googling “atomic nuclei weak nuclear force” at 3 a.m., you will have the skills to take what you
find and adapt it for Processing.

Dealing with formulaeDealing with formulae

OK, in a moment we’re going to write out the formula for friction. This isn’t the first time
we’ve seen a formula in this book; we just finished up our discussion of Newton’s
second law, F

→
= M × A

→
(or force = mass * acceleration). We didn’t spend a lot of time

worrying about this formula because it’s a nice and simple one. Nevertheless, it’s a
scary world out there. Just take a look at the equation for a “normal” distribution, which
we covered (without looking at the formula) in the Introduction (see page 10).

f (x; µ, σ2) = 1
σ 2π e−

(x−µ)2

2σ2

What we’re seeing here is that formulas like to use a lot of symbols (quite often letters
from the Greek alphabet). Let’s take a look at the formula for friction.

Friction
→

= − µNv∧

If it’s been a while since you’ve looked at a formula from a math or physics textbook,
there are three key points that are important to cover before we move on.

• Evaluate the right side, assign to the left side.Evaluate the right side, assign to the left side. This is just like in code! What
we’re doing here is evaluating the right side of the equation and assigning it
to the left. In the case above, we want to calculate the force of friction—the
left side tells us what we want to calculate and the right side tells us how to
do it.

• Are we talking about a vector or a scalar?Are we talking about a vector or a scalar? It’s important for us to realize that
in some cases, we’ll be looking at a vector; in others, a scalar. For example, in
this case the force of friction is a vector. We can see that by the arrow above
the word “friction.” It has a magnitude and direction. The right side of the
equation also has a vector, as indicated by the symbol v∧, which in this case
stands for the velocity unit vector.

• When symbols are placed next to each other, we mean for them to beWhen symbols are placed next to each other, we mean for them to be
multiplied.multiplied. The formula above actually has four elements: -1, μ, N, and v∧. We
want to multiply them together and read the formula as: Friction

→
= − 1 * µ *N * v∧
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2.7 Friction2.7 Friction
Let’s begin with friction and follow our steps.

Friction is a dissipative forcedissipative force. A dissipative force is one in which the total energy of a
system decreases when an object is in motion. Let’s say you are driving a car. When you
press your foot down on the brake pedal, the car’s brakes use friction to slow down the
motion of the tires. Kinetic energy (motion) is converted into thermal energy (heat).
Whenever two surfaces come into contact, they experience friction. A complete model of
friction would include separate cases for static friction (a body at rest against a surface) and
kinetic friction (a body in motion against a surface), but for our purposes, we are only going
to look at the kinetic case.

Here’s the formula for friction:

It’s now up to us to separate this formula into two components that determine the direction
of friction as well as the magnitude. Based on the diagram above, we can see that friction
points in the opposite direction of velocity. In fact, that’s the part of the formula that says -1 *
v∧, or -1 times the velocity unit vector. In Processing, this would mean taking the velocity
vector, normalizing it, and multiplying by -1.

Notice two additional steps here. First, it’s important to make a copy of the velocity vector,
as we don’t want to reverse the object’s direction by accident. Second, we normalize the
vector. This is because the magnitude of friction is not associated with how fast it is moving,
and we want to start with a friction vector of magnitude 1 so that it can easily be scaled.

Figure 2.3

PVector friction = velocity.get();
friction.normalize();

Let’s figure out the direction of the friction
force (a unit vector in the opposite direction
of velocity).

friction.mult(-1);
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According to the formula, the magnitude is μ * N. μ, the Greek letter mu (pronounced “mew”),
is used here to describe the coefficient of frictioncoefficient of friction. The coefficient of friction establishes the
strength of a friction force for a particular surface. The higher it is, the stronger the friction; the
lower, the weaker. A block of ice, for example, will have a much lower coefficient of friction
than, say, sandpaper. Since we’re in a pretend Processing world, we can arbitrarily set the
coefficient based on how much friction we want to simulate.

Now for the second part: N. N refers to the normal forcenormal force, the force perpendicular to the
object’s motion along a surface. Think of a vehicle driving along a road. The vehicle pushes
down against the road with gravity, and Newton’s third law tells us that the road in turn
pushes back against the vehicle. That’s the normal force. The greater the gravitational force,
the greater the normal force. As we’ll see in the next section, gravity is associated with mass,
and so a lightweight sports car would experience less friction than a massive tractor trailer
truck. With the diagram above, however, where the object is moving along a surface at an
angle, computing the normal force is a bit more complicated because it doesn’t point in the
same direction as gravity. We’ll need to know something about angles and trigonometry.

All of these specifics are important; however, in Processing, a “good enough” simulation can
be achieved without them. We can, for example, make friction work with the assumption that
the normal force will always have a magnitude of 1. When we get into trigonometry in the next
chapter, we’ll remember to return to this question and make our friction example a bit more
sophisticated. Therefore:

Now that we have both the magnitude and direction for friction, we can put it all together…

…and add it to our “forces” example, where many objects experience wind, gravity, and now
friction:

float c = 0.01;

float normal = 1;

float c = 0.01;
float normal = 1;

Let’s figure out the magnitude of friction
(really just an arbitrary constant).

float frictionMag = c*normal;

PVector friction = velocity.get();
friction.mult(-1);
friction.normalize();

Take the unit vector and multiply it by
magnitude and we have our force vector!

friction.mult(frictionMag);
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Example 2.4: Including friction

Running this example, you’ll notice that the circles don’t even make it to the right side of the
window. Since friction continuously pushes against the object in the opposite direction of its
movement, the object continuously slows down. This can be a useful technique or a
problem depending on the goals of your visualization.

No friction With friction

void draw() {
background(255);

PVector wind = new PVector(0.001,0);

We could scale by mass to be more
accurate.

PVector gravity = new PVector(0,0.1);

for (int i = 0; i < movers.length; i++) {

float c = 0.01;
PVector friction = movers[i].velocity.get();
friction.mult(-1);
friction.normalize();
friction.mult(c);

Apply the friction force vector to the object.movers[i].applyForce(friction);

movers[i].applyForce(wind);
movers[i].applyForce(gravity);

movers[i].update();
movers[i].display();
movers[i].checkEdges();

}

}
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Create pockets of friction in a Processing sketch so that objects only experience friction
when crossing over those pockets. What if you vary the strength (friction coefficient) of
each area? What if you make some pockets feature the opposite of friction—i.e., when
you enter a given pocket you actually speed up instead of slowing down?

Exercise 2.4Exercise 2.4

2.8 Air and Fluid Resistance2.8 Air and Fluid Resistance

Friction also occurs when a body passes through a liquid or gas. This force has many different
names, all really meaning the same thing: viscous force, drag force, fluid resistance. While the
result is ultimately the same as our previous friction examples (the object slows down), the
way in which we calculate a drag force will be slightly different. Let’s look at the formula:

Fd = −
1
2 ρv

2ACdv
∧

Now let’s break this down and see what we really need for an effective simulation in
Processing, making ourselves a much simpler formula in the process.

• Fd refers to drag force, the vector we ultimately want to compute and pass into our
applyForce() function.

• - 1/2 is a constant: -0.5. This is fairly irrelevant in terms of our Processing world, as
we will be making up values for other constants anyway. However, the fact that it is
negative is important, as it tells us that the force is in the opposite direction of
velocity (just as with friction).

Figure 2.4
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• ρ is the Greek letter rho, and refers to the density of the liquid, something we
don’t need to worry about. We can simplify the problem and consider this to have
a constant value of 1.

• v refers to the speed of the object moving. OK, we’ve got this one! The object’s
speed is the magnitude of the velocity vector: velocity.magnitude(). And v2 just
means v squared or v * v.

• A refers to the frontal area of the object that is pushing through the liquid (or gas).
An aerodynamic Lamborghini, for example, will experience less air resistance than
a boxy Volvo. Nevertheless, for a basic simulation, we can consider our object to
be spherical and ignore this element.

• Cd is the coefficient of drag, exactly the same as the coefficient of friction (ρ). This
is a constant we’ll determine based on whether we want the drag force to be
strong or weak.

• v∧ Look familiar? It should. This refers to the velocity unit vector, i.e.
velocity.normalize(). Just like with friction, drag is a force that points in the
opposite direction of velocity.

Now that we’ve analyzed each of these components and determined what we need for a
simple simulation, we can reduce our formula to:

or:

Let’s implement this force in our Mover class example with one addition. When we wrote our
friction example, the force of friction was always present. Whenever an object was moving,
friction would slow it down. Here, let’s introduce an element to the environment—a “liquid”
that the Mover objects pass through. The Liquid object will be a rectangle and will know

Figure 2.5: Our simplified drag force formula

float c = 0.1;
float speed = v.mag();

Part 1 of our formula (magnitude): Cd * v2float dragMagnitude = c * speed * speed;

PVector drag = velocity.get();

Part 2 of our formula (direction): -1 *
velocity

drag.mult(-1);

drag.normalize();

Magnitude and direction together!drag.mult(dragMagnitude);
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about its location, width, height, and “coefficient of drag”—i.e., is it easy for objects to move
through it (like air) or difficult (like molasses)? In addition, it should include a function to draw
itself on the screen (and two more functions, which we’ll see in a moment).

The main program will now include a Liquid object reference as well as a line of code that
initializes that object.

Now comes an interesting question: how do we get the Mover object to talk to the Liquid
object? In other words, we want to execute the following:

When a mover passes through a liquid it experiences a drag force.

…or in object-oriented speak (assuming we are looping through an array of Mover objects with
index i):

class Liquid {

The liquid object includes a variable defining
its coefficient of drag.

float x,y,w,h;

float c;

Liquid(float x_, float y_, float w_, float h_, float c_) {
x = x_;
y = y_;
w = w_;
h = h_;
c = c_;

}

void display() {
noStroke();
fill(175);
rect(x,y,w,h);

}

}

Liquid liquid;

void setup() {

liquid = new Liquid(0, height/2, width, height/2, 0.1);

}

Initialize a Liquid object. Note the coefficient
is low (0.1), otherwise the object would
come to a halt fairly quickly (which may
someday be the effect you want).

if (movers[i].isInside(liquid)) {

If a Mover is inside a Liquid, apply the drag
force.

movers[i].drag(liquid);

}
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The above code tells us that we need to add two functions to the Mover class: (1) a function
that determines if a Mover object is inside the Liquid object, and (2) a function that
computes and applies a drag force on the Mover object.

The first is easy; we can simply use a conditional statement to determine if the location
vector rests inside the rectangle defined by the liquid.

The drag() function is a bit more complicated; however, we’ve written the code for it
already. This is simply an implementation of our formula. The drag force is equal to the
coefficient of drag multiplied by the speed of the Mover squared in the opposite direction of
velocity!

And with these two functions added to the Mover class, we’re ready to put it all together in
the main tab:

boolean isInside(Liquid l) {

if (location.x>l.x && location.x<l.x+l.w && location.y>l.y && location.y<l.y+l.h)

{
return true;

} else {
return false;

}
}

This conditional statement determines if
the PVector location is inside the rectangle
defined by the Liquid class.

void drag(Liquid l) {

float speed = velocity.mag();

The force’s magnitude: Cd * v~2~float dragMagnitude = l.c * speed * speed;

PVector drag = velocity.get();
drag.mult(-1);

The force's direction: -1 * velocitydrag.normalize();

Finalize the force: magnitude and direction
together.

drag.mult(dragMagnitude);

Apply the force.applyForce(drag);

}
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Example 2.5: Fluid Resistance

Running the example, you should notice that we are simulating balls falling into water. The
objects only slow down when crossing through the gray area at the bottom of the window
(representing the liquid). You’ll also notice that the smaller objects slow down a great deal

Mover[] movers = new Mover[100];

Liquid liquid;

void setup() {
size(360, 640);
smooth();
for (int i = 0; i < movers.length; i++) {

movers[i] = new Mover(random(0.1,5),0,0);
}
liquid = new Liquid(0, height/2, width, height/2, 0.1);

}

void draw() {
background(255);

liquid.display();

for (int i = 0; i < movers.length; i++) {

if (movers[i].isInside(liquid)) {
movers[i].drag(liquid);

}

float m = 0.1*movers[i].mass;

Note that we are scaling gravity according to
mass.

PVector gravity = new PVector(0, m);

movers[i].applyForce(gravity);

movers[i].update();
movers[i].display();
movers[i].checkEdges();

}
}
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more than the larger objects. Remember Newton’s second law? A = F / M. Acceleration
equals force divided by mass. A massive object will accelerate less. A smaller object will
accelerate more. In this case, the acceleration we’re talking about is the “slowing down”
due to drag. The smaller objects will slow down at a greater rate than the larger ones.

Take a look at our formula for drag again: drag force = coefficient * speed * speeddrag force = coefficient * speed * speed.
The faster an object moves, the greater the drag force against it. In fact, an object not
moving in water experiences no drag at all. Expand the example to drop the balls
from different heights. How does this affect the drag as they hit the water?

Exercise 2.5Exercise 2.5

The formula for drag also included surface area. Can you create a simulation of boxes
falling into water with a drag force dependent on the length of the side hitting the
water?

Exercise 2.6Exercise 2.6

Fluid resistance does not only work opposite to the velocity vector, but also
perpendicular to it. This is known as “lift-induced drag” and will cause an airplane
with an angled wing to rise in altitude. Try creating a simulation of lift.

Exercise 2.7Exercise 2.7

2.9 Gravitational Attraction2.9 Gravitational Attraction
Probably the most famous force of all is
gravity. We humans on earth think of
gravity as an apple hitting Isaac Newton on
the head. Gravity means that stuff falls
down. But this is only our experience of
gravity. In truth, just as the earth pulls the
apple towards it due to a gravitational
force, the apple pulls the earth as well. The
thing is, the earth is just so freaking big
that it overwhelms all the other gravity
interactions. Every object with mass exerts
a gravitational force on every other object.

Figure 2.6
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And there is a formula for calculating the strengths of these forces, as depicted in Figure 2.6.

Let’s examine this formula a bit more closely.

• F refers to the gravitational force, the vector we ultimately want to compute and pass
into our applyForce() function.

• G is the universal gravitational constant, which in our world equals 6.67428 x 10-11

meters cubed per kilogram per second squared. This is a pretty important number if
your name is Isaac Newton or Albert Einstein. It’s not an important number if you are
a Processing programmer. Again, it’s a constant that we can use to make the forces
in our world weaker or stronger. Just making it equal to one and ignoring it isn’t such
a terrible choice either.

• m1 and m2 are the masses of objects 1 and 2. As we saw with Newton’s second law (

F
→
= M × A

→
), mass is also something we could choose to ignore. After all, shapes drawn

on the screen don’t actually have a physical mass. However, if we keep these
values, we can create more interesting simulations in which “bigger” objects exert a
stronger gravitational force than smaller ones.

• r∧ refers to the unit vector pointing from object 1 to object 2. As we’ll see in a
moment, we can compute this direction vector by subtracting the location of one
object from the other.

• r2 refers to the distance between the two objects squared. Let’s take a moment to
think about this a bit more. With everything on the top of the formula—G, m1, m2—the

bigger its value, the stronger the force. Big mass, big force. Big G, big force. Now,
when we divide by something, we have the opposite. The strength of the force is
inversely proportional to the distance squared. The farther away an object is, the
weaker the force; the closer, the stronger.

Hopefully by now the formula makes some sense to us. We’ve looked at a diagram and
dissected the individual components of the formula. Now it’s time to figure out how we
translate the math into Processing code. Let’s make the following assumptions.

We have two objects, and:

1. Each object has a location: PVector location1 and PVector location2.

2. Each object has a mass: float mass1 and float mass2.

3. There is a variable float G for the universal gravitational constant.

Given these assumptions, we want to compute PVector force, the force of gravity. We’ll do it
in two parts. First, we’ll compute the direction of the force r∧ in the formula above. Second,
we’ll calculate the strength of the force according to the masses and distance.
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Remember in Chapter 1 (see page 56),
when we figured out how to have an object
accelerate towards the mouse? (See Figure
2.7.)

A vector is the difference between two
points. To make a vector that points from
the circle to the mouse, we simply subtract
one point from another:

In our case, the direction of the attraction force that object 1 exerts on object 2 is equal to:

Don’t forget that since we want a unit vector, a vector that tells us about direction only, we’ll
need to normalize the vector after subtracting the locations.

OK, we’ve got the direction of the force. Now we just need to compute the magnitude and
scale the vector accordingly.

The only problem is that we don’t know the
distance. G, mass1, and mass2 were all
givens, but we’ll need to actually compute
distance before the above code will work.
Didn’t we just make a vector that points all
the way from one location to another?
Wouldn’t the length of that vector be the
distance between two objects?

Well, if we add just one line of code and
grab the magnitude of that vector before
normalizing it, then we’ll have the distance.

Figure 2.7

PVector dir = PVector.sub(mouse,location);

PVector dir = PVector.sub(location1,location2);
dir.normalize();

float m = (G * mass1 * mass2) / (distance * distance);
dir.mult(m);

Figure 2.8

The vector that points from one object to
another

PVector force = PVector.sub(location1,location2);

The length (magnitude) of that vector is the
distance between the two objects.

float distance = force.magnitude();

Use the formula for gravity to compute the
strength of the force.

float m = (G * mass1 * mass2) / (distance *
distance);
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Note that I also renamed the PVector “dir” as “force.” After all, when we’re finished with the
calculations, the PVector we started with ends up being the actual force vector we wanted all
along.

Now that we’ve worked out the math and the code for calculating an attractive force
(emulating gravity), we need to turn our attention to applying this technique in the context of
an actual Processing sketch. In Example 2.1, you may recall how we created a simple Mover
object—a class with PVector’s location, velocity, and acceleration as well as an
applyForce(). Let’s take this exact class and put it in a sketch with:

• A single Mover object.

• A single Attractor object (a new
class that will have a fixed
location).

The Mover object will experience a
gravitational pull towards the Attractor
object, as illustrated in Figure 2.9.

We can start by making the new Attractor
class very simple—giving it a location and a
mass, along with a function to display itself
(tying mass to size).

And in our main program, we can add an instance of the Attractor class.

Normalize and scale the force vector to the
appropriate magnitude.

force.normalize();

force.mult(m);

Figure 2.9

class Attractor {

Our Attractor is a simple object that doesn’t
move. We just need a mass and a location.

float mass;

PVector location;

Attractor() {
location = new PVector(width/2,height/2);
mass = 20;

}

void display() {
stroke(0);
fill(175,200);
ellipse(location.x,location.y,mass*2,mass*2);

}
}
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This is a good structure: a main program with a Mover and an Attractor object, and a class
to handle the variables and behaviors of movers and attractors. The last piece of the puzzle
is how to get one object to attract the other. How do we get these two objects to talk to
each other?

There are a number of ways we could do this. Here are just a few possibilities.

TaskTask FunctionFunction

1. A function that receives both an Attractor and a Mover: attraction(a,m);

2. A function in the Attractor class that receives a Mover: a.attract(m);

3. A function in the Mover class that receives an Attractor: m.attractedTo(a);

4. A function in the Attractor class that receives a Mover
and returns a PVector, which is the attraction force. That
attraction force is then passed into the Mover's
applyForce() function:

PVector f = a.attract(m);
m.applyForce(f);

and so on. . .

It’s good to look at a range of options for making objects talk to each other, and you could
probably make arguments for each of the above possibilities. I’d like to at least discard the
first one, since an object-oriented approach is really a much better choice over an arbitrary
function not tied to either the Mover or Attractor class. Whether you pick option 2 or
option 3 is the difference between saying “The attractor attracts the mover” or “The mover
is attracted to the attractor.” Number 4 is really my favorite, at least in terms of where we

Mover m;
Attractor a;

void setup() {
size(200,200);
m = new Mover();

Initialize Attractor object.a = new Attractor();

}

void draw() {
background(255);

Display Attractor object.a.display();

m.update();
m.display();

}
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are in this book. After all, we spent a lot of time working out the applyForce() function, and I
think our examples will be clearer if we continue with the same methodology.

In other words, where we once had:

We now have:

And so our draw() function can now be written as:

We’re almost there. Since we decided to put the attract() function inside of the Attractor
class, we’ll need to actually write that function. The function needs to receive a Mover object
and return a PVector, i.e.:

And what goes inside that function? All of that nice math we worked out for gravitational
attraction!

Made-up forcePVector f = new PVector(0.1,0);

m.applyForce(f);

Attraction force between two objectsPVector f = a.attract(m);

m.applyForce(f);

void draw() {
background(255);

Calculate attraction force and apply it.PVector f = a.attract(m);
m.applyForce(f);

m.update();

a.display();
m.display();

}

PVector attract(Mover m) {

}

PVector attract(Mover m) {

What’s the force’s direction?PVector force = PVector.sub(location,m.location);

float distance = force.mag();
force.normalize();
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And we’re done. Sort of. Almost. There’s one small kink we need to work out. Let’s look at
the above code again. See that symbol for divide, the slash? Whenever we have one of
these, we need to ask ourselves the question: What would happen if the distance happened
to be a really, really small number or (even worse!) zero??! Well, we know we can’t divide a
number by 0, and if we were to divide a number by something like 0.0001, that is the
equivalent of multiplying that number by 10,000! Yes, this is the real-world formula for the
strength of gravity, but we don’t live in the real world. We live in the Processing world. And
in the Processing world, the mover could end up being very, very close to the attractor and
the force could become so strong the mover would just fly way off the screen. And so with
this formula, it’s good for us to be practical and constrain the range of what distance can
actually be. Maybe, no matter where the Mover actually is, we should never consider it less
than 5 pixels or more than 25 pixels away from the attractor.

For the same reason that we need to constrain the minimum distance, it’s useful for us to do
the same with the maximum. After all, if the mover were to be, say, 500 pixels from the
attractor (not unreasonable), we’d be dividing the force by 250,000. That force might end
up being so weak that it’s almost as if we’re not applying it at all.

Now, it’s really up to you to decide what behaviors you want. But in the case of, “I want
reasonable-looking attraction that is never absurdly weak or strong,” then constraining the
distance is a good technique.

Our Mover class hasn’t changed at all, so let’s just look at the main program and the
Attractor class as a whole, adding a variable G for the universal gravitational constant. (On
the website, you’ll find that this example also has code that allows you to move the
Attractor object with the mouse.)

float strength = (G * mass * m.mass) / (distance * distance);

force.mult(strength); What’s the force’s magnitude?

Return the force so that it can be applied!return force;

}

distance = constrain(distance,5,25);
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Example 2.6: Attraction

A Mover and an AttractorMover m;

Attractor a;

void setup() {
size(200,200);
m = new Mover();
a = new Attractor();

}

void draw() {
background(255);

Apply the attraction force from the Attractor
on the Mover.

PVector force = a.attract(m);

m.applyForce(force);
m.update();

a.display();
m.display();

}

class Attractor {
float mass;
PVector location;
float G;

Attractor() {
location = new PVector(width/2,height/2);
mass = 20;
G = 0.4;

}

PVector attract(Mover m) {
PVector force = PVector.sub(location,m.location);
float distance = force.mag();

Remember, we need to constrain the
distance so that our circle doesn’t spin out of
control.

distance = constrain(distance,5.0,25.0);

force.normalize();
float strength = (G * mass * m.mass) / (distance * distance);
force.mult(strength);
return force;

}

void display() {
stroke(0);
fill(175,200);
ellipse(location.x,location.y,mass*2,mass*2);

}
}
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And we could, of course, expand this example using an array to include many Mover
objects, just as we did with friction and drag:

Example 2.7: Attraction with many Movers

Now we have 10 Movers!Mover[] movers = new Mover[10];

Attractor a;

void setup() {
size(400,400);
for (int i = 0; i < movers.length; i++) {

movers[i] = new Mover(random(0.1,2),random(width),random(height));

}
a = new Attractor();

}

void draw() {
background(255);

a.display();

for (int i = 0; i < movers.length; i++) {

Each Mover is initialized randomly.

We calculate an attraction force for each
Mover object.

PVector force = a.attract(movers[i]);

movers[i].applyForce(force);

movers[i].update();
movers[i].display();

}

}
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In the example above, we have a system (i.e. array) of Mover objects and one
Attractor object. Build an example that has systems of both movers and attractors.
What if you make the attractors invisible? Can you create a pattern/design from the
trails of objects moving around attractors? See the Metropop Denim project by Clayton
Cubitt and Tom Carden (http://processing.org/exhibition/works/metropop/) for an
example.

Exercise 2.8Exercise 2.8

It’s worth noting that gravitational attraction is a model we can follow to develop our
own forces. This chapter isn’t suggesting that you should exclusively create sketches
that use gravitational attraction. Rather, you should be thinking creatively about how to
design your own rules to drive the behavior of objects. For example, what happens if
you design a force that is weaker the closer it gets and stronger the farther it gets? Or
what if you design your attractor to attract faraway objects, but repel close ones?

Exercise 2.9Exercise 2.9

2.10 Everything Attracts (or Repels) Everything2.10 Everything Attracts (or Repels) Everything
Hopefully, you found it helpful that we started with a simple scenario—one object attracts
another object—and moved on to one object attracts many objects. However, it’s likely that
you are going to find yourself in a slightly more complex situation: many objects attract each
other. In other words, every object in a given system attracts every other object in that system
(except for itself).

We’ve really done almost all of the work for this already. Let’s consider a Processing sketch
with an array of Mover objects:
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The draw() function is where we need to work some magic. Currently, we’re saying: “for
every mover i, update and display yourself.” Now what we need to say is: “for every mover
i, be attracted to every other mover j, and update and display yourself.”

To do this, we need to nest a second loop.

In the previous example, we had an Attractor object with a function named attract().
Now, since we have movers attracting movers, all we need to do is copy the attract()
function into the Mover class.

Mover[] movers = new Mover[10];

void setup() {
size(400,400);
for (int i = 0; i < movers.length; i++) {

movers[i] = new Mover(random(0.1,2),random(width),random(height));
}

}

void draw() {
background(255);
for (int i = 0; i < movers.length; i++) {

movers[i].update();
movers[i].display();

}
}

for (int i = 0; i < movers.length; i++) {

For every Mover, check every Mover!for (int j = 0; j < movers.length; j++) {

PVector force = movers[j].attract(movers[i]);
movers[i].applyForce(force);

}
movers[i].update();
movers[i].display();

}

class Mover {

// All the other stuff we had before plus. . .
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Of course, there’s one small problem. When we are looking at every mover i and every mover
j, are we OK with the times that i equals j? For example, should mover #3 attract mover #3?
The answer, of course, is no. If there are five objects, we only want mover #3 to attract 0, 1, 2,
and 4, skipping itself. And so, we finish this example by adding a simple conditional statement
to skip applying the force when i equals j.

Example 2.8: Mutual attraction

The Mover now knows how to attract
another Mover.

PVector attract(Mover m) {

PVector force = PVector.sub(location,m.location);
float distance = force.mag();
distance = constrain(distance,5.0,25.0);
force.normalize();

float strength = (G * mass * m.mass) / (distance * distance);
force.mult(strength);
return force;

}
}

Mover[] movers = new Mover[20];

float g = 0.4;

void setup() {
size(400,400);
for (int i = 0; i < movers.length; i++) {

movers[i] = new Mover(random(0.1,2),random(width),random(height));
}

}

void draw() {
background(255);

for (int i = 0; i < movers.length; i++) {
for (int j = 0; j < movers.length; j++) {
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The Ecosystem ProjectThe Ecosystem Project

Step 2 Exercise:

Incorporate the concept of forces into your ecosystem. Try introducing other
elements into the environment (food, a predator) for the creature to interact with.
Does the creature experience attraction or repulsion to things in its world? Can
you think more abstractly and design forces based on the creature’s desires or
goals?

Don’t attract yourself!if (i != j) {

PVector force = movers[j].attract(movers[i]);
movers[i].applyForce(force);

}
}
movers[i].update();
movers[i].display();

}
}

Change the attraction force in Example 2.8 to a repulsion force. Can you create an
example in which all of the Mover objects are attracted to the mouse, but repel each
other? Think about how you need to balance the relative strength of the forces and
how to most effectively use distance in your force calculations.

Exercise 2.10Exercise 2.10
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Chapter 3. OscillationChapter 3. Oscillation
“Trigonometry is a sine of the times.”

— Anonymous

In Chapters 1 and 2, we carefully worked out an object-oriented structure to make something
move on the screen, using the concept of a vector to represent location, velocity, and
acceleration driven by forces in the environment. We could move straight from here into
topics such as particle systems, steering forces, group behaviors, etc. If we did that, however,
we’d skip an important area of mathematics that we’re going to need: trigonometrytrigonometry, or the
mathematics of triangles, specifically right triangles.

Trigonometry is going to give us a lot of tools. We’ll get to think about angles and angular
velocity and acceleration. Trig will teach us about the sine and cosine functions, which when
used properly can yield an nice ease-in, ease-out wave pattern. It’s going to allow us to
calculate more complex forces in an environment that involves angles, such as a pendulum
swinging or a box sliding down an incline.

So this chapter is a bit of a mishmash. We’ll start with the basics of angles in Processing and
cover many trigonometric topics, tying it all into forces at the end. And by taking this break
now, we’ll also pave the way for more advanced examples that require trig later in this book.

3.1 Angles3.1 Angles
OK. Before we can do any of this stuff, we need to make sure we understand what it means to
be an angle in Processing. If you have experience with Processing, you’ve undoubtedly
encountered this issue while using the rotate() function to rotate and spin objects.
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The first order of business is to cover radiansradians and degreesdegrees. You’re probably familiar with
the concept of an angle in degreesdegrees. A full rotation goes from 0 to 360 degrees. 90 degrees
(a right angle) is 1/4th of 360, shown below as two perpendicular lines.

It’s fairly intuitive for us to think of angles in terms of degrees. For example, the square in
Figure 3.2 is rotated 45 degrees around its center.

Processing, however, requires angles to be specified in radiansradians. A radian is a unit of
measurement for angles defined by the ratio of the length of the arc of a circle to the radius
of that circle. One radian is the angle at which that ratio equals one (see Figure 3.1). 180
degrees = PI radians, 360 degrees = 2*PI radians, 90 degrees = PI/2 radians, etc.

Figure 3.1

Figure 3.3
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The formula to convert from degrees to radians is:

radians = 2 * PI * (degrees / 360)

Thankfully, if we prefer to think in degrees but code with radians, Processing makes this easy.
The radians() function will automatically convert values from degrees to radians, and the
constants PI and TWO_PI provide convenient access to these commonly used numbers
(equivalent to 180 and 360 degrees, respectively). The following code, for example, will rotate
shapes by 60 degrees.

If you are not familiar with how rotation is implemented in Processing, I would suggest this
tutorial: Processing - Transform 2D (http://www.processing.org/learning/transform2d/).

What is PI?What is PI?

The mathematical constant pi (or π) is a real number defined as the ratio of a circle’s
circumference (the distance around the perimeter) to its diameter (a straight line that
passes through the circle’s center). It is equal to approximately 3.14159 and can be
accessed in Processing with the built-in variable PI.

Figure 3.3

float angle = radians(60);
rotate(angle);
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Rotate a baton-like object (see below) around its center using translate() and
rotate().

Exercise 3.1Exercise 3.1

3.2 Angular Motion3.2 Angular Motion
Remember all this stuff?

location = location + velocity
velocity = velocity + acceleration

The stuff we dedicated almost all of Chapters 1 and 2 to? Well, we can apply exactly the
same logic to a rotating object.

angle = angle + angular velocity
angular velocity = angular velocity + angular acceleration

In fact, the above is actually simpler than what we started with because an angle is a scalar
quantity—a single number, not a vector!

Using the answer from Exercise 3.1 above, let’s say we wanted to rotate a baton in
Processing by some angle. We would have code like:

Adding in our principles of motion brings us to the following example.

translate(width/2,height/2);
rotate(angle);
line(-50,0,50,0);
ellipse(50,0,8,8);
ellipse(-50,0,8,8);
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Example 3.1: Angular motion using rotate()

The baton starts onscreen with no rotation and then spins faster and faster as the angle of
rotation accelerates.

This idea can be incorporated into our Mover object. For example, we can add the variables
related to angular motion to our Mover.

Locationfloat angle = 0;

Velocityfloat aVelocity = 0;

Accelerationfloat aAcceleration = 0.001;

void setup() {
size(200,200);

}

void draw() {
background(255);

fill(175);
stroke(0);
rectMode(CENTER);
translate(width/2,height/2);
rotate(angle);
line(-50,0,50,0);
ellipse(50,0,8,8);
ellipse(-50,0,8,8);

Angular equivalent of
velocity.add(acceleration);

aVelocity += aAcceleration;

Angular equivalent of location.add(velocity);angle += aVelocity;

}
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And then in update(), we update both location and angle according to the same algorithm!

Of course, for any of this to matter, we also would need to rotate the object when displaying
it.

Now, if we were to actually go ahead and run the above code, we wouldn’t see anything
new. This is because the angular acceleration (float aAcceleration = 0;) is initialized to
zero. For the object to rotate, we need to give it an acceleration! Certainly, we could hard-
code in a different number.

class Mover {

PVector location;
PVector velocity;
PVector acceleration;
float mass;

float angle = 0;
float aVelocity = 0;
float aAcceleration = 0;

void update() {

Regular old-fashioned motionvelocity.add(acceleration);
location.add(velocity);

Newfangled angular motionaVelocity += aAcceleration;
angle += aVelocity;

acceleration.mult(0);
}

void display() {
stroke(0);
fill(175,200);
rectMode(CENTER);

pushMatrix() and popMatrix() are
necessary so that the rotation of this shape
doesn’t affect the rest of our world.

pushMatrix();

Set the origin at the shape’s location.translate(location.x,location.y);

Rotate by the angle.rotate(angle);

rect(0,0,mass*16,mass*16);
popMatrix();

}

float aAcceleration = 0.01;
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However, we can produce a more interesting result by dynamically assigning an angular
acceleration according to forces in the environment. Now, we could head far down this road,
trying to model the physics of angular acceleration using the concepts of torque
(http://en.wikipedia.org/wiki/Torque) and moment of inertia (http://en.wikipedia.org/wiki/
Moment_of_inertia). Nevertheless, this level of simulation is beyond the scope of this book.
(We will see more about modeling angular acceleration with a pendulum later in this chapter,
as well as look at how Box2D realistically models rotational motion in Chapter 5.)

For now, a quick and dirty solution will do. We can produce reasonable results by simply
calculating angular acceleration as a function of the object’s acceleration vector. Here’s one
such example:

Yes, this is completely arbitrary. But it does do something. If the object is accelerating to the
right, its angular rotation accelerates in a clockwise direction; acceleration to the left results in
a counterclockwise rotation. Of course, it’s important to think about scale in this case. The x
component of the acceleration vector might be a quantity that’s too large, causing the object
to spin in a way that looks ridiculous or unrealistic. So dividing the x component by some
value, or perhaps constraining the angular velocity to a reasonable range, could really help.
Here’s the entire update() function with these tweaks added.

Example 3.2: Forces with (arbitrary) angular motion

aAcceleration = acceleration.x;

void update() {

velocity.add(acceleration);
location.add(velocity);

Calculate angular acceleration according to
acceleration’s horizontal direction and
magnitude.

aAcceleration = acceleration.x / 10.0;

aVelocity += aAcceleration;
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Use constrain() to ensure that angular
velocity doesn’t spin out of control.

aVelocity = constrain(aVelocity,-0.1,0.1);

angle += aVelocity;

acceleration.mult(0);
}

Step 1: Create a simulation where objects are shot out of a cannon. Each object
should experience a sudden force when shot (just once) as well as gravity (always
present).

Step 2: Add rotation to the object to model its spin as it is shot from the cannon. How
realistic can you make it look?

Exercise 3.2Exercise 3.2

3.3 Trigonometry3.3 Trigonometry
I think it may be time. We’ve looked at angles, we’ve spun an object. It’s time for:
sohcahtoa. Yes, sohcahtoa. This seemingly nonsensical word is actually the foundation for a
lot of computer graphics work. A basic understanding of trigonometry is essential if you
want to calculate an angle, figure out the distance between points, work with circles, arcs,
or lines. And sohcahtoa is a mnemonic device (albeit a somewhat absurd one) for what the
trigonometric functions sine, cosine, and tangent mean.

• sohsoh: sine = opposite / hypotenuse

• cahcah: cosine = adjacent / hypotenuse

• toatoa: tangent = opposite / adjacent

Figure 3.4
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Take a look at Figure 3.4 again. There’s no
need to memorize it, but make sure you feel
comfortable with it. Draw it again yourself.
Now let’s draw it a slightly different way
(Figure 3.5).

See how we create a right triangle out of a
vector? The vector arrow itself is the
hypotenuse and the components of the
vector (x and y) are the sides of the triangle.
The angle is an additional means for
specifying the vector’s direction (or
“heading”).

Because the trigonometric functions allow us to establish a relationship between the
components of a vector and its direction + magnitude, they will prove very useful throughout
this book. We’ll begin by looking at an example that requires the tangent function.

Figure 3.5

3.4 Pointing in the Direction of Movement3.4 Pointing in the Direction of Movement

Let’s go all the way back to Example 1.10, which features a Mover object accelerating towards
the mouse.

You might notice that almost all of the shapes we’ve been drawing so far are circles. This is
convenient for a number of reasons, one of which is that we don’t have to consider the
question of rotation. Rotate a circle and, well, it looks exactly the same. However, there comes
a time in all motion programmers’ lives when they want to draw something on the screen that
points in the direction of movement. Perhaps you are drawing an ant, or a car, or a spaceship.
And when we say "point in the direction of movement," what we are really saying is “rotate
according to the velocity vector.” Velocity is a vector, with an x and a y component, but to
rotate in Processing we need an angle, in radians. Let’s draw our trigonometry diagram one
more time, with an object’s velocity vector (Figure 3.6).
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ifif tangent(a) = b

thenthen a = arctangent(b)

ifif tangent(angle) = velocityy / velocityx

thenthen angle = arctangent(velocityy / velocityx)

OK. We know that the definition of tangent
is:

tangent(angle) =
velocityy
velocityx

The problem with the above is that we
know velocity, but we don’t know the
angle. We have to solve for the angle. This
is where a special function known as
inverse tangent comes in, sometimes

referred to as arctangent or tan-1. (There is
also an inverse sine and an inverse cosine.)

If the tangent of some value a equals some value b, then the inverse tangent of b equals a.
For example:

See how that is the inverse? The above now allows us to solve for the angle:

Now that we have the formula, let’s see where it should go in our mover’s display()
function. Notice that in Processing, the function for arctangent is called atan().

Now the above code is pretty darn close, and almost works. We still have a big problem,
though. Let’s consider the two velocity vectors depicted below.

Figure 3.6

void display() {

Solve for angle by using atan().float angle = atan(velocity.y/velocity.x);

stroke(0);
fill(175);
pushMatrix();
rectMode(CENTER);
translate(location.x,location.y);

Rotate according to that angle.rotate(angle);

rect(0,0,30,10);
popMatrix();

}
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Though superficially similar, the two vectors point in quite different directions—opposite
directions, in fact! However, if we were to apply our formula to solve for the angle to each
vector…

V1 ⇒ angle = atan(-4/3) = atan(-1.25) = -0.9272952 radians = -53 degrees
V2 ⇒ angle = atan(4/-3) = atan(-1.25) = -0.9272952 radians = -53 degrees

…we get the same angle for each vector. This can’t be right for both; the vectors point in
opposite directions! The thing is, this is a pretty common problem in computer graphics.
Rather than simply using atan() along with a bunch of conditional statements to account for
positive/negative scenarios, Processing (along with pretty much all programming
environments) has a nice function called atan2() that does it for you.

Example 3.3: Pointing in the direction of motion

Figure 3.7

void display() {

Using atan2() to account for all possible
directions

float angle = atan2(velocity.y,velocity.x);

stroke(0);
fill(175);
pushMatrix();
rectMode(CENTER);
translate(location.x,location.y);

The Nature of Code (v005)

111



To simplify this even further, the PVector class itself provides a function called
heading2D(), which takes care of calling atan2() for you so you can get the direction
angle, in radians, for any Processing PVector.

Rotate according to that angle.rotate(angle);

rect(0,0,30,10);
popMatrix();

}

The easiest way to do this!float angle = velocity.heading2D();

Create a simulation of a vehicle that you can drive around the screen using the arrow
keys: left arrow accelerates the car to the left, right to the right. The car should point
in the direction in which it is currently moving.

Exercise 3.3Exercise 3.3

3.5 Polar vs. Cartesian Coordinates3.5 Polar vs. Cartesian Coordinates

Any time we display a shape in Processing, we have to specify a pixel location, a set of x
and y coordinates. These coordinates are known as Cartesian coordinatesCartesian coordinates, named for
René Descartes, the French mathematician who developed the ideas behind Cartesian
space.

Another useful coordinate system known as polar coordinatespolar coordinates describes a point in space
as an angle of rotation around the origin and a radius from the origin. Thinking about this in
terms of a vector:

Cartesian coordinate—the x,y components of a vector
Polar coordinate—the magnitude (length) and direction (angle) of a vector

Processing’s drawing functions, however, don’t understand polar coordinates. Whenever we
want to display something in Processing, we have to specify locations as (x,y) Cartesian
coordinates. However, sometimes it is a great deal more convenient for us to think in polar
coordinates when designing. Happily for us, with trigonometry we can convert back and
forth between polar and Cartesian, which allows us to design with whatever coordinate
system we have in mind but always draw with Cartesian coordinates.
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sine(theta) = y/r → y = r * sine(theta)
cosine(theta) = x/r → x = r * cosine(theta)

For example, if r is 75 and theta is 45 degrees (or PI/4 radians), we can calculate x and y as
below. The functions for sine and cosine in Processing are sin() and cos(), respectively.
They each take one argument, an angle measured in radians.

This type of conversion can be useful in certain applications. For example, to move a shape
along a circular path using Cartesian coordinates is not so easy. With polar coordinates, on
the other hand, it’s simple: increment the angle!

Here’s how it is done with global variables r and theta.

Figure 3.8: The Greek letter θ (theta) is often used to denote an angle. Since a polar coordinate is
conventionally referred to as (r, θ), we’ll use theta as a variable name when referring to an angle.

float r = 75;
float theta = PI / 4;

Converting from polar (r,theta) to Cartesian
(x,y)

float x = r * cos(theta);
float y = r * sin(theta);
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Example 3.4: Polar to Cartesian

float r = 75;
float theta = 0;

void setup() {
size(200,200);
background(255);
smooth();

}

void draw() {

Polar coordinates (r,theta) are converted
to Cartesian (x,y) for use in the ellipse()
function.

float x = r * cos(theta);
float y = r * sin(theta);

noStroke();
fill(0);
ellipse(x+width/2, y+height/2, 16, 16);

theta += 0.01;
}
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Using Example 3.4 as a basis, draw a spiral path. Start in the center and move outwards.
Note that this can be done by only changing one line of code and adding one line of
code!

Exercise 3.4Exercise 3.4

Simulate the spaceship in the game Asteroids. In case you aren’t familiar with Asteroids,
here is a brief description: A spaceship (represented as a triangle) floats in two
dimensional space. The left arrow key turns the spaceship counterclockwise, the right
arrow key, clockwise. The z key applies a “thrust” force in the direction the spaceship is
pointing.

Exercise 3.5Exercise 3.5
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3.6 Oscillation Amplitude and Period3.6 Oscillation Amplitude and Period
Are you amazed yet? We’ve seen some pretty great uses of tangent (for finding the angle of
a vector) and sine and cosine (for converting from polar to Cartesian coordinates). We could
stop right here and be satisfied. But we’re not going to. This is only the beginning. What
sine and cosine can do for you goes beyond mathematical formulas and right triangles.

Let’s take a look at a graph of the sine function, where y = sine(x).

You’ll notice that the output of the sine function is a smooth curve alternating between –1
and 1. This type of a behavior is known as oscillationoscillation, a periodic movement between two
points. Plucking a guitar string, swinging a pendulum, bouncing on a pogo stick—these are
all examples of oscillating motion.

And so we happily discover that we can simulate oscillation in a Processing sketch by
assigning the output of the sine function to an object’s location. Note that this will follow the
same methodology we applied to Perlin noise in the Introduction (see page 17).

Let’s begin with a really basic scenario. We want a circle to oscillate from the left side to the
right side of a Processing window.

Figure 3.9: y = sine(x)
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This is what is known as simple harmonic motionsimple harmonic motion (or, to be fancier, “the periodic sinusoidal
oscillation of an object”). It’s going to be a simple program to write, but before we get into the
code, let’s familiarize ourselves with some of the terminology of oscillation (and waves).

Simple harmonic motion can be expressed as any location (in our case, the x location) as a
function of time, with the following two elements:

• AmplitudeAmplitude: The distance from the center of motion to either extreme

• PeriodPeriod: The amount of time it takes for one complete cycle of motion

Looking at the graph of sine (Figure 3.9), we can see that the amplitude is 1 and the period is
TWO_PI; the output of sine never rises above 1 or below -1; and every TWO_PI radians (or 360
degrees) the wave pattern repeats.

Now, in the Processing world we live in, what is amplitude and what is period? Amplitude can
be measured rather easily in pixels. In the case of a window 200 pixels wide, we would
oscillate from the center 100 pixels to the right and 100 pixels to the left. Therefore:

Period is the amount of time it takes for one cycle, but what is time in our Processing world? I
mean, certainly we could say we want the circle to oscillate every three seconds. And we
could track the milliseconds—using millis() —in Processing and come up with an elaborate
algorithm for oscillating an object according to real-world time. But for us, real-world time
doesn’t really matter. The real measure of time in Processing is in frames. The oscillating
motion should repeat every 30 frames, or 50 frames, or 1000 frames, etc.

Once we have the amplitude and period, it’s time to write a formula to calculate x as a
function of time, which we now know is the current frame count.

Our amplitude is measured in pixels.float amplitude = 100;

Our period is measured in frames (our unit
of time for animation).

float period = 120;

float x = amplitude * cos(TWO_PI * frameCount / period);
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Let’s dissect the formula a bit more and try to understand each component. The first is
probably the easiest. Whatever comes out of the cosine function we multiply by amplitude.
We know that cosine will oscillate between -1 and 1. If we take that value and multiply it by
amplitude then we’ll get the desired result: a value oscillating between -amplitude and
amplitude. (Note: this is also a place where we could use Processing’s map() function to
map the output of cosine to a custom range.)

Now, let’s look at what is inside the cosine function:

TWO_PI * frameCount / period

What’s going on here? Let’s start with what we know. We know that cosine will repeat every
2*PI radians—i.e. it will start at 0 and repeat at 2*PI, 4*PI, 6*PI, etc. If the period is 120, then
we want the oscillating motion to repeat when the frameCount is at 120 frames, 240 frames,
360 frames, etc. frameCount is really the only variable; it starts at 0 and counts upward.
Let’s take a look at what the formula yields with those values.

frameCountframeCount frameCount / periodframeCount / period
TWO_PI * frameCount /TWO_PI * frameCount /

periodperiod

0 0 0

60 0.5 PI

120 1 TWO_PI

240 2 2 * TWO_PI (or 4* PI)

etc.

frameCount divided by period tells us how many cycles we’ve completed—are we halfway
through the first cycle? Have we completed two cycles? By multiplying that number by
TWO_PI, we get the result we want, since TWO_PI is the number of radians required for one
cosine (or sine) to complete one cycle.

Wrapping this all up, here’s the Processing example that oscillates the x location of a circle
with an amplitude of 100 pixels and a period of 120 frames.
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Example 3.5 Simple Harmonic Motion

It’s also worth mentioning the term frequencyfrequency: the number of cycles per time unit. Frequency
is equal to 1 divided by period. If the period is 120 frames, then only 1/120th of a cycle is
completed in one frame, and so frequency = 1/120. In the above example, we simply chose to
define the rate of oscillation in terms of period and therefore did not need a variable for
frequency.

void setup() {
size(200,200);

}

void draw() {
background(255);

float period = 120;
float amplitude = 100;

float x = amplitude * cos(TWO_PI * frameCount / period);

stroke(0);
fill(175);
translate(width/2,height/2);
line(0,0,x,0);
ellipse(x,0,20,20);

}

Calculating horizontal location according to
the formula for simple harmonic motion

Using the sine function, create a simulation of a weight (sometimes referred to as a
“bob”) that hangs from a spring from the top of the window. Use the map() function to
calculate the vertical location of the bob. Later in this chapter, we’ll see how to recreate
this same simulation by modeling the forces of a spring according to Hooke’s law.

Exercise 3.6Exercise 3.6

3.7 Oscillation with Angular Velocity3.7 Oscillation with Angular Velocity
An understanding of the concepts of oscillation, amplitude, and frequency/period is often
required in the course of simulating real-world behaviors. However, there is a slightly easier
way to rewrite the above example with the same result. Let’s take one more look at our
oscillation formula:

And let’s rewrite it a slightly different way:

float x = amplitude * cos(TWO_PI * frameCount / period);
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If we care about precisely defining the period of oscillation in terms of frames of animation,
we might need the formula the way we first wrote it, but we can just as easily rewrite our
example using the concept of angular velocity (and acceleration) from section 3.2 (see page
104). Assuming:

in draw(), we can simply say:

angle is our “some value that increments slowly.”

Example 3.6 Simple Harmonic Motion II

Just because we’re not referencing it directly doesn’t mean that we’ve eliminated the
concept of period. After all, the greater the angular velocity, the faster the circle will
oscillate (therefore lowering the period). In fact, the number of times it takes to add up the
angular velocity to get to TWO_PI is the period or:

period = TWO_PI / angular velocity

float x = amplitude * cos ( some value that increments slowly );

float angle = 0;
float aVelocity = 0.05;

angle += aVelocity;
float x = amplitude * cos(angle);

float angle = 0;
float aVelocity = 0.05;

void setup() {
size(200,200);

}

void draw() {
background(255);

float amplitude = 100;
float x = amplitude * cos(angle);

Using the concept of angular velocity to
increment an angle variable

angle += aVelocity;

ellipseMode(CENTER);
stroke(0);
fill(175);
translate(width/2,height/2);
line(0,0,x,0);
ellipse(x,0,20,20);

}
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Let’s expand this example a bit more and create an Oscillator class. And let’s assume we
want the oscillation to happen along both the x-axis (as above) and the y-axis. To do this, we’ll
need two angles, two angular velocities, and two amplitudes (one for each axis). Another
perfect opportunity for PVector!

Example 3.7: Oscillator objects

class Oscillator {

Using a PVector to track two angles!PVector angle;

PVector velocity;
PVector amplitude;

Oscillator() {
angle = new PVector();
velocity = new PVector(random(-0.05,0.05),random(-0.05,0.05));

amplitude = new PVector(random(width/2),random(height/2));

}

void oscillate() {
angle.add(velocity);

}

void display() {

Random velocities and amplitudes

Oscillating on the x-axisfloat x = sin(angle.x)*amplitude.x;

Oscillating on the y-axisfloat y = sin(angle.y)*amplitude.y;

pushMatrix();
translate(width/2,height/2);
stroke(0);
fill(175);
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Drawing the Oscillator as a line connecting
a circle

line(0,0,x,y);

ellipse(x,y,16,16);
popMatrix();

}
}

Try initializing each Oscillator object with velocities and amplitudes that are not
random to create some sort of regular pattern. Can you make the oscillators appear
to be the legs of a insect-like creature?

Exercise 3.7Exercise 3.7

Incorporate angular acceleration into the Oscillator object.

Exercise 3.8Exercise 3.8

3.8 Waves3.8 Waves
If you’re saying to yourself, “Um, this is all great and everything, but what I really want is to
draw a wave onscreen,” well, then, the time has come. The thing is, we’re about 90% there.
When we oscillate a single circle up and down according to the sine function, what we are
doing is looking at a single point along the x-axis of a wave pattern. With a little panache
and a for loop, we can place a whole bunch of these oscillating circles next to each other.

This wavy pattern could be used in the design of the body or appendages of a creature, as
well as to simulate a soft surface (such as water).

Here, we’re going to encounter the same questions of amplitude (height of pattern) and
period. Instead of period referring to time, however, since we’re looking at the full wave, we
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can talk about period as the width (in pixels) of a full wave cycle. And just as with simple
oscillation, we have the option of computing the wave pattern according to a precise period or
simply following the model of angular velocity.

Let’s go with the simpler case, angular velocity. We know we need to start with an angle, an
angular velocity, and an amplitude:

Then we’re going to loop through all of the x values where we want to draw a point of the
wave. Let’s say every 24 pixels for now. In that loop, we’re going to want to do three things:

1. Calculate the y location according to amplitude and sine of the angle.

2. Draw a circle at the (x,y) location.

3. Increment the angle according to angular velocity.

Let’s look at the results with different values for angleVel:

float angle = 0;
float angleVel = 0.2;
float amplitude = 100;

for (int x = 0; x <= width; x += 24) {

1) Calculate the y location according to
amplitude and sine of the angle.

float y = amplitude*sin(angle);

2) Draw a circle at the (x,y) location.ellipse(x,y+height/2,48,48);

3) Increment the angle according to angular
velocity.

angle += angleVel;

}

angleVel = 0.05 angleVel = 0.2 angleVel = 0.4

The Nature of Code (v005)

123



Notice how, although we’re not precisely computing the period of the wave, the higher the
angular velocity, the shorter the period. It’s also worth noting that as the period becomes
shorter, it becomes more and more difficult to make out the wave itself as the distance
between the individual points increases. One option we have is to use beginShape() and
endShape() to connect the points with a line.

Example 3.8: Static wave drawn as a continuous line

You may have noticed that the above example is static. The wave never changes, never
undulates. This additional step is a bit tricky. Your first instinct might be to say: “Hey, no
problem, we’ll just let theta be a global variable and let it increment from one cycle through
draw() to another.”

While it’s a nice thought, it doesn’t work. If you look at the wave, the righthand edge doesn’t
match the lefthand; where it ends in one cycle of draw() can’t be where it starts in the next.

float angle = 0;
float angleVel = 0.2;
float amplitude = 100;

size(400,200);
background(255);
smooth();

stroke(0);
strokeWeight(2);
noFill();

beginShape();
for (int x = 0; x <= width; x += 5) {

Here’s an example of using the map()
function instead.

float y = map(sin(angle),-1,1,0,height);

With beginShape() and endShape(), you
call vertex() to set all the vertices of your
shape.

vertex(x,y);

angle +=angleVel;
}
endShape();
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Instead, what we need to do is have a variable dedicated entirely to tracking what value of
angle the wave should start with. This angle (which we’ll call startAngle) increments with its
own angular velocity.

Example 3.9: The Wave

float startAngle = 0;
float angleVel = 0.1;

void setup() {
size(400,200);

}

void draw() {
background(255);

In order to move the wave, we start at a
different theta value each frame. startAngle
+= 0.02;

float angle = startAngle;

for (int x = 0; x <= width; x += 24) {
float y = map(sin(angle),-1,1,0,height);
stroke(0);
fill(0,50);
ellipse(x,y,48,48);
angle += angleVel;

}
}
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Try using the Perlin noise function instead of sine or cosine with the above example.

Exercise 3.9Exercise 3.9

Encapsulate the above examples into a Wave class and create a sketch that displays
two waves (with different amplitudes/periods) as in the screenshot below. Move
beyond plain circles and lines and try visualizing the wave in a more creative way.

Exercise 3.10Exercise 3.10

More complex waves can be produced by the values of multiple waves together.
Create a sketch that implements this, as in the screenshot below.

Exercise 3.11Exercise 3.11
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3.9 Trigonometry and Forces: The Pendulum3.9 Trigonometry and Forces: The Pendulum
Do you miss Newton’s laws of motion? I know I sure do. Well, lucky for you, it’s time to bring it
all back home. After all, it’s been nice learning about triangles and tangents and waves, but
really, the core of this book is about simulating the physics of moving bodies. Let’s take a look
at how trigonometry can help us with this pursuit.

A pendulum is a bob suspended from a pivot. Obviously a real-world pendulum would live in a
3D space, but we’re going to look at a simpler scenario, a pendulum in a 2D space—a
Processing window (see Figure 3.10).

In Chapter 2, we learned how a force (such as the force of gravity in Figure 3.11) causes an
object to accelerate. F = M * A or A = F / M. In this case, however, the pendulum bob
doesn’t simply fall to the ground because it is attached by an arm to the pivot point. And so, in
order to determine its angular acceleration, we not only need to look at the force of gravity,
but also the force at the angle of the pendulum’s arm (relative to a pendulum at rest with an
angle of 0).

In the above case, since the pendulum’s arm is of fixed length, the only variable in the
scenario is the angle. We are going to simulate the pendulum’s motion through the use of
angular velocity and acceleration. The angular acceleration will be calculated using Newton’s
second law with a little trigonometry twist.

Let’s zoom in on the right triangle from the pendulum diagram.

Figure 3.10 Figure 3.11
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We can see that the force of the pendulum
(Fp) should point perpendicular to the arm
of the pendulum in the direction that the
pendulum is swinging. After all, if there
were no arm, the bob would just fall
straight down. It’s the tension force of the
arm that keeps the bob accelerating
towards the pendulum’s rest state. Since
the force of gravity (Fp) points downward,
by making a right triangle out of these two
vectors, we’ve accomplished something
quite magnificent. We’ve made the force of
gravity the hypotenuse of a right triangle
and separated the vector into two
components, one of which represents the
force of the pendulum. Since sine equals
opposite over hypotenuse, we have:

sine(θ) = Fp / Fg

Therefore:

Fp = Fg * sine(θ)

Lest we forget, we’ve been doing all of this with a single question in mind: What is the
angular acceleration of the pendulum? Once we have the angular acceleration, we’ll be able
to apply our rules of motion to find the new angle for the pendulum.

angular velocity = angular velocity + angular acceleration
angle = angle + angular velocity

The good news is that with Newton’s second law, we know that there is a relationship
between force and acceleration, namely F = M * A, or A = F / M. So if the force of the
pendulum is equal to the force of gravity times sine of the angle, then:

pendulum angular acceleration = acceleration due to gravity * sine (θ)

This is a good time to remind ourselves that we’re Processing programmers and not
physicists. Yes, we know that the acceleration due to gravity on earth is 9.8 meters per
second squared. But this number isn’t relevant to us. What we have here is just an arbitrary
constant (we’ll call it gravity), one that we can use to scale the acceleration to something
that feels right.

angular acceleration = gravity * sine(θ)

Amazing. After all that, the formula is so simple. You might be wondering, why bother going
through the derivation at all? I mean, learning is great and all, but we could have easily just

Figure 3.12
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said, "Hey, the angular acceleration of a pendulum is some constant times the sine of the
angle." This is just another moment in which we remind ourselves that the purpose of the
book is not to learn how pendulums swing or gravity works. The point is to think creatively
about how things can move about the screen in a computationally based graphics system. The
pendulum is just a case study. If you can understand the approach to programming a
pendulum, then however you choose to design your onscreen world, you can apply the same
techniques.

Of course, we’re not finished yet. We may be happy with our simple, elegant formula, but we
still have to apply it in code. This is most definitely a good time to practice our object-oriented
programming skills and create a Pendulum class. Let’s think about all the properties we’ve
encountered in our pendulum discussion that the class will need:

• arm length

• angle

• angular velocity

• angular acceleration

We’ll also need to write a function update() to update the pendulum’s angle according to our
formula…

class Pendulum {

Length of armfloat r;

Pendulum arm anglefloat angle;

Angular velocityfloat aVelocity;

Angular accelerationfloat aAcceleration;

void update() {

Arbitrary constantfloat gravity = 0.4;

Calculate acceleration according to our
formula.

aAcceleration = -1 * gravity * sin(angle);

Increment velocity.aVelocity += aAcceleration;

Increment angle.angle += aVelocity;

}
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…as well as a function display() to draw
the pendulum in the window. This begs the
question: “Um, where do we draw the
pendulum?” We know the angle and the
arm length, but how do we know the x,y
(Cartesian!) coordinates for both the
pendulum’s pivot point (let’s call it origin)
and bob location (let’s call it location)? This
may be getting a little tiring, but the
answer, yet again, is trigonometry.

The origin is just something we make up,
as is the arm length. Let’s say:

We’ve got the current angle stored in our variable angle. So relative to the origin, the
pendulum’s location is a polar coordinate: (r,angle). And we need it to be Cartesian. Luckily
for us, we just spent some time (section 3.5) deriving the formula for converting from polar
to Cartesian. And so:

Since the location is relative to wherever the origin happens to be, we can just add origin to
the location PVector:

And all that remains is the little matter of drawing a line and ellipse (you should be more
creative, of course).

Before we put everything together, there’s one last little detail I neglected to mention. Let’s
think about the pendulum arm for a moment. Is it a metal rod? A string? A rubber band? How
is it attached to the pivot point? How long is it? What is its mass? Is it a windy day? There
are a lot of questions that we could continue to ask that would affect the simulation. We’re

Figure 3.13

PVector origin = new PVector(100,10);
float r = 125;

PVector location = new PVector(r*sin(angle),r*cos(angle));

location.add(origin);

stroke(0);
fill(175);
line(origin.x,origin.y,location.x,location.y);
ellipse(location.x,location.y,16,16);
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living, of course, in a fantasy world, one where the pendulum’s arm is some idealized rod that
never bends and the mass of the bob is concentrated in a single, infinitesimally small point.
Nevertheless, even though we don’t want to worry ourselves with all of the questions, we
should add one more variable to our calculation of angular acceleration. To keep things
simple, in our derivation of the pendulum’s acceleration, we assumed that the length of the
pendulum’s arm is 1. In fact, the length of the pendulum’s arm affects the acceleration greatly:
the longer the arm, the slower the acceleration. To simulate a pendulum more accurately, we
divide by that length, in this case r. For a more involved explanation, visit The Simple
Pendulum website (http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html).

Finally, a real-world pendulum is going to experience some amount of friction (at the pivot
point) and air resistance. With our code as is, the pendulum would swing forever, so to make it
more realistic we can use a “damping” trick. I say trick because rather than model the
resistance forces with some degree of accuracy (as we did in Chapter 2), we can achieve a
similar result by simply reducing the angular velocity during each cycle. The following code
reduces the velocity by 1% (or multiplies it by 99%) during each frame of animation:

Putting everything together, we have the following example (with the pendulum beginning at a
45-degree angle).

Example 3.10: Swinging pendulum

aAcceleration = (-1 * G * sin(angle)) / r;

aVelocity *= 0.99;

Pendulum p;

void setup() {
size(200,200);
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We make a new Pendulum object with an
origin location and arm length.

p = new Pendulum(new PVector(width/2,10),125);

}

void draw() {
background(255);
p.go();

}

class Pendulum {

Many, many variables to keep track of the
Pendulum’s various properties

PVector location; // Location of bob
PVector origin; // Location of arm origin
float r; // Length of arm
float angle; // Pendulum arm angle
float aVelocity; // Angle velocity
float aAcceleration; // Angle acceleration
float damping; // Arbitrary damping amount

Pendulum(PVector origin_, float r_) {
origin = origin_.get();
location = new PVector();
r = r_;
angle = PI/4;

aVelocity = 0.0;
aAcceleration = 0.0;

An arbitrary damping so that the Pendulum
slows over time

damping = 0.995;

}

void go() {
update();
display();

}

void update() {
float gravity = 0.4;

aAcceleration = (-1 * gravity / r) * sin(angle);

Formula we worked out for angular
acceleration

Standard angular motion algorithmaVelocity += aAcceleration;
angle += aVelocity;

Apply some damping.aVelocity *= damping;

}

void display() {

Where is the bob relative to the origin?
Polar to Cartesian coordinates will tell us!

location.set(r*sin(angle),r*cos(angle),0);

location.add(origin);

stroke(0);
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(Note that the version of the example posted on the website has additional code to allow the
user to grab the pendulum and swing it with the mouse.)

The armline(origin.x,origin.y,location.x,location.y);

fill(175);

The bobellipse(location.x,location.y,16,16);

}
}

String together a series of pendulums so that the endpoint of one is the origin point of
another. Note that doing this may produce intriguing results but will be wildly inaccurate
physically. Simulating an actual double pendulum involves sophisticated equations,
which you can read about here: http://scienceworld.wolfram.com/physics/
DoublePendulum.html (http://scienceworld.wolfram.com/physics/DoublePendulum.html).

Exercise 3.12Exercise 3.12

Using trigonometry, what is the
magnitude of the normal force in the
illustration on the right (the force
perpendicular to the incline on which the
sled rests)? Note that, as indicated, the
“normal” force is a component of the
force of gravity.

Exercise 3.13Exercise 3.13

Create an example that simulates a box sliding down the incline with friction. Note that
the magnitude of the friction force is equal to the normal force.

Exercise 3.14Exercise 3.14
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3.10 Spring Forces3.10 Spring Forces
In section 3.6 (see page 115), we looked at modeling simple harmonic motion by mapping
the sine wave to a pixel range. Exercise 3.6 (see page 119) asked you to use this technique
to create a simulation of a bob hanging from a spring. While using the sin() function is a
quick-and-dirty, one-line-of-code way of getting something up and running, it won’t do if
what we really want is to have a bob hanging from a spring in a two-dimensional space that
responds to other forces in the environment (wind, gravity, etc.) To accomplish a simulation
like this (one that is identical to the pendulum example, only now the arm is a springy
connection), we need to model the forces of a spring using PVector.

The force of a spring is calculated according to Hooke’s law, named for Robert Hooke, a
British physicist who developed the formula in 1660. Hooke originally stated the law in Latin:
"Ut tensio, sic vis," or “As the extension, so the force.” Let’s think of it this way:

The force of the spring is directly proportional to the extension of the
spring.

Figure 3.14
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In other words, if you pull on the bob a lot,
the force will be strong; if you pull on the
bob a little, the force will be weak.
Mathematically, the law is stated as follows:

Fspring = - k * x

• k is constant and its value will
ultimately scale the force. Is the
spring highly elastic or quite rigid?

• x refers to the displacement of the
spring, i.e. the difference between
the current length and the rest
length. The rest length is defined
as the length of the spring in a
state of equilibrium.

Now remember, force is a vector, so we
need to calculate both magnitude and
direction. Let’s look at one more diagram of
the spring and label all the givens we might have in a Processing sketch.

Let’s establish the following three variables as shown in Figure 3.16.

Figure 3.15: x = current length - rest length

Figure 3.16

PVector anchor;
PVector location;
float restLength;
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First, let’s use Hooke’s law to calculate the magnitude of the force. We need to know k and
x. k is easy; it’s just a constant, so let’s make something up.

x is perhaps a bit more difficult. We need to know the “difference between the current
length and the rest length.” The rest length is defined as the variable restLength. What’s
the current length? The distance between the anchor and the bob. And how can we
calculate that distance? How about the magnitude of a vector that points from the anchor to
the bob? (Note that this is exactly the same process we employed when calculating distance
in Example 2.9: gravitational attraction.)

Now that we’ve sorted out the elements necessary for the magnitude of the force (-1 * k * x),
we need to figure out the direction, a unit vector pointing in the direction of the force. The
good news is that we already have this vector. Right? Just a moment ago we thought to
ourselves: “How we can calculate that distance? How about the magnitude of a vector that
points from the anchor to the bob?” Well, that is the direction of the force!

float k = 0.1;

A vector pointing from anchor to bob gives
us the current length of the spring.

PVector dir = PVector.sub(bob,anchor);

float currentLength = dir.mag();
float x = restLength - currentLength;

Figure 3.17
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In Figure 3.17, we can see that if we stretch the spring beyond its rest length, there should be
a force pulling it back towards the anchor. And if it shrinks below its rest length, the force
should push it away from the anchor. This reversal of direction is accounted for in the formula
with the -1. And so all we need to do is normalize the PVector we used for the distance
calculation! Let’s take a look at the code and rename that PVector variable as “force.”

Now that we have the algorithm worked out for computing the spring force vector, the
question remains: what object-oriented programming structure should we use? This, again, is
one of those situations in which there is no “correct” answer. There are several possibilities;
which one we choose depends on the program’s goals and one’s own personal coding style.
Still, since we’ve been working all along with a Mover class, let’s keep going with this same
framework. Let’s think of our Mover class as the spring’s “bob.” The bob needs location,
velocity, and acceleration vectors to move about the screen. Perfect—we’ve got that
already! And perhaps the bob experiences a gravity force via the applyForce() function. Just
one more step—we need to apply the spring force:

Magnitude of spring force according to
Hooke’s law

float k = 0.1;

PVector force = PVector.sub(bob,anchor);
float currentLength = dir.mag();
float x = restLength - currentLength;

Direction of spring force (unit vector)force.normalize();

Putting it together: direction and magnitude!force.mult(-1 * k * x);

Bob bob;

void setup() {
bob = new Bob();

}

void draw() {

Our Chapter 2 “make-up-a-gravity force”PVector gravity = new PVector(0,1);

bob.applyForce(gravity);

We need to also calculate and apply a
spring force!

PVector springForce = _______________????
bob.applyForce(spring);

Our standard update() and display()
functions

bob.update();

bob.display();
}
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One option would be to write out all of the spring force code in the main draw() loop. But
thinking ahead to when you might have multiple bobs and multiple spring connections, it
makes a good deal of sense to write an additional class, a Spring class. As shown in Figure
3.18, the Bob class keeps track of the movements of the bob; the Spring class keeps track
of the spring’s anchor and its rest length and calculates the spring force on the bob.

This allows us to write a lovely main program as follows:

Figure 3.18

Bob bob;

Adding a Spring objectSpring spring;

void setup() {
bob = new Bob();
spring = new Spring();

}

void draw() {
PVector gravity = new PVector(0,1);
bob.applyForce(gravity);

This new function in the Spring class will
take care of computing the force of the
spring on the bob.

spring.connect(bob);

bob.update();
bob.display();
spring.display();

}
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You may notice here that this is quite similar to what we did in Example 2.6 (see page 94) with
an attractor. There, we said something like:

The analogous situation here with a spring would be:

Nevertheless, in this example all we said was:

What gives? Why don’t we need to call applyForce() on the bob? The answer is, of course,
that we do need to call applyForce() on the bob. Only instead of doing it in draw(), we’re
just demonstrating that a perfectly reasonable (and sometimes preferable) alternative is to ask
the connect() function to internally handle calling applyForce() on the bob.

Why do it one way with the Attractor class and another way with the Spring class? When we
were first learning about forces, it was a bit clearer to show all the forces being applied in the
main draw() loop, and hopefully this helped you learn about force accumulation. Now that
we’re more comfortable with that, perhaps it’s simpler to embed some of the details inside the
objects themselves.

Let’s take a look at the rest of the elements in the Spring class.

PVector force = attractor.attract(mover);
mover.applyForce(force);

PVector force = spring.connect(bob);
bob.applyForce(force);

spring.connect(bob);

void connect(Bob b) {
PVector force = some fancy calculations

The function connect() takes care of calling
applyForce() and therefore doesn’t have to
return a vector to the calling area.

b.applyForce(force);

}
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Example 3.11: A Spring connection

The full code for this example is included on the book website, and the Web version also
incorporates two additional features: (1) the Bob class includes functions for mouse

class Spring {

We need to keep track of the spring’s
anchor location.

PVector anchor;

Rest length and spring constant variablesfloat len;

float k = 0.1;

The constructor initializes the anchor point
and rest length.

Spring(float x, float y, int l) {
anchor = new PVector(x,y);
len = l;

}

Calculate spring force—our implementation
of Hooke’s Law.

void connect(Bob b) {

Get a vector pointing from anchor to Bob
location.

PVector force =
PVector.sub(b.location,anchor);

float d = force.mag();

Calculate the displacement between
distance and rest length.

float stretch = d - len;

Direction and magnitude together!force.normalize();
force.mult(-1 * k * stretch);

Call applyForce() right here!b.applyForce(force);

}

Draw the anchor.void display() {
fill(100);
rectMode(CENTER);
rect(anchor.x,anchor.y,10,10);

}

Draw the spring connection between Bob
location and anchor.

void displayLine(Bob b) {
stroke(255);
line(b.location.x,b.location.y,anchor.x,anchor.y);

}

}

Chapter 3. Oscillation

140



interactivity so that the bob can be dragged around the window, and (2) the Spring object
includes a function to constrain the connection’s length between a minimum and a maximum.

Before running to see the example online, take a look at this constrain function and see
if you can fill in the blanks.

void constrainLength(Bob b, float minlen, float maxlen) {

Vector pointing from Bob to AnchorPVector dir = PVector.sub(______,______);

float d = dir.mag();

Is it too short?if (d < minlen) {

dir.normalize();
dir.mult(________);

Keep location within constraint.b.location = PVector.add(______,______);

b.velocity.mult(0);

Is it too long?} else if (____________) {

dir.normalize();
dir.mult(_________);

Keep location within constraint.b.location = PVector.add(______,______);

b.velocity.mult(0);
}

}

Exercise 3.15Exercise 3.15

Create a system of multiple bobs and spring connections. How would you have a bob
connected to a bob with no fixed anchor?

Exercise 3.16Exercise 3.16
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The Ecosystem ProjectThe Ecosystem Project

Step 3 Exercise:

Take one of your creatures and incorporate oscillation into its motion. You can
use the Oscillator class from Example 3.7 as a model. The Oscillator object,
however, oscillates around a single point (the middle of the window). Try
oscillating around a moving point. In other words, design a creature that moves
around the screen according to location, velocity, and acceleration. But that
creature isn’t just a static shape, it’s an oscillating body. Consider tying the speed
of oscillation to the speed of motion. Think of a butterfly’s flapping wings or the
legs of an insect. Can you make it appear that the creature’s internal mechanics
(oscillation) drive its locomotion? For a sample, check out the
“AttractionArrayWithOscillation” example with the code download.
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Chapter 4. ParticleChapter 4. Particle
SystemsSystems
“That is wise. Were I to invoke logic, however, logic clearly dictates that
the needs of the many outweigh the needs of the few.”

— Spock

In 1982, William T. Reeves, a researcher at Lucasfilm Ltd., was working on the film Star Trek II:
The Wrath of Khan. Much of the movie revolves around the Genesis Device, a torpedo that
when shot at a barren, lifeless planet has the ability to reorganize matter and create a
habitable world for colonization. During the sequence, a wall of fire ripples over the planet
while it is being “terraformed.” The term particle systemparticle system, an incredibly common and useful
technique in computer graphics, was coined in the creation of this particular effect.

“A particle system is a collection of many many minute particles that together represent a
fuzzy object. Over a period of time, particles are generated into a system, move and change
from within the system, and die from the system.”

—William Reeves, "Particle Systems—A Technique for Modeling a Class of Fuzzy
Objects," ACM Transactions on Graphics 2:2 (April 1983), 92.

Since the early 1980s, particle systems have been used in countless video games, animations,
digital art pieces, and installations to model various irregular types of natural phenomena,
such as fire, smoke, waterfalls, fog, grass, bubbles, and so on.

This chapter will be dedicated to looking at implementation strategies for coding a particle
system. How do we organize our code? Where do we store information related to individual
particles versus information related to the system as a whole? The examples we’ll look at will
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focus on managing the data associated with a particle system. They’ll use simple shapes for
the particles and apply only the most basic behaviors (such as gravity). However, by using
this framework and building in more interesting ways to render the particles and compute
behaviors, you can achieve a variety of effects.

4.1 Why We Need Particle Systems4.1 Why We Need Particle Systems
We’ve defined a particle system to be a collection of independent objects, often
represented by a simple shape or dot. Why does this matter? Certainly, the prospect of
modeling some of the phenomena we listed (explosions!) is attractive and potentially useful.
But really, there’s an even better reason for us to concern ourselves with particle systems. If
we want to get anywhere in this nature of code life, we’re going to need to work with
systems of many things. We’re going to want to look at balls bouncing, birds flocking,
ecosystems evolving, all sorts of things in plural.

Just about every chapter after this one is going to need to deal with a list of objects. Yes,
we’ve done this with an array in some of our first vector and forces examples. But we need
to go where no array has gone before.

First, we’re going to want to deal with flexible quantities of elements. Sometimes we’ll have
zero things, sometimes one thing, sometimes ten things, and sometimes ten thousand
things. Second, we’re going to want to take a more sophisticated object-oriented approach.
Instead of simply writing a class to describe a single particle, we’re also going to want to
write a class that describes the collection of particles—the particle system itself. The goal
here is to be able to write a main program that looks like the following:

No single particle is ever referenced in the above code, yet the result will be full of particles
flying all over the screen. Getting used to writing Processing sketches with multiple classes,
and classes that keep lists of instances of other classes, will prove very useful as we get to
more advanced chapters in this book.

Finally, working with particle systems is also a good excuse for us to tackle two other
advanced object-oriented programming techniques: inheritance and polymorphism. With the

Ah, isn’t this main program so simple and
lovely?

ParticleSystem ps;

void setup() {
size(200,200);
ps = new ParticleSystem();

}

void draw() {
background(255);
ps.run();

}
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examples we’ve seen up until now, we’ve always had an array of a single type of object, like
"movers" or “oscillators.” With inheritance (and polymorphism), we’ll learn a convenient way to
store a single list that contains objects of different types. This way, a particle system need not
only be a system of a single type of particle.

Though it may seem obvious to you, I’d also like to point out that there are typical
implementations of particle systems, and that’s where we will begin in this chapter. However,
the fact that the particles in this chapter look or behave a certain way should not limit your
imagination. Just because particle systems tend to look sparkly, fly forward, and fall with
gravity doesn’t mean that those are the characteristics yours should have.

The focus here is really just how to keep track of a system of many elements. What those
elements do and how those elements look is up to you.

4.2 A Single Particle4.2 A Single Particle
Before we can get rolling on the system itself, we have to write the class that will describe a
single particle. The good news: we’ve done this already. Our Mover class from Chapter 2
serves as the perfect template. For us, a particle is an independent body that moves about the
screen. It has location, velocity, and acceleration, a constructor to initialize those
variables, and functions to display() itself and update() its location.

This is about as simple as a particle can get. From here, we could take our particle in several
directions. We could add an applyForce() function to affect the particle’s behavior (we’ll do

class Particle {

A “Particle” object is just another name for
our “Mover.” It has location, velocity, and
acceleration.

PVector location;
PVector velocity;
PVector acceleration;

Particle(PVector l) {
location = l.get();
acceleration = new PVector();
velocity = new PVector();

}

void update() {
velocity.add(acceleration);
location.add(velocity);

}

void display() {
stroke(0);
fill(175);
ellipse(location.x,location.y,8,8);

}
}
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precisely this in a future example). We could add variables to describe color and shape, or
reference a PImage to draw the particle. For now, however, let’s focus on adding just one
additional detail: lifespanlifespan.

Typical particle systems involve something called an emitteremitter. The emitter is the source of
the particles and controls the initial settings for the particles, location, velocity, etc. An
emitter might emit a single burst of particles, or a continuous stream of particles, or both.
The point is that for a typical implementation such as this, a particle is born at the emitter
but does not live forever. If it were to live forever, our Processing sketch would eventually
grind to a halt as the number of particles increases to an unwieldy number over time. As
new particles are born, we need old particles to die. This creates the illusion of an infinite
stream of particles, and the performance of our program does not suffer. There are many
different ways to decide when a particle dies. For example, it could come into contact with
another object, or it could simply leave the screen. For our first Particle class, however,
we’re simply going to add a lifespan variable. The timer will start at 255 and count down
to 0, when the particle will be considered “dead.” And so we expand the Particle class as
follows:

The reason we chose to start the lifespan at 255 and count down to 0 is for convenience.
With those values, we can assign lifespan to act as the alpha transparency for the ellipse
as well. When the particle is “dead” it will also have faded away onscreen.

class Particle {
PVector location;
PVector velocity;
PVector acceleration;

A new variable to keep track of how long
the particle has been “alive”

float lifespan;

Particle(PVector l) {
location = l.get();
acceleration = new PVector();
velocity = new PVector();

We start at 255 and count down for
convenience

lifespan = 255;

}

void update() {
velocity.add(acceleration);
location.add(velocity);

Lifespan decreaseslifespan -= 2.0;

}

void display() {

Since our life ranges from 255 to 0 we can
use it for alpha

stroke(0,lifespan);
fill(175,lifespan);

ellipse(location.x,location.y,8,8);
}

}
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With the addition of the lifespan variable, we’ll also need one additional function—a function
that can be queried (for a true or false answer) as to whether the particle is alive or dead. This
will come in handy when we are writing the ParticleSystem class, whose task will be to
manage the list of particles themselves. Writing this function is pretty easy; we just need to
check and see if the value of lifespan is less than 0. If it is we return true, if not we
return false.

Before we get to the next step of making many particles, it’s worth taking a moment to make
sure our particle works correctly and create a sketch with one single Particle object. Here is
the full code below, with two small additions. We add a convenience function called run()
that simply calls both update() and display() for us. In addition, we give the particle a
random initial velocity as well as a downward acceleration (to simulate gravity).

Example 4.1: A single particle

boolean isDead() {

Is the particle still alive?if (lifespan < 0.0) {
return true;

} else {
return false;

}

}

Particle p;

void setup() {
size(200,200);
p = new Particle(new PVector(width/2,10));
smooth();

}

void draw() {
background(255);
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Operating the single Particlep.run();

if (p.isDead()) {
println("Particle dead!");

}
}

class Particle {
PVector location;
PVector velocity;
PVector acceleration;
float lifespan;

Particle(PVector l) {

acceleration = new PVector(0,0.05);

velocity = new PVector(random(-1,1),random(-2,0));
location = l.get();
lifespan = 255.0;

}

For demonstration purposes we assign the
Particle an initial velocity and constant
acceleration.

Sometimes it’s convenient to have a “run”
function that calls all the other functions we
need.

void run() {

update();
display();

}

void update() {
velocity.add(acceleration);
location.add(velocity);
lifespan -= 2.0;

}

void display() {
stroke(0,lifespan);
fill(0,lifespan);
ellipse(location.x,location.y,8,8);

}

Is the Particle alive or dead?boolean isDead() {

if (lifespan < 0.0) {
return true;

} else {
return false;

}
}

}
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Now that we have a class to describe a single particle, we’re ready for the next big step. How
do we keep track of many particles, when we can’t ensure exactly how many particles we
might have at any given time?

Rewrite the example so that the particle can respond to force vectors via an
applyForce() function.

Exercise 4.1Exercise 4.1

Add angular velocity (rotation) to the particle. Create your own non-circle particle
design.

Exercise 4.2Exercise 4.2

4.3 The ArrayList4.3 The ArrayList

In truth, we could use a simple array to manage our Particle objects. Some particle systems
might have a fixed number of particles, and arrays are magnificently efficient in those
instances. Processing also offers expand(), contract(), subset(), splice(), and other
methods for resizing arrays. However, for these examples, we’re going to take a more
sophisticated approach and use the Java class ArrayList, found in the java.util package
ArrayList Documentation (http://download.oracle.com/javase/6/docs/api/java/util/
ArrayList.html).

Using an ArrayList follows the same idea as using a standard array, but with different syntax.
The following two code examples (which assume the existence of a generic Particle class)
produce the same result: first with an array, and second with an ArrayList.

The standard array way:

int total = 10;
Particle[] parray = new Particle[total];

void setup() {

This is what we’re used to, accessing
elements on the array via an index and
brackets—[ ].

for (int i = 0; i < parray.length; i++) {
parray[i] = new Particle();

}
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The new ArrayList way:

This last for loop looks pretty similar to our code that looped through a regular array by
accessing each index. We initialize a variable called i to 0 and count up by 1, accessing
each element of the ArrayList until we get to the end. However, this is a nice moment to
mention the “enhanced for loop” available in Java (and Processing) which is a bit more
concise. The enhanced loop works with both ArrayLists and regular arrays and looks like
this:

Let’s translate that. Say “for each” instead of “for” and say “in” instead of “:”. Now you have:

“For each Particle p in particles, run that Particle p!”

I know. You cannot contain your excitement. I can’t. I know it’s not necessary, but I just have
to type that again.

}

void draw() {
for (int i = 0; i < parray.length; i++) {

Particle p = parray[i];
p.run();

}
}

int total = 10;

ArrayList<Particle> plist = new ArrayList<Particle>();

void setup() {
for (int i = 0; i < total; i++) {

Have you ever seen this syntax before?
This is a new feature in Java 1.6 (called
"generics") that Processing now supports.
It allows us to specify in advance what type
of object we intend to put in the ArrayList.

An object is added to an ArrayList with
add().

plist.add(new Particle());

}
}

void draw() {

The size of the ArrayList is returned by
size().

for (int i = 0; i < plist.size(); i++) {

An object is accessed from the ArrayList
with get(). Because we are using generics,
we do not need to specify a type when we
pull objects out of the ArrayList.

Particle p = plist.get(i);

p.run();
}

}

ArrayList<Particle> plist = new ArrayList<Particle>();

for (Particle p: particles) {
p.run();

}
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Simple, elegant, concise, lovely. Take a moment. Breathe. I have some bad news. Yes, we
love that enhanced loop and we will get to use it. But not right now. Our particle system
examples will require a feature that makes using that loop impossible. Let’s continue.

The code we’ve written above doesn’t take advantage of the ArrayList’s resizability, and it
uses a fixed size of 10. We need to design an example that fits with our particle system
scenario, where we emit a continuous stream of Particle objects, adding one new particle
with each cycle through draw(). We’ll skip rehashing the Particle class code here, as it
doesn’t need to change.

Run the above code for a few minutes and you’ll start to see the frame rate slow down further
and further until the program grinds to a halt (my tests yielded horrific performance after
fifteen minutes). The issue of course is that we are creating more and more particles without
removing any.

Fortunately, the ArrayList class has a convenient remove() function that allows us to delete
a Particle (by referencing its index). This is why we cannot use the new enhanced for loop we
just learned; the enhanced loop provides no means for deleting elements while iterating.
Here, we want to call remove() when the Particle’s isDead() function returns true.

This enhanced loop also works for regular
arrays!

for (Particle p : particles) {

p.run();
}

ArrayList<Particle> particles;

void setup() {
size(200,200);
particles = new ArrayList<Particle>();

}

void draw() {
background(255);

particles.add(new Particle(new PVector(width/2,50)));

for (int i = 0; i < particles.size(); i++) {
Particle p = particles.get(i);
p.run();

}
}

A new Particle object is added to the
ArrayList every cycle through draw().

for (int i = 0; i < particles.size(); i++) {
Particle p = particles.get(i);
p.run();

If the Particle is “dead,” we can go ahead
and delete it from the list.

if (p.isDead()) {
particles.remove(i);

}

}
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Although the above code will run just fine (and the program will never grind to a halt), we
have opened up a medium-sized can of worms. Whenever we manipulate the contents of a
list while iterating through that very list, we can get ourselves into trouble. Take, for
example, the following code.

This is a somewhat extreme example (with flawed logic), but it proves the point. In the
above case, for each particle in the list, we add a new particle to the list (manipulating the
size() of the ArrayList). This will result in an infinite loop, as i can never increment past
the size of the ArrayList.

While removing elements from the ArrayList during a loop doesn’t cause the program to
crash (as it does with adding), the problem is almost more insidious in that it leaves no
evidence. To discover the problem we must first establish an important fact. When an object
is removed from the ArrayList, all elements are shifted one spot to the left. Note the
diagram below where particle C (index 2) is removed. Particles A and B keep the same
index, while particles D and E shift from 3 and 4 to 2 and 3, respectively.

Let’s pretend we are i looping through the ArrayList.

when i = 0 → Check particle A → Do not delete
when i = 1 → Check particle B → Do not delete
when i = 2 → Check particle C → Delete!

Slide particles D and E back from slots 3 and 4 to 2 and 3
when i = 3 → Check particle E → Do not delete

Notice the problem? We never checked particle D! When C was deleted from slot #2, D
moved into slot #2, but i has already moved on to slot # 3. This is not a disaster, since

for (int i = 0; i < particles.size(); i++) {
Particle p = particles.get(i);
p.run();

particles.add(new Particle(new PVector(width/2,50)));

} Adding a new Particle to the list while
iterating?

Figure 4.1
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particle D will get checked the next time around. Still, the expectation is that we are writing
code to iterate through every single element of the ArrayList. Skipping an element is
unacceptable.

There are two solutions to this problem. The first solution is to simply iterate through the
ArrayList backwards. If you are sliding elements from right to left as elements are removed,
it’s impossible to skip an element by accident. Here’s how the code would look:

This is a perfectly fine solution in ninety-nine cases out of a hundred. But sometimes, the
order in which the elements are drawn could be important and you may not want to iterate
backwards. Java provides a special class—Iterator—that takes care of all of the details of
iteration for you. You get to say:

Hey, I’d like to iterate through this ArrayList. Could you continue to give me the next
element in the list one at a time until we get to the end? And if I remove elements or move
them around in the list while we’re iterating, will you make sure I don’t look at any elements
twice or skip any by accident?

An ArrayList can produce an Iterator object for you.

Once you’ve got the iterator, the hasNext() function will tell us whether there is a Particle
for us to run and the next() function will grab that Particle object itself.

And if you call the remove() function on the Iterator object during the loop, it will delete the
current Particle object (and not skip ahead past the next one, as we saw with counting
forward through the ArrayList).

Looping through the list backwardsfor (int i = particles.size()-1; i >= 0; i--) {

Particle p = (Particle) particles.get(i);
p.run();
if (p.isDead()) {

particles.remove(i);
}

}

Note that with the Iterator object, we can
also use the new <ClassName> generics
syntax and specify the type that the Iterator
will reference.

Iterator<Particle> it = particles.iterator();

An Iterator object doing the iterating for youwhile (it.hasNext()) {
Particle p = it.next();
p.run();

if (p.isDead()) {
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Putting it all together, we have:

Example 4.2: ArrayList of particles with Iterator

An Iterator object doing the deleting for youit.remove();

}
}

ArrayList<Particle> particles;

void setup() {
size(200,200);
particles = new ArrayList<Particle>();

}

void draw() {
background(255);

particles.add(new Particle(new PVector(width/2,50)));

Iterator<Particle> it = particles.iterator();

Using an Iterator object instead of
counting with int i

while (it.hasNext()) {
Particle p = it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}

}
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4.4 The Particle System Class4.4 The Particle System Class

OK. Now we’ve done two things. We’ve written a class to describe an individual Particle
object. We’ve conquered the ArrayList and used it to manage a list of many Particle
objects (with the ability to add and delete at will).

We could stop here. However, one additional step we can and should take is to write a class
to describe the list of Particle objects itself—the ParticleSystem class. This will allow us to
remove the bulky logic of looping through all particles from the main tab, as well as open up
the possibility of having more than one particle system.

If you recall the goal we set at the beginning of this chapter, we wanted our main tab to look
like this:

Let’s take the code from Example 4.2 and review a bit of object-oriented programming,
looking at how each piece from the main tab can fit into the ParticleSystem class.

Just one wee ParticleSystem!ParticleSystem ps;

void setup() {
size(200,200);
ps = new ParticleSystem();

}

void draw() {
background(255);
ps.run();

}
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ArrayList in the main tabArrayList in the main tab ArrayList in the ParticleSystem classArrayList in the ParticleSystem class

ArrayList<Particle> particles;

void setup() {
size(200,200);
particles = new ArrayList<Particle>();

}

void draw() {
background(255);

particles.add(new Particle());

Iterator<Particle> it =
particles.iterator();

while (it.hasNext()) {
Particle p = it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}
}

class ParticleSystem {
ArrayList<Particle> particles;

ParticleSystem() {
particles = new ArrayList<Particle>();

}

void addParticle() {
particles.add(new Particle());

}

void run() {
Iterator<Particle> it =

particles.iterator();
while (it.hasNext()) {

Particle p = it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}
}

}

We could also add some new features to the particle system itself. For example, it might be
useful for the ParticleSystem class to keep track of an origin point where particles are
made. This fits in with the idea of a particle system being an “emitter,” a place where
particles are born and sent out into the world. The origin point should be initialized in the
constructor.

Example 4.3: Simple Single Particle System

class ParticleSystem {
ArrayList particles;

This particular ParticleSystem
implementation includes an origin point
where each Particle begins.

PVector origin;

ParticleSystem(PVector location) {
origin = location.get();
particles = new ArrayList();

}

void addParticle() {

The origin is passed to each Particle when
it is added.

particles.add(new Particle(origin));

}
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Make the origin point move dynamically. Have the particles emit from the mouse
location or use the concepts of velocity and acceleration to make the system move
autonomously.

Exercise 4.3Exercise 4.3

Building off Chapter 3’s “Asteroids” example, use a particle system to emit particles
from the ship’s “thrusters” whenever a thrust force is applied. The particles’ initial
velocity should be related to the ship’s current direction.

Exercise 4.4Exercise 4.4

4.5 A System of Systems4.5 A System of Systems

Let’s review for a moment where we are. We know how to talk about an individual Particle
object. We also know how to talk about a system of Particle objects, and this we call a
“particle system.” And we’ve defined a particle system as a collection of independent objects.
But isn’t a particle system itself an object? If that’s the case (which it is), there’s no reason why
we couldn’t also have a collection of many particle systems, i.e. a system of systems.

This line of thinking could of course take us even further, and you might lock yourself in a
basement for days sketching out a diagram of a system of systems of systems of systems of
systems of systems. Of systems. After all, this is how the world works. An organ is a system of
cells, a human body is a system of organs, a neighborhood is a system of human bodies, a city
is a system of neighborhoods, and so on and so forth. While this is an interesting road to
travel down, it’s a bit beyond where we need to be right now. It is, however, quite useful to
know how to write a Processing sketch that keeps track of many particle systems, each of
which keep track of many particles. Let’s take the following scenario.

You start with a blank screen.
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You click the mouse and generate a particle system at the mouse’s location.

Each time you click the mouse, a new particle system is created at the mouse’s location.

In Example 4.3 (see page 156), we stored a single reference to a particle system object in
the variable ps.

For this new example, what we want to do instead is create an ArrayList to keep track of
multiple instances of particle systems. When the program starts, i.e. in setup(), the
ArrayList is empty.

ParticleSystem ps;

void setup() {
size(200,200);
ps = new ParticleSystem(1,new PVector(width/2,50));

}

void draw() {
background(255);
ps.run();
ps.addParticle();

}
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Example 4.4: System of systems

Whenever the mouse is pressed, a new ParticleSystem object is created and placed into the
ArrayList.

And in draw(), instead of referencing a single ParticleSystem object, we now look through
all the systems in the ArrayList and call run() on each of them.

This time, the type of thing we are putting in
the ArrayList is a ParticleSystem itself!

ArrayList<ParticleSystem> systems;

void setup() {
size(600,200);
systems = new ArrayList<ParticleSystem>();

}

void mousePressed() {
systems.add(new ParticleSystem(new PVector(mouseX,mouseY)));

}

void draw() {
background(255);

Since we aren’t deleting elements, we can
use our enhanced loop!

for (ParticleSystem ps: systems) {

ps.run();
ps.addParticle();

}
}

Rewrite Example 4.4 so that each particle system doesn’t live forever. When a particle
system is empty (i.e. has no particles left in its ArrayList), remove it from the
ArrayList systems.

Exercise 4.5Exercise 4.5

Create a simulation of an object shattering into many pieces. How can you turn one
large shape into many small particles? What if there are several large shapes on the
screen and they shatter when you click on them?

Exercise 4.6Exercise 4.6
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4.6 Inheritance and Polymorphism: An Introduction4.6 Inheritance and Polymorphism: An Introduction
You may have encountered the terms inheritance and polymorphism in your programming
life before this book. After all, they are two of the three fundamental principles behind the
theory of object-oriented programming (the other being encapsulation). If you’ve read other
Processing or Java programming books, chances are it’s been covered. My beginner text,
Learning Processing, has close to an entire chapter (#22) dedicated to these two topics.

Still, perhaps you’ve only learned about it in the abstract sense and never had a reason to
really use inheritance and polymorphism. If this is true, you’ve come to the right place.
Without these two topics, your ability to program a variety of particles and particle systems
is extremely limited. (In the next chapter, we’ll also see how understanding these topics will
help us to use physics libraries.)

Imagine the following. It’s a Saturday morning, you’ve just gone out for a lovely jog, had a
delicious bowl of cereal, and are sitting quietly at your computer with a cup of warm
chamomile tea. It’s your old friend So and So’s birthday and you’ve decided you’d like to
make a greeting card in Processing. How about some confetti for a birthday? Purple
confetti, pink confetti, star-shaped confetti, square confetti, fast confetti, fluttery confetti,
etc. All of these pieces of confetti with different appearances and different behaviors
explode onto the screen at once.

What we’ve got here is clearly a particle system—a collection of individual pieces of confetti
(i.e. particles). We might be able to cleverly design our Particle class to have variables
that store its color, shape, behavior, etc. And perhaps we initialize the values of these
variables randomly. But what if your particles are drastically different? This could become
very messy, having all sorts of code for different ways of being a particle in the same class.
Well, you might consider doing the following:

This is a nice solution: we have three different classes to describe the different kinds of
pieces of confetti that could be part of our particle system. The ParticleSystem
constructor could then have some code to pick randomly from the three classes when filling
the ArrayList. Note that this probabilistic method is the same one we employed in our
random walk examples in the Introduction (see page 2).

class HappyConfetti {

}

class FunConfetti {

}

class WackyConfetti {

}
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OK, we now need to pause for a moment. We’ve done nothing wrong. All we wanted to do
was wish our friend a happy birthday and enjoy writing some code. But while the reasoning
behind the above approach is quite sound, we’ve opened up two major problems.

Problem #1: Aren’t we going to be copying/pasting a lot of code between the
different “confetti” classes?

Yes. Even though our kinds of particles are different enough to merit our breaking them out
into separate classes, there is still a ton of code that they will likely share. They’ll all have
PVectors to keep track of location, velocity, and acceleration; an update() function that
implements our motion algorithm; etc.

This is where inheritanceinheritance comes in. Inheritance allows us to write a class that inherits
variables and functions from another class, all the while implementing its own custom
features.

Problem #2: How will the ArrayList know which objects are which type?

This is a pretty serious problem. Remember, we were using generics to tell the ArrayList
what type of objects we’re going to put inside it. Are we suddenly going to need three
different ArrayLists?

This seems awfully inconvenient, given that we really just want one list to keep track of all the
stuff in the particle system. That can be made possible with polymorphism. Polymorphism will
allow us to consider objects of different types as the same type and store them in a single
ArrayList.

class ParticleSystem {
ParticleSystem(int num) {

particles = new ArrayList();
for (int i = 0; i < num; i++) {

float r = random(1);

Randomly picking a "kind" of particle
if (r < 0.33) { particles.add(new HappyConfetti()); }
else if (r < 0.67) { particles.add(new FunConfetti()); }
else { particles.add(new WackyConfetti()); }

}
}

ArrayList<HappyConfetti> a1 = new ArrayList<HappyConfetti>();
ArrayList<FunConfetti> a2 = new ArrayList<FunConfetti>();
ArrayList<WackyConfetti> a3 = new ArrayList<WackyConfetti>();
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Now that we understand the problem, let’s look at these two concepts in a bit more detail
and then create a particle system example that implements both inheritance and
polymorphism.

4.7 Inheritance Basics4.7 Inheritance Basics
Let’s take a different example, the world of animals: dogs, cats, monkeys, pandas, wombats,
and sea nettles. We’ll start by programming a Dog class. A Dog object will have an age
variable (an integer), as well as eat(), sleep(), and bark() functions.

Now, let’s move on to cats.

class Dog {
int age;

Dogs and cats have the same variables
(age) and functions (eat, sleep).

Dog() {
age = 0;

}

void eat() {
println("Yum!");

}

void sleep() {
println("Zzzzzz");

}

A unique function for barking.void bark() {
println("WOOF!");

}

}
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As we rewrite the same code for fish, horses, koalas, and lemurs, this process will become
rather tedious. Instead, let’s develop a generic Animal class that can describe any type of
animal. All animals eat and sleep, after all. We could then say:

• A dog is an animal and has all the properties of animals and can do all the things
animals do. Also, a dog can bark.

• A cat is an animal and has all the properties of animals and can do all the things
animals do. Also, a cat can meow.

Inheritance makes this all possible. With inheritance, classes can inherit properties (variables)
and functionality (methods) from other classes. A Dog class is a child (subclasssubclass) of an Animal
class. Children will automatically inherit all variables and functions from the parent
(superclasssuperclass), but can also include functions and variables not found in the parent. Like a
phylogenetic "tree of life," inheritance follows a tree structure. Dogs inherit from canines,
which inherit from mammals, which inherit from animals, etc.

class Cat {
int age;

Cat() {
age = 0;

}

void eat() {
println("Yum!");

}

void sleep() {
println("Zzzzzz");

}

void meow() {
println("MEOW!");

}
}

Figure 4.2
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Here is how the syntax works with inheritance.

This brings up two new terms:

• extendsextends – This keyword is used to indicate a parent for the class being defined.
Note that classes can only extend one class. However, classes can extend classes
that extend other classes, i.e. Dog extends Animal, Terrier extends Dog.
Everything is inherited all the way down the line.

• super()super() – This calls the constructor in the parent class. In other words, whatever
you do in the parent constructor, do so in the child constructor as well. Other code
can be written into the constructor in addition to super(). super() can also

The Animal class is the parent (or super)
class.

class Animal {

Dog and Cat inherit the variable age.int age;

Animal() {
age = 0;

}

Dog and Cat inherit the functions eat() and
sleep().

void eat() {
println("Yum!");

}

void sleep() {
println("Zzzzzz");

}

}

The Dog class is the child (or sub) class,
indicated by the code "extends Animal".

class Dog extends Animal {

Dog() {

super() executes code found in the parent
class.

super();

}

We define bark() in the child class, since it
isn't part of the parent class.

void bark() {

println("WOOF!");
}

}

class Cat extends Animal {
Cat() {

super();
}
void meow() {

println("MEOW!");
}

}
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receive arguments if there is a parent constructor defined with matching arguments.

A subclass can be expanded to include additional functions and properties beyond what is
contained in the superclass. For example, let’s assume that a Dog object has a haircolor
variable in addition to age, which is set randomly in the constructor. The class would now look
like this:

Note how the parent constructor is called via super(), which sets the age to 0, but the
haircolor is set inside the Dog constructor itself. If a Dog object eats differently than a generic
Animal object, parent functions can be overridden by rewriting the function inside the
subclass.

But what if a dog eats the same way as a generic animal, just with some extra functionality? A
subclass can both run the code from a parent class and incorporate custom code.

class Dog extends Animal {

A child class can introduce new variables
not included in the parent.

color haircolor;

Dog() {
super();
haircolor = color(random(255));

}

void bark() {
println("WOOF!");

}
}

class Dog extends Animal {
color haircolor;

Dog() {
super();
haircolor = color(random(255));

}

A child can override a parent function if
necessary.

void eat() {

A Dog's specific eating characteristicsprintln("Woof! Woof! Slurp.")

}

void bark() {
println("WOOF!");

}
}
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class Dog extends Animal {
color haircolor;

Dog() {
super();
haircolor = color(random(255));

}

void eat() {

Call eat() from Animal. A child can execute
a function from the parent while adding its
own code.

super.eat();

Add some additional code for a Dog's
specific eating characteristics.

println("Woof!!!");

}

void bark() {
println("WOOF!");

}
}

4.8 Particles with Inheritance4.8 Particles with Inheritance
Now that we’ve had an introduction to the theory of inheritance and its syntax, we can
develop a working example in Processing based on our Particle class.

Let’s review a simple Particle implementation, further simplified from Example 4.1 (see
page 147):
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Next, we create a subclass from Particle (let’s call it Confetti). It will inherit all the instance
variables and methods from Particle. We write a new constructor with the name Confetti
and execute the code from the parent class by calling super().

class Particle {
PVector location;
PVector velocity;
PVector acceleration;

Particle(PVector l) {
acceleration = new PVector(0,0.05);
velocity = new PVector(random(-1,1),random(-2,0));
location = l.get();

}

void run() {
update();
display();

}

void update() {
velocity.add(acceleration);
location.add(velocity);

}

void display() {
fill(0);
ellipse(location.x,location.y,8,8);

}
}

class Confetti extends Particle {

We could add variables for only Confetti
here.

Confetti(PVector l) {
super(l);

}

There is no code here because we inherit
update() from parent.

Override the display method.void display() {
rectMode(CENTER);
fill(175);
stroke(0);
rect(location.x,location.y,8,8);

}

}
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Let’s make this a bit more sophisticated. Let’s say we want to have the Confetti particle
rotate as it flies through the air. We could, of course, model angular velocity and
acceleration as we did in Chapter 3. Instead, we’ll try a quick and dirty solution.

We know a particle has an x location somewhere between 0 and the width of the window.
What if we said: when the particle’s x location is 0, its rotation should be 0; when its x
location is equal to the width, its rotation should be equal to TWO_PI? Does this ring a bell?
Whenever we have a value with one range that we want to map to another range, we can
use Processing’s map() function, which we learned about in the Introduction (see page 17)!

And just to give it a bit more spin, we can actually map the angle’s range from 0 to
TWO_PI*2. Let’s look at how this code fits into the display() function.

Now that we have a Confetti class that extends our base Particle class, we need to
figure out how our ParticleSystem class can manage particles of different types within the
same system. To accomplish this goal, let’s return to the animal kingdom inheritance
example and see how the concept extends into the world of polymorphism.

float angle = map(location.x,0,width,0,TWO_PI);

void display() {
float theta = map(location.x,0,width,0,TWO_PI*2);

rectMode(CENTER);
fill(0,lifespan);
stroke(0,lifespan);

If we rotate() a shape in Processing, we
need to familiarize ourselves with
transformations. For more, visit:
http://processing.org/learning/transform2d/

pushMatrix();
translate(location.x,location.y);
rotate(theta);
rect(0,0,8,8);
popMatrix();

}

Instead of using map() to calculate theta, how would you model angular velocity and
acceleration?

Exercise 4.7Exercise 4.7

4.9 Polymorphism Basics4.9 Polymorphism Basics
With the concept of inheritance under our belts, we can imagine how we would program a
diverse animal kingdom using ArrayLists—an array of dogs, an array of cats, of turtles, of
kiwis, etc. frolicking about.
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As the day begins, the animals are all pretty hungry and are looking to eat. So it’s off to
looping time (enhanced looping time!)…

This works well, but as our world expands to include many more animal species, we’re going
to get stuck writing a lot of individual loops. Is this really necessary? After all, the creatures
are all animals, and they all like to eat. Why not just have one ArrayList of Animal objects
and fill it with all different kinds of animals?

Separate ArrayLists for each animalArrayList<Dog> dogs = new ArrayList<Dog>();
ArrayList<Cat> cats = new ArrayList<Cat>();
ArrayList<Turtle> turtles = new ArrayList<Turtle>();
ArrayList<Kiwi> kiwis = new ArrayList<Kiwi>();

for (int i = 0; i < 10; i++) {
dogs.add(new Dog());

}
for (int i = 0; i < 15; i++) {

cats.add(new Cat());
}
for (int i = 0; i < 6; i++) {

turtles.add(new Turtle());
}
for (int i = 0; i < 98; i++) {

kiwis.add(new Kiwi());
}

Separate loops for each animalfor (Dog d: dogs) {
d.eat();

}
for (Cat c: cats) {

c.eat();
}
for (Turtle t: turtles) {

t.eat();
}
for (Kiwi k: kiwis) {

k.eat();
}
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The ability to treat a Dog object as either a member of the Dog class or the Animal class (its
parent) is an example of polymorphism. PolymorphismPolymorphism (from the Greek polymorphos,
meaning many forms) refers to the treatment of a single instance of an object in multiple
forms. A dog is certainly a dog, but since Dog extends Animal, it can also be considered
an animal. In code, we can refer to it both ways.

Although the second line of code might initially seem to violate syntax rules, both ways of
declaring a Dog object are legal. Even though we declare spot as an Animal object, we’re
really making a Dog object and storing it in the spot variable. And we can safely call all of
the Animal class methods on spot because the rules of inheritance dictate that a dog can
do anything an animal can.

What if the Dog class, however, overrides the eat() function in the Animal class? Even if
spot is declared as an Animal, Java will determine that its true identity is that of a Dog and
run the appropriate version of the eat() function.

This is particularly useful when we have an array or ArrayList.

ArrayList<Animal> kingdom = new ArrayList<Animal>();

for (int i = 0; i < 1000; i++) {
if (i < 100) kingdom.add(new Dog());
else if (i < 400) kingdom.add(new Cat());
else if (i < 900) kingdom.add(new Turtle());
else kingdom.add(new Kiwi());

}

for (Animal a: kingdom) {
a.eat();

}

Just one ArrayList for all the animals!

Dog rover = new Dog();
Animal spot = new Dog();

4.10 Particle Systems with Polymorphism4.10 Particle Systems with Polymorphism

Let’s pretend for a moment that polymorphism doesn’t exist and rewrite a ParticleSystem
class to include many Particle objects and many Confetti objects.

class ParticleSystem {

We’re stuck doing everything twice with
two lists!

ArrayList<Particle> particles;
ArrayList<Confetti> confetti;
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Notice how we have two separate lists, one for particles and one for confetti. Every action we
want to perform we have to do twice! Polymorphism allows us to simplify the above by just
making one ArrayList of particles that contains both standard Particle objects as well as
Confetti objects. We don’t have to worry about which are which; this will all be taken care of
for us! (Also, note that the code for the main program and the classes has not changed, so we
aren’t including it here. See the website for the full example.)

PVector origin;

ParticleSystem(PVector location) {
origin = location.get();

We’re stuck doing everything twice with two
lists!

particles = new ArrayList<Particle>();
confetti = new ArrayList<Confetti>();

}

void addParticle() {

We’re stuck doing everything twice with two
lists!

particles.add(new Particle(origin));
particles.add(new Confetti(origin));

}

void run() {

We’re stuck doing everything twice with two
lists!

Iterator<Particle> it = particles.iterator();
while (it.hasNext()) {

Particle p = it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}
it = confetti.iterator();
while (it.hasNext()) {

Confetti c = it.next();
c.run();
if (c.isDead()) {

it.remove();
}

}

}
}

The Nature of Code (v005)

171



Example 4.5: Particle system inheritance and polymorphism

class ParticleSystem {

One list, for anything that is a Particle or
extends Particle

ArrayList<Particle> particles;

PVector origin;

ParticleSystem(PVector location) {
origin = location.get();
particles = new ArrayList<Particle>();

}

void addParticle() {
float r = random(1);

We have a 50% chance of adding each
kind of Particle.

if (r < 0.5) {

particles.add(new Particle(origin));
} else {

particles.add(new Confetti(origin));
}

}

void run() {
Iterator<Particle> it = particles.iterator();
while (it.hasNext()) {

Polymorphism allows us to treat everything
as a Particle, whether it is a Particle or a
Confetti.

Particle p = it.next();

p.run();
if (p.isDead()) {

it.remove();
}

}
}

}
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Create a particle system with different “kinds” of particles in the same system. Try
varying more than just the look of the particles. How do you deal with different
behaviors using inheritance?

Exercise 4.8Exercise 4.8

4.11 Particle Systems with Forces4.11 Particle Systems with Forces
So far in this chapter, we’ve been focusing on structuring our code in an object-oriented way
to manage a collection of particles. Maybe you noticed, or maybe you didn’t, but during this
process we unwittingly took a couple steps backward from where we were in previous
chapters. Let’s examine the constructor of our simple Particle class.

And now let’s look at the update() function.

Our Particle class is structured to have a constant acceleration, one that never changes. A
much better framework would be to follow Newton’s second law (F = M* A) and incorporate
the force accumulation algorithm we worked so hard on in Chapter 2 (see page 68).

Step 1 would be to add in the applyForce() function. (Remember, we need to make a copy of
the PVector before we divide it by mass.)

Particle(PVector l) {

We’re setting acceleration to a constant
value!

acceleration = new PVector(0,0.05);

velocity = new PVector(random(-1,1),random(-2,0));
location = l.get();
lifespan = 255.0;

}

void update() {
velocity.add(acceleration);
location.add(velocity);

// Where is the line of code to clear acceleration?

lifespan -= 2.0;
}

void applyForce(PVector force) {
PVector f = force.get();
f.div(mass);
acceleration.add(f);

}
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Once we have this, we can add in one more line of code to clear the acceleration at the end
of update().

And our Particle class is complete!

void update() {
velocity.add(acceleration);
location.add(velocity);

There it is!acceleration.mult(0);

lifespan -= 2.0;
}

class Particle {
PVector location;
PVector velocity;
PVector acceleration;
float lifespan;

We could vary mass for more interesting
results.

float mass = 1;

Particle(PVector l) {

We now start with acceleration of 0.acceleration = new PVector(0,0);

velocity = new PVector(random(-1,1),random(-2,0));
location = l.get();
lifespan = 255.0;

}

void run() {
update();
display();

}

Newton’s second law & force
accumulation

void applyForce(PVector force) {
PVector f = force.get();
f.div(mass);
acceleration.add(f);

}

Standard updatevoid update() {
velocity.add(acceleration);
location.add(velocity);
acceleration.mult(0);
lifespan -= 2.0;

}
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Now that the Particle class is completed, we have a very important question to ask. Where
do we call the applyForce() function? Where in the code is it appropriate to apply a force to
a particle? The truth of the matter is that there’s no right or wrong answer; it really depends on
the exact functionality and goals of a particular Processing sketch. Still, we can create a
generic situation that would likely apply to most cases and craft a model for applying forces to
individual particles in a system.

Let’s consider the following goal: Apply a force globally every time through draw() to all
particles. We’ll pick an easy one for now: a force pointing down, like gravity.

We said it should always be applied, i.e. in draw(), so let’s take a look at our draw() function
as it stands.

Well, it seems that we have a small problem. applyForce() is a method written inside the
Particle class, but we don’t have any reference to the individual particles themselves, only
the ParticleSystem object: the variable ps.

Since we want all particles to receive the force, however, we can decide to apply the force to
the particle system and let it manage applying the force to all the individual particles:

Our Particle is a circle.void display() {
stroke(255,lifespan);
fill(255,lifespan);
ellipse(location.x,location.y,8,8);

}

Should the Particle be deleted?boolean isDead() {
if (lifespan < 0.0) {

return true;
} else {

return false;
}

}

}

PVector gravity = new PVector(0,0.1);

void draw() {
background(100);
ps.addParticle();
ps.run();

}

void draw() {
background(100);

PVector gravity = new PVector(0,0.1);
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Of course, if we call a new function on the ParticleSystem object in draw(), well, we have
to write that function in the ParticleSystem class. Let’s describe the job that function
needs to perform: receive a force as a PVector and apply that force to all the particles.

Now in code:

It almost seems silly to write this function. What we’re saying is “apply a force to a particle
system so that the system can apply that force to all of the individual particles.”
Nevertheless, it’s really quite reasonable. After all, the ParticleSystem object is in charge
of managing the particles, so if we want to talk to the particles, we’ve got to talk to them
through their manager. (Also, here’s a chance for the enhanced loop since we aren’t
deleting particles!)

Here is the full example (assuming the existence of the Particle class written above; no
need to include it again since nothing has changed):

Applying a force to the system as a wholeps.applyForce(gravity);

ps.addParticle();
ps.run();

}

void applyForce(PVector f) {
for (Particle p: particles) {

p.applyForce(f);
}

}
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Example 4.6: Particle system with forces

ParticleSystem ps;

void setup() {
size(200,200);
smooth();
ps = new ParticleSystem(new PVector(width/2,50));

}

void draw() {
background(100);

Apply a force to all particles.PVector gravity = new PVector(0,0.1);

ps.applyForce(gravity);

ps.addParticle();
ps.run();

}

class ParticleSystem {
ArrayList<Particle> particles;
PVector origin;

ParticleSystem(PVector location) {
origin = location.get();
particles = new ArrayList<Particle>();

}

void addParticle() {
particles.add(new Particle(origin));

}

void applyForce(PVector f) {

Using an enhanced loop to apply the force
to all particles

for (Particle p: particles) {
p.applyForce(f);

}

}

void run() {

Can’t use the enhanced loop because we
want to check for particles to delete.

Iterator<Particle> it = particles.iterator();
while (it.hasNext()) {

Particle p = (Particle) it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}

}
}
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4.12 Particle Systems with Repellers4.12 Particle Systems with Repellers

What if we wanted to take this example one step further and add a Repeller object—the
inverse of the Attractor object we covered in Chapter 2 (see page 88) that pushes any
particles away that get close? This requires a bit more sophistication because, unlike the
gravity force, each force an attractor or repeller exerts on a particle must be calculated for
each particle.

Let’s start solving this problem by examining how we would incorporate a new Repeller
object into our simple particle system plus forces example. We’re going to need two major
additions to our code:

1. A Repeller object (declared, initialized, and displayed).

2. A function that passes the Repeller object into the ParticleSystem so that it can
apply a force to each particle object.

Figure 4.3: Gravity force—vectors are all
identical

Figure 4.4: Attractor force—vectors are all
different

ParticleSystem ps;

New thing: we declare a Repeller object.Repeller repeller;

void setup() {
size(200,200);
smooth();
ps = new ParticleSystem(new PVector(width/2,50));

Chapter 4. Particle Systems

178



Making a Repeller object is quite easy; it’s a duplicate of the Attractor class from Chapter
2, Example 2.6 .

The more difficult question is, how do we write the applyRepeller() function? Instead of
passing a PVector into a function like we do with applyForce(), we’re going to instead pass
a Repeller object into applyRepeller() and ask that function to do the work of calculating
the force between the repeller and all particles. Let’s look at both of these functions side by
side.

New thing: we initialize a Repeller object.repeller = new Repeller(width/2-20,height/2);

}

void draw() {
background(100);
ps.addParticle();

PVector gravity = new PVector(0,0.1);
ps.applyForce(gravity);

New thing: we need a function to apply a
force from a repeller.

ps.applyRepeller(repeller);

ps.run();

New thing: we display the Repeller object.repeller.display();

}

class Repeller {

A Repeller doesn’t move, so you just need
location.

PVector location;

float r = 10;

Repeller(float x, float y) {
location = new PVector(x,y);

}

void display() {
stroke(255);
fill(255);
ellipse(location.x,location.y,r*2,r*2);

}
}
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applyForce()applyForce() applyRepellerapplyRepeller

void applyForce(PVector f) {
for (Particle p: particles) {

p.applyForce(f);
}

}

void applyRepeller(Repeller r) {
for (Particle p: particles) {

PVector force = r.repel(p);
p.applyForce(force);

}
}

The functions are almost identical. There are only two differences. One we mentioned
before—a Repeller object is the argument, not a PVector. The second difference is the
important one. We must calculate a custom PVector force for each and every particle and
apply that force. How is that force calculated? In a function called repel(), which is the
inverse of the attract() function we wrote for the Attractor class.

Notice how throughout this entire process of adding a repeller to the environment, we’ve
never once considered editing the Particle class itself. A particle doesn’t actually have to
know anything about the details of its environment; it simply needs to manage its location,
velocity, and acceleration, as well as have the ability to receive an external force and act on
it.

So we can now look at this example in its entirety, again leaving out the Particle class,
which hasn’t changed.

All the same steps we had to calculate an
attractive force, only pointing in the
opposite direction.

PVector repel(Particle p) {

1) Get force direction.PVector dir =
PVector.sub(location,p.location);

2) Get distance (constrain distance).float d = dir.mag();
d = constrain(d,5,100);

dir.normalize();

3) Calculate magnitude.float force = -1 * G / (d * d);

4) Make a vector out of direction and
magnitude.

dir.mult(force);

return dir;
}
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Example 4.7: ParticleSystem with repeller

One ParticleSystemParticleSystem ps;

One repellerRepeller repeller;

void setup() {
size(200,200);
smooth();
ps = new ParticleSystem(new PVector(width/2,50));
repeller = new Repeller(width/2-20,height/2);

}

void draw() {
background(100);
ps.addParticle();

We’re applying a universal gravity.PVector gravity = new PVector(0,0.1);

ps.applyForce(gravity);

Applying the repellerps.applyRepeller(repeller);

ps.run();
repeller.display();

}
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The ParticleSystem manages all the
Particles.

class ParticleSystem {

ArrayList<Particle> particles;
PVector origin;

ParticleSystem(PVector location) {
origin = location.get();
particles = new ArrayList<Particle>();

}

void addParticle() {
particles.add(new Particle(origin));

}

Applying a force as a PVectorvoid applyForce(PVector f) {

for (Particle p: particles) {
p.applyForce(f);

}
}

void applyRepeller(Repeller r) {

Calculating a force for each Particle based
on a Repeller

for (Particle p: particles) {
PVector force = r.repel(p);
p.applyForce(force);

}

}

void run() {
Iterator<Particle> it = particles.iterator();
while (it.hasNext()) {

Particle p = (Particle) it.next();
p.run();
if (p.isDead()) {

it.remove();
}

}
}

}

class Repeller {
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How strong is the repeller?float strength = 100;

PVector location;
float r = 10;

Repeller(float x, float y) {
location = new PVector(x,y);

}

void display() {
stroke(255);
fill(255);
ellipse(location.x,location.y,r*2,r*2);

}

PVector repel(Particle p) {

This is the same repel algorithm we used in
Chapter 2: forces based on gravitational
attraction.

PVector dir = PVector.sub(location,p.location);
float d = dir.mag();
dir.normalize();
d = constrain(d,5,100);
float force = -1 * strength / (d * d);
dir.mult(force);
return dir;

}
}

Expand the above example to include many repellers (using an array or ArrayList).

Exercise 4.9Exercise 4.9

Create a particle system in which each particle responds to every other particle. (Note
that we’ll be going through this in detail in Chapter 6.)

Exercise 4.10Exercise 4.10

4.13 Image Textures and Additive Blending4.13 Image Textures and Additive Blending
Even though this book is really about behaviors and algorithms rather than computer graphics
and design, I don’t think we would be able to live with ourselves if we went through a
discussion of particle systems and never once looked at an example that involves texturing
each particle with an image. The way you choose to draw a particle is a big part of the puzzle
in terms of designing certain types of visual effects.

Let’s try to create a smoke simulation in Processing. Take a look at the following two images:
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Both of these images were generated from identical algorithms. The only difference is that a
white circle is drawn in image A for each particle and a “fuzzy” blob is drawn for each in B.

The good news here is that you get a lot of bang for very little buck. Before you write any
code, however, you’ve got to make your image texture! I recommend using PNG format, as
Processing will retain the alpha channel (i.e. transparency) when drawing the image, which
is needed for blending the texture as particles layer on top of each other. Once you’ve
made your PNG and deposited it in your sketch’s “data” folder, you are on your way with
just a few lines of code.

First, we’ll need to declare a PImage object.

Example 4.8: Image texture particle system

Load the image in setup().

White circles Fuzzy images with transparency

Figure 4.5

PImage img;

void setup() {

Loading the PNGimg = loadImage("texture.png");

}
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And when it comes time to draw the particle, we’ll use the image reference instead of drawing
an ellipse or rectangle.

Incidentally, this smoke example is a nice excuse to revisit the Gaussian number distributions
from the Introduction (see page 10). To make the smoke appear a bit more realistic, we don’t
want to launch all the particles in a purely random direction. Instead, by creating initial velocity
vectors mostly around a mean value (with a lower probability of outliers), we’ll get an effect
that appears less fountain-like and more like smoke (or fire).

Assuming a Random object called “generator”, we could create initial velocities as follows:

Finally, in this example, a wind force is applied to the smoke mapped from the mouse’s
horizontal location.

void render() {
imageMode(CENTER);

Note how tint() is the image equivalent of
shape’s fill().

tint(255,lifespan);

image(img,loc.x,loc.y);
}

float vx = (float) generator.nextGaussian()*0.3;
float vy = (float) generator.nextGaussian()*0.3 - 1.0;
vel = new PVector(vx,vy);

void draw() {
background(0);

float dx = map(mouseX,0,width,-0.2,0.2);

Wind force points towards mouseX.PVector wind = new PVector(dx,0);

ps.applyForce(wind);
ps.run();

Two particles are added each cycle through
draw().

for (int i = 0; i < 2; i++) {
ps.addParticle();

}

}
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Finally, it’s worth noting that there are many different algorithms for blending colors in
computer graphics. These are often referred to as “blend modes.” By default, when we draw
something on top of something else in Processing, we only see the top layer—this is
commonly referred to as a “normal” blend mode. When the pixels have alpha transparency
(as they do in the smoke example), Processing uses an alpha compositing algorithm that
combines a percentage of the background pixels with the new foreground pixels based on
the alpha values.

However, it’s possible to draw using other blend modes, and a much loved blend mode for
particle systems is “additive.” Additive blending in Processing was pioneered by Robert
Hodgin (http://roberthodgin.com/) in his famous particle system and forces exploration,
Magnetosphere, which later became the iTunes visualizer. For more see: Magnetosphere
(http://roberthodgin.com/magnetosphere-part-2/).

Additive blending is in fact one of the simplest blend algorithms and involves adding the
pixel values of one layer to another (capping all values at 255 of course). This results in a
space-age glow effect due to the colors getting brighter and brighter with more layers.

To achieve additive blending in Processing, you’ll need to use the P2D or P3D renderer.

Try creating your own textures for different types of effects. Can you make it look like
fire, instead of smoke?

Exercise 4.11Exercise 4.11

Use an array of images and assign each Particle object a different image. Even
though single images are drawn by multiple particles, make sure you don’t call
loadImage() any more than you need to, i.e. once for each image file.

Exercise 4.12Exercise 4.12
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Example 4.9: Additive blending

Then, before you go to draw anything, you set the blend mode using blendMode():

void setup() {

Using the P2D renderersize(200,200,P2D);

}

void draw() {

Additive blendingblendMode(ADD);

Note that the “glowing” effect of additive
blending will not work with a white (or very
bright) background.

background(0);

All your other particle stuff would go here.

}

Use tint() in combination with additive blending to create a rainbow effect.

Exercise 4.13Exercise 4.13

Try blending with other modes, such as SUBTRACT, LIGHTEST, DARKEST, DIFFERENCE,
EXCLUSION,or MULTIPLY.

Exercise 4.14Exercise 4.14
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The Ecosystem ProjectThe Ecosystem Project

Step 4 Exercise:

Take your creature from Step 3 and build a system of creatures. How can they
interact with each other? Can you use inheritance and polymorphism to create a
variety of creatures, derived from the same code base? Develop a methodology
for how they compete for resources (for example, food). Can you track a
creature’s “health” much like we tracked a particle’s lifespan, removing creatures
when appropriate? What rules can you incorporate to control how creatures are
born?

(Also, you might consider using a particle system itself in the design of a creature.
What happens if your emitter is tied to the creature’s location?)
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Chapter 5. PhysicsChapter 5. Physics
LibrariesLibraries
“A library implies an act of faith/Which generations still in darkness hid/
Sign in their night in witness of the dawn.”

— Victor Hugo

Before we move on to anything else, let’s revisit some of the things we’ve done in the first
four chapters. We have:

1. Learned about concepts from the world of physics — What is a vector? What is a
force? What is a wave? etc.

2. Understood the math and algorithms behind such concepts.

3. Implemented the algorithms in Processing with an object-oriented approach.

These activities have yielded a set of motion simulation examples, allowing us to creatively
define the physics of the worlds we build (whether realistic or fantastical). Of course, we aren’t
the first to try this. The world of computer graphics and programming is full of source code
dedicated to simulation. Just try Googling “open-source physics engine” and you could spend
the rest of your day pouring over rich and complex code. And so we must ask the question: If
a code library will take care of physics simulation, why should we bother learning how to write
any of the algorithms ourselves?

Here is where the philosophy behind this book comes into play. While many of the libraries
out there give us physics (and super awesome advanced physics at that) for free, there are
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significant reasons for learning the fundamentals from scratch before diving into libraries.
First, without an understanding of vectors, forces, and trigonometry, we’d be completely lost
just reading the documentation of a library. Second, even though a library may take care of
the math for us, it won’t necessarily simplify our code. As we’ll see in a moment, there can
be a great deal of overhead in simply understanding how a library works and what it
expects from you code-wise. Finally, as wonderful as a physics engine might be, if you look
deep down into your hearts, it’s likely that you seek to create worlds and visualizations that
stretch the limits of imagination. A library is great, but it provides a limited set of features.
It’s important to know both when to live within limitations in the pursuit of a Processing
project and when those limits prove to be confining.

This chapter is dedicated to examining two open-source physics libraries—Box2D and
toxiclibs’ VerletPhysics engine. With each library, we’ll evaluate its pros and cons and look
at reasons why you might choose one of these libraries for a given project.

5.1 What Is Box2D and When Is It Useful?5.1 What Is Box2D and When Is It Useful?
Box2D began as a set of physics tutorials written in C++ by Erin Catto for the Game
Developer’s Conference in 2006. Over the last five years it has evolved into an rich and
elaborate open-source physics engine. It’s been used for countless projects, most notably
highly successful games such as the award-winning puzzle game Crayon Physics and the
runaway mobile and tablet hit Angry Birds.

One of the key things to realize about Box2D is that it is a true physics engine. Box2D
knows nothing about computer graphics and the world of pixels; it is simply a library that
takes in numbers and spits out more numbers. And what are those numbers? Meters,
kilograms, seconds, etc. All of Box2D’s measurements and calculations are for real-world
measurements—only its “world” is a two-dimensional plane with top, bottom, left, and right
edges. You tell it things like: “The gravity of our world is 9.81 newtons per kilogram, and a
circle with a radius of four meters and a mass of fifty kilograms is located ten meters above
the world’s bottom.” Box2D will then tell you things like: “One second later, the rectangle is
at five meters from the bottom; two seconds later, it is ten meters below,” etc. While this
provides for an amazing and realistic physics engine, it also necessitates lots of complicated
code in order to translate back and forth between the physics “world” (a key term in Box2D)
and the world we want to draw on —the “pixel” world of Processing.

So when is it worth it to have this additional overhead? If I just want to simulate a circle
falling down a Processing window with gravity, do I really need to write all the extra Box2D
code just to get that effect? Certainly, the answer is no. We saw how to do this rather easily
in the first chapter of this book. Let’s consider another scenario. What if I want to have a
hundred of those circles falling? And what if those circles aren’t circles at all, but irregularly
shaped polygons? And what if I want these polygons to bounce off each other in a realistic
manner when they collide?
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You may have noticed that the first four chapters of this book, while covering motion and
forces in detail, has skipped over a rather important aspect of physics simulation—collisions.
Let’s pretend for a moment that you aren’t reading a chapter about libraries and that we
decided right now to cover how to handle collisions in a particle system. We’d have to
evaluate and learn two distinct algorithms that address these questions:

1. How do I determine if two shapes are colliding (i.e. intersecting)?

2. How do I determine the shapes’ velocity after the collision?

If we’re thinking about shapes like rectangles or circles, question #1 isn’t too tough. You’ve
likely encountered this before. For example, we know two circles are intersecting if the
distance between them is less than the sum of their radii.

OK. Now that we know how to determine if two circles are colliding, how do we calculate their
velocities after the collision? This is where we’re going to stop our discussion. Why, you ask?
It’s not that understanding the math behind collisions isn’t important or valuable. (In fact, I’m
including additional examples on the website related to collisions without a physics library.)
The reason for stopping is that life is short (let this also be a reason for you to consider going
outside and frolicking instead of programming altogether). We can’t expect to master every
detail of physics simulation. And while we could continue this discussion for circles, it’s only
going to lead us to wanting to work with rectangles. And strangely shaped polygons. And
curved surfaces. And swinging pendulums colliding with springy springs. And and and and
and.

Working with collisions in our Processing sketch while still having time to spend with our
friends and family—that’s the reason for this chapter. Erin Catto spent years developing
solutions to these kinds of problems so you don’t need to engineer them yourselves, at least
for now.

Figure 5.1
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In conclusion, if you find yourself describing an idea for a Processing sketch and the word
“collisions” comes up, then it’s likely time to learn Box2D. (We’ll also encounter other words
that might lead you down this path to Box2D, such as “joint,” “hinge,” “pulley,” “motor,” etc.)

5.2 Getting Box2D in Processing5.2 Getting Box2D in Processing
So, if Box2D is a physics engine that knows nothing about pixel-based computer graphics
and is written in C++, how are we supposed to use it in Processing?

The good news is that Box2D is such an amazing and useful library that everyone wants to
use it—Flash, Javascript, Python, Ruby programmers. Oh, and Java programmers. There is
something called JBox2D, a Java port of Box2D. And because Processing is built on top of
Java, JBox2D can be used directly in Processing!

So here’s where we are so far.

• Box2D site (http://www.box2d.org/) for reference.

• JBox2D site (http://www.jbox2d.org/) for Processing compatibility.

This is all you need to get started writing Box2D code in Processing. However, as we are
going to see in a moment, there are several pieces of functionality we’ll repeatedly need in
our Processing code, and so it’s worth having one additional layer between our sketches
and JBox2D. I’m calling this PBox2D—a Processing Box2D “helper” library included as part
of this book’s code example downloads.

• PBox2D GitHub repository (http://github.com/shiffman/PBox2D)

It’s important to realize that PBox2D is not a Processing wrapper for all of Box2D. After all,
Box2D is a thoughtfully organized and well-structured API and there’s no reason to take it
apart and re-implement it. However, it’s useful to have a small set of functions that help you
get your Box2D world set up, as well as help you figure out where to draw your Box2D
shapes. And this is what PBox2D will provide.

I should also mention before we move forward that there are other Processing libraries that
wrap Box2D for you. One I would recommend taking a look at is Fisica
(http://www.ricardmarxer.com/fisica/) by Ricard Marxer.

5.3 Box2D Basics5.3 Box2D Basics
Do not despair! We really are going to get to the code very soon, and in some ways we’ll
blow our previous work out of the water. But before we’re ready to do that, it’s important to
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walk through the overall process of using Box2D in Processing. Let’s begin by writing a
pseudocode generalization of all of our examples in Chapters 1 through 4.

SETUP:SETUP:

1. Create all the objects in our world.

DRAW:DRAW:

1. Calculate all the forces in our world.

2. Apply all the forces to our objects (F = M * A).

3. Update the locations of all the objects based on their acceleration.

4. Draw all of our objects.

Great. Let’s rewrite this pseudocode as it will appear in our Box2D examples.

SETUP:SETUP:

1. Create all the objects in our world.

DRAW:DRAW:

1. Draw all of our objects.

This, of course, is the fantasy of Box2D. We’ve eliminated all of those painful steps of figuring
out how the objects are moving according to velocity and acceleration. Box2D is going to take
care of this for us! The good news is that this does accurately reflect the overall process. Let’s
imagine Box2D as a magic box.

In setup(), we’re going to say to Box2D: “Hello there. Here are all of the things I want in my
world.” In draw(), we’re going to politely ask Box2D: “Oh, hello again. If it’s not too much
trouble, I’d like to draw all of those things in my world. Could you tell me where they are?”

The bad news: it’s not as simple as the above explanation would lead you to believe. For one,
making the stuff that goes in the Box2D world involves wading through the documentation for
how different kinds of shapes are built and configured. Second, we have to remember that we
can’t tell Box2D anything about pixels, as it will simply get confused and fall apart. Before we
tell Box2D what we want in our world, we have to convert our pixel units to Box2D “world”
units. And the same is true when it comes time to draw our stuff. Box2D is going to tell us the
location of the things in its world, which we then have to translate for the pixel world.

SETUPSETUP

1. Create everything that lives in our pixel world.
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2. Translate the pixel world into the Box2D world.

DRAWDRAW

1. Ask Box2D where everything is.

2. Translate Box2D’s answer into the pixel world.

3. Draw everything.

Now that we understand that anything we create in our Processing sketch has to be placed
into the Box2D world, let’s look at an overview of the elements that make up that world.

Core elements of a Box2D world:Core elements of a Box2D world:

1. WorldWorld: Manages the physics simulation. It knows everything about the overall
coordinate space and also stores lists of every element in the world (see 2-4
below).

2. BodyBody: Serves as the primary element in the Box2D world. It has a location. It has a
velocity. Sound familiar? The Body is essentially the class we’ve been writing on
our own in our vectors and forces examples.

3. ShapeShape: Keeps track of all the necessary collision geometry attached to a body.

4. FixtureFixture: Attaches a shape to a body and sets properties such as density, friction,
and restitution.

5. JointJoint: Acts as a connection between two bodies (or between one body and the
world itself).

In the next four sections, we are going to walk through each of the above elements in detail,
building several examples along the way. But first there is one other important element we
should briefly discuss.

6. Vec2Vec2: Describes a vector in the Box2D world.

And so here we are, arriving with trepidation at an unfortunate truth in the world of using
physics libraries. Any physics simulation is going to involve the concept of a vector. This is
the good part. After all, we just spent several chapters familiarizing ourselves with what it
means to describe motion and forces with vectors. We don’t have to learn anything new
conceptually.

Now for the part that makes the single tear fall from my eye: we don’t get to use PVector.
It’s nice that Processing has PVector for us, but anytime you use a physics library you will
probably discover that the library includes its own vector implementation. This makes sense,
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after all; why should Box2D be expected to know about PVector? And in many cases, the
physics engine will want to implement a vector class in a specific way so that it is especially
compatible with the rest of the library’s code. So while we don’t have to learn anything new
conceptually, we do have to get used to some new naming conventions and syntax. Let’s
quickly demonstrate a few of the basics in Vec2 as compared to those in PVector.

Let’s say we want to add two vectors together.

PVectorPVector Vec2Vec2

PVector a = new PVector(1,-1);
PVector b = new PVector(3,4);
a.add(b);

Vec2 a = new Vec2(1,-1);
Vec2 b = new Vec2(3,4);
a.addLocal(b);

PVector a = new PVector(1,-1);
PVector b = new PVector(3,4);
PVector c = PVector.add(a,b);

Vec2 a = new Vec2(1,-1);
Vec2 b = new Vec2(3,4);
Vec2 c = a.add(b);

How about if we want to multiply and scale them?

PVectorPVector Vec2Vec2

PVector a = new PVector(1,-1);
float n = 5;
a.mult(n);

Vec2 a = new Vec2(1,-1);
float n = 5;
a.mulLocal(n);

PVector a = new PVector(1,-1);
float n = 5;
PVector c = PVector.mult(a,n);

Vec2 a = new Vec2(1,-1);
float n = 5;
Vec2 c = a.mul(n);

Magnitude and normalize?

PVectorPVector Vec2Vec2

PVector a = new PVector(1,-1);
float m = a.mag();
a.normalize();

Vec2 a = new Vec2(1,-1);
float m = a.length();
a.normalize();

As you can see, the concepts are the same, but the function names and the arguments are
slightly different. For example, instead of static and non-static add() and mult(), if a Vec2 is
altered, the word “local” is included in the function name—addLocal(), multLocal().
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We’ll cover the basics of what you need to know here, but if you are looking for more, full
documentation of Vec2 can be found by downloading the JBox2D source code
(http://code.google.com/p/jbox2d/).

5.4 Living in a Box2D World5.4 Living in a Box2D World

The Box2D World object is in charge of everything. It manages the coordinate space of the
world, all of the stuff that lives in the world, and decides when time moves forward in the
world.

In order to have Box2D as part of our Processing sketches, the World is the very first thing
that needs to be set up. Here is where PBox2D comes in handy and takes care of making
the world for us.

When you call createWorld(), PBox2D will set up a default gravity for you (pointing down);
however, you can always alter the gravity of your world by saying:

It’s worth noting that gravity doesn’t have to be fixed, nor does it always have to point
downwards; you can adjust the gravity vector while your program is running. Gravity can be
turned off by setting it to a (0,0) vector.

So, what are those numbers 0 and -10? This should remind us of one of the most important
details of using Box2D: the Box2D coordinate system is not your pixel coordinate system!
Let’s look at how Box2D and a Processing window think differently of their worlds.

PBox2D box2d;

void setup() {
box2d = new PBox2D(this);

Initializes a Box2D world with default
settings

box2d.createWorld();

}

box2d.setGravity(0, -10);
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Notice how in Box2D (0,0) is in the center and up is the positive direction along the y-axis!
Box2D’s coordinate system is just like that lovely old-fashioned Cartesian one with (0,0) in the
center and up pointing in a positive direction. Processing, on the other hand, uses a traditional
computer graphics coordinate system where (0,0) is in the top left corner and down is the
positive direction along the y-axis. This is why if we want objects to fall down with gravity, we
need to give Box2D a gravity force with a negative y-value.

Luckily for us, if we prefer to think in terms of pixel coordinates (which as Processing
programmers, we are likely to do), PBox2D offers a series of helper functions that convert
between pixel space and Box2D space. Before we move onto the next section and begin
creating Box2D bodies, let’s take a look at how these helper functions work.

Let’s say we want to tell Box2D where the mouse is in its world. We know the mouse is
located at (mouseX,mouseY) in Processing. To convert it, we say we want to convert a
“coordinate” from “pixels” to “world”—coordPixelsToWorld(). Or:

What if we had a Box2D world coordinate and wanted to translate it to our pixel space?

Figure 5.2

Vec2 gravity = new Vec2(0, -10);

Convert mouseX,mouseY to coordinate in
Box2D world.

Vec2 mouseWorld =
box2d.coordPixelsToWorld(mouseX,mouseY);

To demonstrate, let’s just make up a world
position.

Vec2 worldPos = new Vec2(-10,25);

Convert to pixel space. This is necessary
because ultimately we are going to want to
draw the elements in our window.

Vec2 pixelPos = box2d.coordWorldToPixels(worldPos);

ellipse(pixelPos.x, pixelPos.y,16,16);
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PBox2D has a set of functions to take care of translating back and forth between the Box2D
world and pixels. It’s probably easier to learn about all of these functions during the course
of actually implementing our examples, but let’s quickly look over the list of the possibilities.

TaskTask FunctionFunction

Convert location from World to Pixels Vec2 coordWorldToPixels(Vec2 world)

Convert location from World to Pixels Vec2 coordWorldToPixels(float worldX,
float worldY)

Convert location from Pixels to World Vec2 coordPixelsToWorld(Vec2 screen)

Convert location from Pixels to World Vec2 coordPixelsToWorld(float pixelX,
float pixelY)

Scale a dimension (such as height, width, or radius)
from Pixels to World float scalarPixelsToWorld(float val)

Scale a dimension from World to Pixels float scalarWorldToPixels(float val)

There are also additional functions that allow you to pass or receive a PVector when
translating back and forth, but since we are only working with Box2D in the examples in this
chapter, it’s easiest to stick with the Vec2 class for all vectors.

Once the world is initialized, we are ready to actually put stuff in the world—Box2D bodies.

5.5 Building a Box2D body5.5 Building a Box2D body

A Box2D body is the primary element in the Box2D world. It’s the equivalent to the Mover
class we built on our own in previous chapters—the thing that moves around the space and
experiences forces. It can also be static (meaning fixed and not moving). It’s important to
note, however, that a body has no geometry; it isn’t anything physical. Rather, bodies have
Box2D shapes attached to them. (This way, a body can be a single rectangle or a rectangle
attached to a circle, etc.) We’ll look at shapes in a moment; first, let’s build a body.

Step 1: Define a body.Step 1: Define a body.

The first thing we have to do is create a “body definition.” This will let us define the
properties of the body we intend to make. This may seem a bit awkward at first, but it’s how
Box2D is structured. Anytime you want to make a “thing,” you have to make a “thing
definition” first. This will hold true for bodies, shapes, and joints.
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Make a body definition before making a
Body.

BodyDef bd = new BodyDef();

Step 2: Configure the body definition.Step 2: Configure the body definition.

The body definition is where we can set specific properties or attributes of the body we intend
to make. One attribute of a body, for example, is its starting location. Let’s say we want to
position the body in the center of the Processing window.

Danger, danger! I’m not going to address this with every single example, but it’s important to
at least point out the perilous path we are taking with the above line of code. Remember, if we
are going to tell Box2D where we want the body to start, we must give Box2D a world
coordinate! Yes, we want to think of its location in terms of pixels, but Box2D doesn’t care.
And so before we pass that position to the body definition, we must make sure to use one of
our helper conversion functions.

The body definition must also specify the “type” of body we want to make. There are three
possibilities:

• Dynamic.Dynamic. This is what we will use most often—a “fully simulated” body. A dynamic
body moves around the world, collides with other bodies, and responds to the forces
in its environment.

• Static.Static. A static body is one that cannot move (as if it had an infinite mass). We’ll use
static bodies for fixed platforms and boundaries.

• Kinematic.Kinematic. A kinematic body can be moved manually by setting its velocity directly.
If you have a user-controlled object in your world, you can use a kinematic body.
Note that kinematic bodies collide only with dynamic bodies and not with other static
or kinematic ones.

There are several other properties you can set in the body definition. For example, if you want
your body to have a fixed rotation (i.e. never rotate), you can say:

A Vec2 in the center of the Processing
window

Vec2 center = new Vec2(width/2,height/2);

A Vec2 in the center of the Processing
window converted to Box2D World
coordinates!

Vec2 center =
box2d.coordPixelsToWorld(width/2,height/2));

Setting the position attribute of the Box2D
body definition

bd.position.set(center);

bd.fixedRotation = true;
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You can also set a value for linear or angular damping, so that the object continuously slows
as if there is friction.

In addition, fast-moving objects in Box2D should be set as bullets. This tells the Box2D
engine that the object may move very quickly and to check its collisions more carefully so
that it doesn’t accidentally jump over another body.

bd.linearDamping = 0.8;
bd.angularDamping = 0.9;

bd.bullet = true;

Step 3: Create the body.Step 3: Create the body.

Once we’re done with the definition (BodyDef), we can create the Body object itself. PBox2D
provides a helper function for this—createBody().

The Body object is created by passing in
the Body Definition. (This allows for making
multiple bodies from one definition.)

Body body = box2d.createBody(bd);

Step 4: Set any other conditions for the body’s starting state.Step 4: Set any other conditions for the body’s starting state.

Finally, though not required, if you want to set any other initial conditions for the body, such
as linear or angular velocity, you can do so with the newly created Body object.

Setting an arbitrary initial velocitybody.setLinearVelocity(new Vec2(0,3));

Setting an arbitrary initial angular velocitybody.setAngularVelocity(1.2);

5.6 Three’s Company: Bodies and Shapes and5.6 Three’s Company: Bodies and Shapes and
FixturesFixtures
A body on its own doesn’t physically exist in the world. It’s like a soul with no human form to
inhabit. For a body to have mass, we must first define a shape and attach that shape to the
body with something known as a fixture.

The job of the Box2D Shape class is to keep track of all the necessary collision geometry
attached to a body. A shape also has several important properties that affect the body’s
motion. There is density, which ultimately determines that body’s mass. Shapes also have
friction and restitution (“bounciness”) which will be defined through a fixture. One of the
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nice things about Box2D’s methodology, which separates the concepts of bodies and shapes
into two separate objects, is that you can attach multiple shapes to a single body in order to
create more complex forms. We’ll see this in a future example.

To create a shape, we need to first decide what kind of shape we want to make. For most
non-circular shapes, a PolygonShape object will work just fine. For example, let’s look at how
we define a rectangle.

Step 1: Define a shape.Step 1: Define a shape.

Next up, we have to define the width and height of the rectangle. Let’s say we want our
rectangle to be 150×100 pixels. Remember, pixel units are no good for Box2D shapes! So we
have to use our helper functions to convert them first.

Define the shape: a polygon.PolygonShape ps = new PolygonShape();

Scale dimensions from pixels to Box2D
world.

float box2Dw = box2d.scalarPixelsToWorld(150);
float box2Dh = box2d.scalarPixelsToWorld(100);

Use setAsBox() function to define shape as
a rectangle.

ps.setAsBox(box2Dw, box2Dh);

Step 2: Create a fixture.Step 2: Create a fixture.

The shape and body are made as two separate entities. In order to attach a shape to a body,
we must make a fixture. A fixture is created, just as with the body, via a fixture definition (i.e.
FixtureDef class) and assigned a shape.

Once we have the fixture definition, we can set parameters that affect the physics for the
shape being attached.

FixtureDef fd = new FixtureDef();

The fixture is assigned the PolygonShape
we just made.

fd.shape = ps;

The coefficient of friction for the shape,
typically between 0 and 1

fd.friction = 0.3;

The Shape’s restitution (i.e. elasticity),
typically between 0 and 1

fd.restitution = 0.5;

The Shape’s density, measured in kilograms
per meter squared

fd.density = 1.0;
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Step 3: Attach the shape to the body with the fixture.Step 3: Attach the shape to the body with the fixture.

Once the fixture is defined, all we have left to do is attach the shape to the body with the
fixture by calling the createFixture() function.

I should note that Step 2 can be skipped if you do not need to set the physics properties.
(Box2D will use default values.) You can create a fixture and attach the shape all in one step
by saying:

While most of our examples will take care of attaching shapes only once when the body is
first built, this is not a limitation of Box2D. Box2D allows for shapes to be created and
destroyed on the fly.

Before we put any of this code we’ve been writing into a Processing sketch, let’s review all
the steps we took to construct a Body.

1. Define a body using a BodyDef object (set any properties, such as location).

2. Create the Body object from the body definition.

3. Define a Shape object using PolygonShape, CircleShape, or any other shape
class.

4. Define a fixture using FixtureDef and assign the fixture a shape (set any
properties, such as friction, density, and restitution).

5. Attach the shape to the body.

Creates the Fixture and attaches the
Shape to the Body object

body.createFixture(fd);

Creates the Fixture and attaches the
Shape with a density of 1

body.createFixture(ps,1);

Step 1. Define the body.BodyDef bd = new BodyDef();

bd.position.set(box2d.coordPixelsToWorld(width/2,height/2));

Step 2. Create the body.Body body = box2d.createBody(bd);

Step 3. Define the shape.PolygonShape ps = new PolygonShape();

float w = box2d.scalarPixelsToWorld(150);
float h = box2d.scalarPixelsToWorld(100);
ps.setAsBox(w, h);
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Step 4. Define the fixture.FixtureDef fd = new FixtureDef();

fd.shape = ps;
fd.density = 1;
fd.friction = 0.3;
fd.restitution = 0.5;

Step 5. Attach the shape to the body with
the Fixture.

body.createFixture(fd);

Knowing what you know about Box2D so far, fill in the blank in the code below that
demonstrates how to make a circular shape in Box2D.

CircleShape cs = new CircleShape();
float radius = 10;
cs.m_radius = ____________________;
FixtureDef fd = new FixtureDef();
fd.shape = cs;
fd.density = 1;
fd.friction = 0.1;
fd.restitution = 0.3;

body.createFixture(fd);

Exercise 5.1Exercise 5.1

5.7 Box2D and Processing: Reunited and It Feels So5.7 Box2D and Processing: Reunited and It Feels So
GoodGood
Once a body is made, it lives in the Box2D physics world. Box2D will always know it’s there,
check it for collisions, move it appropriately according to the forces, etc. It’ll do all that for you
without you having to lift a finger! What it won’t do, however, is display the body for you. This
is a good thing. This is your time to shine. When working with Box2D, what we’re essentially
saying is, “I want to be the designer of my world, and I want you, Box2D, to compute all the
physics.”

Now, Box2D will keep a list of all the bodies that exist in the world. This can be accessed by
calling the World object’s getBodyList() function. Nevertheless, what I’m going to
demonstrate here is a technique for keeping your own body lists. Yes, this may be a bit
redundant and we perhaps sacrifice a bit of efficiency. But we more than make up for that with
ease of use. This methodology will allow us to program like we’re used to in Processing, and
we can easily keep track of which bodies are which and render them appropriately. Let’s
consider the structure of the following Processing sketch:

The Nature of Code (v005)

203



This looks like any ol’ Processing sketch. We have a main tab called “Boxes” and a
“Boundary” and a “Box” tab. Let’s think about the Box tab for a moment. The Box tab is
where we will write a simple class to describe a Box object, a rectangular body in our world.

Let’s write a main tab that creates a new Box whenever the mouse is pressed and stores all
the Box objects in an ArrayList. (This is very similar to our approach in the particle system
examples from Chapter 4.)

Figure 5.3

class Box {

Our Box object has an x,y location and a
width and a height.

float x,y;
float w,h;

Box(float x_, float y_) {

The location is initalized in the constructor
via arguments

x = x_;
y = y_;

w = 16;
h = 16;

}

void display() {

We draw the Box object using Processing’s
rect() function.

fill(175);

stroke(0);
rectMode(CENTER);
rect(x,y,w,h);

}
}
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Example 5.1: A comfortable and cozy Processing sketch that needs a little Box2D

Now, here’s our assignment. Take the above example verbatim, but instead of drawing fixed
boxes on the screen, draw boxes that experience physics (via Box2D) as soon as they appear.

We’ll need two major steps to accomplish our goal.

A list to store all Box objectsArrayList<Box> boxes;

void setup() {
size(400,300);
boxes = new ArrayList<Box>();

}

void draw() {
background(255);

When the mouse is pressed, add a new
Box object.

if (mousePressed) {
Box p = new Box(mouseX,mouseY);
boxes.add(p);

}

Display all the Box objects.for (Box b: boxes) {
b.display();

}

}

Step 1: Add Box2D to our main program (i.e. setup() and draw()).Step 1: Add Box2D to our main program (i.e. setup() and draw()).

This part is not too tough. We saw this already in our discussion of building a Box2D world.
This is taken care of for us by the PBox2D helper class. We can create a PBox2D object and
initialize it in setup().

Then in draw(), we need to make sure we call one very important function: step(). Without
this function, nothing would ever happen! step() advances the Box2D world a step further in
time. Internally, Box2D sweeps through and looks at all of the Bodies and figures out what to
do with them. Just calling step() on its own moves the Box2D world forward with default
settings; however, it is customizable (and this is documented in the PBox2D source).

PBox2D box2d;

void setup() {

Initialize and create the Box2D world.box2d = new PBox2D(this);
box2d.createWorld();

}
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void draw() {

We must always step through time!box2d.step();

}

Step 2: Link every Processing Box object with a Box2D Body object.Step 2: Link every Processing Box object with a Box2D Body object.

As of this moment, the Box class includes variables for location and width and height. What
we now want to say is:

“I hereby relinquish the command of this object’s position to Box2D. I no longer need to
keep track of anything related to location, velocity, and acceleration. Instead, I only need to
keep track of a Box2D body and have faith that Box2D will do the rest.”

We don’t need (x,y) anymore since, as we’ll see, the body itself will keep track of its
location. The body technically could also keep track of the width and height for us, but since
Box2D isn’t going to do anything to alter those values over the life of the Box object, we
might as well just hold onto them ourselves until it’s time to draw the Box.

Then, in our constructor, in addition to initializing the width and height, we can go ahead
and include all of the body and shape code we learned in the previous two sections!

class Box {

Instead of any of the usual variables, we
will store a reference to a Box2D body.

Body body;

float w;
float h;

Box() {
w = 16;
h = 16;

Build body.BodyDef bd = new BodyDef();

bd.type = BodyType.DYNAMIC;
bd.position.set(box2d.coordPixelsToWorld(mouseX,mouseY));
body = box2d.createBody(bd);

Build shape.PolygonShape ps = new PolygonShape();

Box2D considers the width and height of a
rectangle to be the distance from the
center to the edge (so half of what we
normally think of as width or height).

float box2dW = box2d.scalarPixelsToWorld(w/2);
float box2dH = box2d.scalarPixelsToWorld(h/2);
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OK, we’re almost there. Before we introduced Box2D, it was easy to draw the Box. The
object’s location was stored in variables x and y.

But now Box2D manages the object’s motion, so we can no longer use our own variables to
display the shape. Not to fear! Our Box object has a reference to the Box2D body associated
with it. So all we need to do is politely ask the body, “Pardon me, where are you located?”
Since this is a task we’ll need to do quite often, PBox2D includes a helper function:
getBodyPixelCoord().

Just knowing the location of a body isn’t enough; we also need to know its angle of rotation.

Once we have the location and angle, it’s easy to display the object using translate() and
rotate(). Note, however, that the Box2D coordinate system considers rotation in the
opposite direction from Processing, so we need to multiply the angle by -1.

ps.setAsBox(box2dW, box2dH);

FixtureDef fd = new FixtureDef();
fd.shape = ps;
fd.density = 1;

Set physics parameters.fd.friction = 0.3;

fd.restitution = 0.5;

Attach the Shape to the Body with the
Fixture.

body.createFixture(fd);

}

Drawing the object using rect()void display() {
fill(175);
stroke(0);
rectMode(CENTER);
rect(x,y,w,h);

}

Vec2 pos = box2d.getBodyPixelCoord(body);

float a = body.getAngle();
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In case we want to have objects that can be removed from the Box2D world, it’s also useful
to include a function to destroy a body, such as:

Figure 5.4

void display() {

We need the Body’s location and angle.Vec2 pos = box2d.getBodyPixelCoord(body);
float a = body.getAngle();

pushMatrix();

Using the Vec2 position and float angle to
translate and rotate the rectangle

translate(pos.x,pos.y);
rotate(-a);

fill(175);
stroke(0);
rectMode(CENTER);
rect(0,0,w,h);
popMatrix();

}

This function removes a body from the
Box2D world.

void killBody() {

box2d.destroyBody(body);
}
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In this chapter’s code downloads, find the sketch named “box2d_exercise.” Using the
methodology outlined in this chapter, add the necessary code to the main and Box tabs
to implement Box2D physics. The result should appear as in the screenshot above. Be
more creative in how you render the boxes.

Exercise 5.2Exercise 5.2

5.8 Fixed Box2D Objects5.8 Fixed Box2D Objects

In the example we just created, the Box objects appear at the mouse location and fall
downwards due to Box2D’s default gravity force. What if we wanted to install some immovable
boundaries in the Box2D world that would block the path of the Box objects (as in the
illustration below)?

Box2D makes this easy for us by providing a means to lock a body (and any associated
shapes) in place. Just set the BodyDef object’s type to STATIC.

We can add this feature to our Boxes example by writing a Boundary class and having each
boundary create a fixed Box2D body.

BodyDef bd = new BodyDef();

When BodyDef type = STATIC, the Body is
locked in place.

bd.type = BodyType.STATIC;
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Example 5.2: Falling boxes hitting boundaries

class Boundary {

A boundary is a simple rectangle with x, y,
width, and height.

float x,y;
float w,h;

Body b;

Boundary(float x_,float y_, float w_, float h_) {
x = x_;
y = y_;
w = w_;
h = h_;

Build the Box2D Body and Shape.BodyDef bd = new BodyDef();

bd.position.set(box2d.coordPixelsToWorld(x,y));

Make it fixed by setting type to STATIC!bd.type = BodyType.STATIC;

b = box2d.createBody(bd);

float box2dW = box2d.scalarPixelsToWorld(w/2);
float box2dH = box2d.scalarPixelsToWorld(h/2);
PolygonShape ps = new PolygonShape();

We're just a boxps.setAsBox(box2dW, box2dH);

Using the createFixture() shortcutb.createFixture(ps,1);

}

Since we know it can never move, we can
just draw it the old-fashioned way, using
our original variables. No need to query
Box2D.

void display() {

fill(0);
stroke(0);
rectMode(CENTER);
rect(x,y,w,h);

}

}

Chapter 5. Physics Libraries

210



5.9 A Curvy Boundary5.9 A Curvy Boundary
If you want a fixed boundary that is a curved surface (as opposed to a polygon), this can be
achieved with the shape ChainShape.

The ChainShape class is another shape like PolygonShape or CircleShape, so to include one
in our system, we follow the same steps.

Step 1: Define a body.Step 1: Define a body.

The body does not need a position; the
EdgeShape will take care of that for us. It
also does not need a type, as it is STATIC
by default.

BodyDef bd = new BodyDef();

Body body = box2d.world.createBody(bd);

Step 2: Define the Shape.Step 2: Define the Shape.

ChainShape chain = new ChainShape();

Step 3: Configure the Shape.Step 3: Configure the Shape.

The ChainShape object is a series of connected vertices. To create the chain, we must first
specify an array of vertices (each as a Vec2 object). For example, if we wanted a straight line
from the left-hand side of our window to the right-hand side, we would just need an array of
two vertices: (0,150) and (width,150). (Note that if you want to create a loop where the first
vertex connects to the last vertex in a loop, you can use the ChainLoop class instead.)

To create the chain with the vertices, the array is then passed into a function called
createChain().

Vec2[] vertices = new Vec2[2];

Adding a vertex on the right side of windowvertices[0] = box2d.coordPixelsToWorld(0,150);

Adding a vertex on the left side of windowvertices[1] = box2d.coordPixelsToWorld(width,150);

If you don’t want to use the entire array, you
can specify a value less than length.

chain.createChain(vertices, vertices.length);
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Step 4: Attach the Shape to the body with a Fixture.Step 4: Attach the Shape to the body with a Fixture.

A Shape is not part of Box2D unless it is attached to a body. Even if it is a fixed boundary
and never moves, it must still be attached. Just as with other shapes, a ChainShape object
can be given properties like restitution and friction with a Fixture.

Now, if we want to include a ChainShape object in our sketch, we can follow the same
strategy as we did with a fixed boundary. Let’s write a class called Surface:

FixtureDef fd = new FixtureDef();

A fixture assigned to the ChainShapefd.shape = chain;

fd.density = 1;
fd.friction = 0.3;
fd.restitution = 0.5;

body.createFixture(fd);
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Example 5.3: ChainShape with three hard-coded vertices

Notice how the above class includes an ArrayList to store a series of Vec2 objects. Even
though we fully intend to store the coordinates of the chain in the chain shape itself, we are
choosing the ease of redundancy and keeping our own list of those points as well. Later,
when we go to draw the Surface object, we don’t have to ask Box2D for the locations of the
chain shape’s vertices.

class Surface {
ArrayList<Vec2> surface;

Surface() {

surface = new ArrayList<Vec2>();

3 vertices in pixel coordinatessurface.add(new Vec2(0, height/2+50));
surface.add(new Vec2(width/2, height/2+50));
surface.add(new Vec2(width, height/2));

ChainShape chain = new ChainShape();

Make an array of Vec2 for the ChainShape.Vec2[] vertices = new Vec2[surface.size()];

for (int i = 0; i < vertices.length; i++) {

vertices[i] = box2d.coordPixelsToWorld(surface.get(i));

}

Convert each vertex to Box2D World
coordinates.

Create the ChainShape with array of Vec2.chain.createChain(vertices, vertices.length);

Attach the Shape to the Body.BodyDef bd = new BodyDef();
Body body = box2d.world.createBody(bd);
body.createFixture(chain, 1);

}

void display() {
strokeWeight(1);
stroke(0);
noFill();

Draw the ChainShape as a series of
vertices.

beginShape();
for (Vec2 v: surface) {

vertex(v.x,v.y);
}

endShape();
}

}
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What we need in setup() and draw() for the Surface object is quite simple, given that
Box2D takes care of all of the physics for us.

PBox2D box2d;

Surface surface;

void setup() {
size(500,300);
box2d = new PBox2D(this);
box2d.createWorld();

Make a Surface object.surface = new Surface();

}

void draw() {
box2d.step();

background(255);

Draw the Surface.surface.display();

}

Review how we learned to draw a wave pattern in Chapter 3. Create a ChainShape
object out of a sine wave. Try using Perlin noise (see page 17) as well.

sine wave Perlin noise

Exercise 5.3Exercise 5.3

Chapter 5. Physics Libraries

214



5.10 Complex Forms5.10 Complex Forms
Now that we’ve seen how easy it is to make
simple geometric forms in Box2D, let’s
imagine that you want to have a more
complex form, such as a little alien stick
figure.

There are two strategies in Box2D for
making forms that are more advanced than a
basic circle or square. One is to use a
PolygonShape in a different way. In our
previous examples, we used PolygonShape
to generate a rectangular shape with the
setAsBox() function.

This was a good way to start because of the inherent simplicity of working with rectangles.
However, a PolygonShape object can also be generated from an array of vectors, which
allows you to build a completely custom shape as a series of connected vertices. This works
very similarly to the ChainShape class.

Example 5.4: Polygon shapes

Figure 5.5

PolygonShape ps = new PolygonShape();
ps.setAsBox(box2dW, box2dH);

Vec2[] vertices = new Vec2[4]; // An array of 4 vectors
vertices[0] = box2d.vectorPixelsToWorld(new Vec2(-15, 25));
vertices[1] = box2d.vectorPixelsToWorld(new Vec2(15, 0));
vertices[2] = box2d.vectorPixelsToWorld(new Vec2(20, -15));
vertices[3] = box2d.vectorPixelsToWorld(new Vec2(-10, -10));

Making a polygon from that arrayPolygonShape ps = new PolygonShape();
ps.set(vertices, vertices.length);
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When building your own polygon in Box2D, you must remember two important details.

1. Order of vertices!Order of vertices! If you are thinking in terms of pixels (as above) the vertices
should be defined in counterclockwise order. (When they are translated to Box2D
World vectors, they will actually be in clockwise order since the vertical axis is
flipped.)

2. Convex shapes only!Convex shapes only! A concave shape is one where the surface curves inward.
Convex is the opposite (see illustration below). Note how in a concave shape
every internal angle must be 180 degrees or less. Box2D is not capable of
handling collisions for concave shapes. If you need a concave shape, you will have
to build one out of multiple convex shapes (more about that in a moment).

Figure 5.6
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Now, when it comes time to display the shape in Processing, we can no longer just use
rect() or ellipse(). Since the shape is built out of custom vertices, we’ll want to use
Processing’s beginShape(), endShape(), and vertex() functions. As we saw with the
ChainShape, we could choose to store the pixel locations of the vertices in our own
ArrayList for drawing. However, it’s also useful to see how we can ask Box2D to report back
to use the vertex locations.

Figure 5.7: A concave shape can be drawn with multiple convex shapes.

void display() {
Vec2 pos = box2d.getBodyPixelCoord(body);
float a = body.getAngle();

First we get the Fixture attached to the
Body...

Fixture f = body.getFixtureList();

...then the Shape attached to the Fixture.PolygonShape ps = (PolygonShape) f.getShape();

rectMode(CENTER);
pushMatrix();
translate(pos.x,pos.y);
rotate(-a);
fill(175);
stroke(0);
beginShape();

for (int i = 0; i < ps.getVertexCount(); i++) {

Vec2 v = box2d.vectorWorldToPixels(ps.getVertex(i));
vertex(v.x,v.y);

}
endShape(CLOSE);
popMatrix();

}

We can loop through that array and convert
each vertex from Box2D space to pixels.
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A polygon shape will get us pretty far in Box2D. Nevertheless, the convex shape
requirement will severely limit the range of possibilities. The good news is that we can
completely eliminate this restriction by creating a single Box2D body out of multiple shapes!
Let’s return to our little alien creature and simplify the shape to be a thin rectangle with a
circle on top.

How can we build a single body with two shapes? Let’s first review how we built a single
body with one shape.

Step 1: Define the body.
Step 2: Create the body.
Step 3: Define the shape.Step 3: Define the shape.
Step 4: Attach the shape to the body.Step 4: Attach the shape to the body.
Step 5: Finalize the body’s mass.

Attaching more than one shape to a body is as simple as repeating steps 3 and 4 over and
over again.

Step 3a: Define shape 1.Step 3a: Define shape 1.
Step 4a: Attach shape 1 to the body.Step 4a: Attach shape 1 to the body.
Step 3b: Define shape 2.Step 3b: Define shape 2.
Step 4b: Attach shape 2 to the body.Step 4b: Attach shape 2 to the body.
etc. etc. etc.

Let’s see what this would look like with actual Box2D code.

Using the PolygonShape class, create your own polygon design (remember, it must
be concave). Some possibilities below.

Exercise 5.4Exercise 5.4

Making the bodyBodyDef bd = new BodyDef();
bd.type = BodyType.DYNAMIC;
bd.position.set(box2d.coordPixelsToWorld(center));
body = box2d.createBody(bd);
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The above looks pretty good, but sadly, if we run it, we’ll get the following result:

When you attach a shape to a body, by default, the center of the shape will be located at the
center of the body. But in our case, if we take the center of the rectangle to be the center of
the body, we want the center of the circle to be offset along the y-axis from the body’s center.

Making shape 1 (the rectangle)PolygonShape ps = new PolygonShape();
float box2dW = box2d.scalarPixelsToWorld(w/2);
float box2dH = box2d.scalarPixelsToWorld(h/2);
sd.setAsBox(box2dW, box2dH);

Making shape 2 (the circle)CircleShape cs = new CircleShape();
cs.m_radius = box2d.scalarPixelsToWorld(r);

Attach both shapes with a fixture.body.createFixture(ps,1.0);
body.createFixture(cs, 1.0);

Figure 5.8
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This is achieved by using the local position of a shape, accessed via a Vec2 variable called
m_p.

Then, when we go to draw the body, we use both rect() and ellipse() with the circle
offset the same way.

Figure 5.9

Our offset in pixelsVec2 offset = new Vec2(0,-h/2);

Converting the vector to Box2D worldoffset = box2d.vectorPixelsToWorld(offset);

Setting the local position of the circlecircle.m_p.set(offset.x,offset.y);
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Example 5.5: Multiple shapes on one body

Finishing off this section, I want to stress the following: the stuff you draw in your Processing
window doesn’t magically experience physics simply because we created some Box2D bodies
and shapes. These examples work because we very carefully matched how we draw our
elements with how we defined the bodies and shapes we put into the Box2D world. If you
accidentally draw your shape differently, you won’t get an error, not from Processing or from
Box2D. However, your sketch will look odd and the physics won’t work correctly. For example,
what if we had written:

when we created the Shape, but:

when it came time to display the shape?

void display() {
Vec2 pos = box2d.getBodyPixelCoord(body);
float a = body.getAngle();

rectMode(CENTER);
pushMatrix();
translate(pos.x,pos.y);
rotate(-a);
fill(175);
stroke(0);

First the rectangle at (0,0)rect(0,0,w,h);

Then the ellipse offset at (0,-h/2)ellipse(0,-h/2,r*2,r*2);

popMatrix();
}

Vec2 offset = new Vec2(0,-h/2);

ellipse(0,h/2,r*2,r*2);
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The results would look like the image above, where clearly, the collisions are not
functioning as expected. This is not because the physics is broken; it’s because we did not
communicate properly with Box2D, either when we put stuff in the magic world or queried
the world for locations.

Make your own little alien being using multiple shapes attached to a single body. Try
using more than one polygon to make a concave shape. Remember, you aren’t
limited to using the shape drawing functions in Processing; you can use images,
colors, add hair with lines, etc. Think of the Box2D shapes only as skeletons for your
creative and fantastical design!

Exercise 5.5Exercise 5.5

5.11 Feeling Attached—Box2D Joints5.11 Feeling Attached—Box2D Joints
Box2D joints allow you to connect one
body to another, enabling more advanced
simulations of swinging pendulums, elastic
bridges, squishy characters, wheels
spinning on an axle, etc. There are many
different kinds of Box2D joints. In this
chapter we’re going to look at three:
distance joints, revolute joints, and
“mouse” joints.

Let’s begin with a distance joint, a joint that
connects two bodies with a fixed length.
The joint is attached to each body at a
specified anchor point (a point relative to
the body’s center). For any Box2D joint, we
need to follow these steps. This, of course,
is similar to the methodology we used to
build bodies and shapes, with some quirks.

Step 1. Make sure you have two bodies ready to go.Step 1. Make sure you have two bodies ready to go.
Step 2. Define the joint.Step 2. Define the joint.
Step 3. Configure the joint’s properties (What are the bodies? Where are the anchors?Step 3. Configure the joint’s properties (What are the bodies? Where are the anchors?
What is its rest length? Is it elastic or rigid?)What is its rest length? Is it elastic or rigid?)
Step 4. Create the joint.Step 4. Create the joint.

Let’s assume we have two Particle objects that each store a reference to a Box2D Body
object. We’ll call them particles p1 and p2.

Figure 5.10
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OK, onto Step 2. Let’s define the joint.

Easy, right? Now it’s time to configure the joint. First we tell the joint which two bodies it
connects:

Then we set up a rest length. Remember, if our rest length is in pixels, we need to convert it!

A distance joint also includes two optional settings that can make the joint soft, like a spring
connection: frequencyHz and dampingRatio.

Finally, we create the joint.

Box2D won’t keep track of what kind of joint we are making, so we have to cast it as a
DistanceJoint upon creation.

We can create Box2D joints anywhere in our Processing sketch. Here’s an example of how we
might write a class to describe two Box2D bodies connected with a single joint.

Particle p1 = new Particle();
Particle p2 = new Particle();

DistanceJointDef djd = new DistanceJointDef();

djd.bodyA = p1.body;
djd.bodyB = p2.body;

djd.length = box2d.scalarPixelsToWorld(10);

Measured in Hz, like the frequency of
harmonic oscillation; try values between 1
and 5.

djd.frequencyHz = ___;

Dampens the spring; typically a number
between 0 and 1.

djd.dampingRatio = ___;

DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);
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Example 5.6: DistanceJoint

class Pair {

Two objects that each have a Box2D bodyParticle p1;
Particle p2;

Arbitrary rest lengthfloat len = 32;

Pair(float x, float y) {

Problems can result if the bodies are
initialized at the same location.p1 = new Particle(x,y);

p2 = new Particle(x+random(-1,1),y+random(-1,1));

Making the joint!DistanceJointDef djd = new DistanceJointDef();

djd.bodyA = p1.body;
djd.bodyB = p2.body;
djd.length = box2d.scalarPixelsToWorld(len);
djd.frequencyHz = 0; // Try a value less than 5
djd.dampingRatio = 0; // Ranges between 0 and 1

DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);

}

void display() {
Vec2 pos1 = box2d.getBodyPixelCoord(p1.body);
Vec2 pos2 = box2d.getBodyPixelCoord(p2.body);
stroke(0);
line(pos1.x,pos1.y,pos2.x,pos2.y);

p1.display();
p2.display();

}
}

Make the joint. Note that we aren't storing a
reference to the joint anywhere! We might
need to someday, but for now it's OK.
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Another joint you can create in Box2D is a
revolute joint. A revolute joint connects two
Box2D bodies at a common anchor point,
which can also be referred to as a “hinge.”
The joint has an “angle” that describes the
relative rotation of each body. To use a
revolute joint, we follow the same steps we
did with the distance joint.

Create a simulation of a bridge by using distance joints to connect a sequence of
circles (or rectangles) as illustrated to the right. Assign a density of zero to lock the
endpoints in place. Experiment with different values to make the bridge more or less
“springy.” It should also be noted that the joints themselves have no physical geometry,
so in order for your bridge not to have holes, spacing between the nodes will be
important.

Exercise 5.6Exercise 5.6

Figure 5.11

Step 1: Make sure you have two bodies ready to go.Step 1: Make sure you have two bodies ready to go.

Let’s assume we have two Box objects, each of which stores a reference to a Box2D body.

Box box1 = new Box();
Box box2 = new Box();
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Step 2: Define the joint.Step 2: Define the joint.

Now we want a RevoluteJointDef object.

RevoluteJointDef rjd = new RevoluteJointDef();

Step 3: Configure the joint’s properties.Step 3: Configure the joint’s properties.

The most important properties of a revolute joint are the two bodies it connects as well as
their mutual anchor point (i.e. where they are connected). They are set with the function
initialize().

Notice how the first two arguments specify the bodies and the second point specifies the
anchor, which in this case is located at the center of the first body.

An exciting feature of a RevoluteJoint object is that you can motorize it so it spins
autonomously. For example:

The motor can be enabled and disabled while the program is running.

Finally, the ability for a revolute joint to spin can be constrained between two angles. (By
default, it can rotate a full 360 degrees, or TWO_PI radians.)

rjd.initialize(box1.body, box2.body, box1.body.getWorldCenter());

Turn on the motor.rjd.enableMotor = true;

How fast is the motor?rjd.motorSpeed = PI*2;

How powerful is the motor?rjd.maxMotorTorque = 1000.0;

rjd.enableLimit = true;
rjd.lowerAngle = -PI/8;
rjd.upperAngle = PI/8;

Step 4: Create the jointStep 4: Create the joint

Let’s take a look at all of these steps together in a class called Windmill, which connects
two boxes with a revolute joint. In this case, box1 has a density of zero, so only box2 spins
around a fixed point.

RevoluteJoint joint = (RevoluteJoint) box2d.world.createJoint(rjd);
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Example 5.7: Spinning Windmill

class Windmill {

Our “Windmill” is two boxes and one joint.RevoluteJoint joint;

Box box1;
Box box2;

Windmill(float x, float y) {

In this example, the Box class expects a
boolean argument that will be used to
determine if the Box is fixed or not. See
website for the Box class code.

box1 = new Box(x,y,120,10,false);
box2 = new Box(x,y,10,40,true);

RevoluteJointDef rjd = new RevoluteJointDef();

rjd.initialize(box1.body, box2.body, box1.body.getWorldCenter());

The joint connects two bodies and is
anchored at the center of the first body.

A motor!rjd.motorSpeed = PI*2;

rjd.maxMotorTorque = 1000.0;
rjd.enableMotor = true;

joint = (RevoluteJoint) box2d.world.createJoint(rjd);

} Create the Joint.

Turning the motor on or offvoid toggleMotor() {
boolean motorstatus = joint.isMotorEnabled();
joint.enableMotor(!motorstatus);

}
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The last joint we’ll look at is a mouse joint. A mouse joint is typically used for moving a body
with the mouse. However, it can also be used to drag an object around the screen
according to some arbitrary x and y. The joint functions by pulling the body towards a
“target” position.

Before we look at the MouseJoint object itself, let’s ask ourselves why we even need it in
the first place. If you look at the Box2D documentation, there is a function called
setTransform() that specifically “sets the position of the body’s origin and rotation
(radians).” If a body has a position, can’t we just assign the body’s position to the mouse?

While this will in fact move the body, it will also have the unfortunate result of breaking the
physics. Let’s imagine you built a teleportation machine that allows you to teleport from
your bedroom to your kitchen (good for late-night snacking). Now, go ahead and rewrite
Newton’s laws of motion to account for the possibility of teleportation. Not so easy, right?
Box2D has the same problem. If you manually assign the location of an body, it’s like saying
“teleport that body” and Box2D no longer knows how to compute the physics properly.

void display() {
box1.display();
box2.display();

}
}

Use a revolute joint for the wheels of a
car. Use motors so that the car drives
autonomously. Try using a chain shape
for the road’s surface.

Exercise 5.7Exercise 5.7

Vec2 mouse = box2d.screenToWorld(x,y);
body.setTransform(mouse,0);
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However, Box2D does allow you to tie a rope to yourself and get a friend of yours to stand in
the kitchen and drag you there. This is what the MouseJoint does. It’s like a string you attach
to a body and pull towards a target.

Let’s look at making this joint, assuming we have a Box object called box. This code will look
identical to our distance joint with one small difference.

So, what’s this line of code all about?

Well, as we’ve stated, a joint is a connection between two bodies. With a mouse joint, we’re
saying that the second body is, well, the ground. Hmm. What the heck is the ground in Box2D?
One way to imagine it is to think of the screen as the ground. What we’re doing is making a
joint that connects a rectangle drawn on the window with the Processing window itself. And
the point in the window to which the connection is tied is a moving target.

Once we have a mouse joint, we’ll want to update the target location continually while the
sketch is running.

To make this work in an actual Processing sketch, we’ll want to have the following:

1. Box classBox class—An object that references a Box2D body.

2. Spring classSpring class—An object that manages the mouse joint that drags the Box object
around.

Just like before, define the Joint.MouseJointDef md = new MouseJointDef();

Whoa, this is new!md.bodyA = box2d.getGroundBody();

Attach the Box body.md.bodyB = box.body;

Set properties.md.maxForce = 5000.0;

md.frequencyHz = 5.0;
md.dampingRatio = 0.9;

Create the joint.MouseJoint mouseJoint = (MouseJoint)
box2d.world.createJoint(md);.

md.bodyA = box2d.getGroundBody();

Vec2 mouseWorld = box2d.coordPixelsToWorld(mouseX,mouseY);
mouseJoint.setTarget(mouseWorld);
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3. Main tabMain tab—Whenever mousePressed() is called, the mouse joint is created;
whenever mouseReleased() is called, the mouse joint is destroyed. This allows us
to interact with a body only when the mouse is pressed.

Let’s take a look at the main tab. You can find the rest of the code for the Box and Spring
classes via the book website.

Example 5.8: MouseJoint demonstration

PBox2D box2d;

One BoxBox box;

Object to manage MouseJointSpring spring;

void setup() {
size(400,300);
box2d = new PBox2D(this);
box2d.createWorld();

box = new Box(width/2,height/2);

The MouseJoint is really null until we click
the mouse.

spring = new Spring();

}

void mousePressed() {

Was the mouse clicked inside the Box?if (box.contains(mouseX, mouseY)) {

If so, attach the MouseJoint.spring.bind(mouseX,mouseY,box);

}
}

void mouseReleased() {
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It’s worth noting that while the technique for dragging an object around using a MouseJoint is
useful, Box2D also allows a body to have a KINEMATIC type.

Kinematic bodies can be controlled by the
user by setting their velocity directly. For
example, let’s say you want an object to
follow a target (like your mouse). You could
create a vector that points from a body’s
location to a target.

When the mouse is released, we’re done
with the MouseJoint.

spring.destroy();

}

void draw() {
background(255);

box2d.step();

We must always update the MouseJoint’s
target.

spring.update(mouseX,mouseY);

box.display();
spring.display();

}

Use a mouse joint to move a Box2D body around the screen according to an algorithm
or input other than the mouse. For example, assign it a location according to Perlin
noise or key presses. Or build your own controller using an Arduino
(http://www.arduino.cc/).

Exercise 5.8Exercise 5.8

BodyDef bd = new BodyDef();

Setting the body type to Kinematicbd.type = BodyType.KINEMATIC;

Figure 5.12

Vec2 pos = body.getWorldCenter();
Vec2 target = box2d.coordPixelsToWorld(mouseX,mouseY);

A vector pointing from the body position to
the Mouse

Vec2 v = target.sub(pos);
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Once you have that vector, you could assign it to the body’s velocity so that it moves to the
target.

You can also do the same with angular velocity (or leave it alone and allow the physics to
take over).

It is important to note that kinematic bodies do not collide with other kinematic or static
bodies. In these cases, the mouse joint strategy is preferable.

Assigning a body’s velocity directly,
overriding physics!

body.setLinearVelocity(v);

Redo Exercise 5.8, but use a kinematic body instead.

Exercise 5.9Exercise 5.9

5.12 Bringing It All Back Home to Forces5.12 Bringing It All Back Home to Forces
In Chapter 2, we spent a lot of time thinking about building environments with multiple
forces. An object might respond to gravitational attraction, wind, air resistance, etc. Clearly
there are forces at work in Box2D as we watch rectangles and circles spin and fly around
the screen. But so far, we’ve only had the ability to manipulate a single global
force—gravity.

If we want to use any of our Chapter 2 techniques with Box2D, we need look no further than
our trusty applyForce() function. In our Mover class we wrote a function called
applyForce(), which received a vector, divided it by mass, and accumulated it into the
mover’s acceleration. With Box2D, the same function exists, but we don’t need to write it
ourselves. Instead, we can call the Box2D body’s applyForce() function!

box2d = new PBox2D(this);
box2d.createWorld();

Setting the global gravity forcebox2d.setGravity(0, -20);

class Box {
Body body;

void applyForce(Vec2 force) {
Vec2 pos = body.getWorldCenter();

Calling the Body's applyForce() functionbody.applyForce(force, pos);

}
}
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Here we are receiving a force vector and passing it along to the Box2D Body object. The key
difference is that Box2D is a more sophisticated engine than our examples from Chapter 2.
Our earlier forces examples assumed that the force was always applied at the mover’s center.
Here we get to specify exactly where on the body the force is applied. In the above code,
we’re just applying it to the center by asking the body for its center, but this could be
adjusted.

Let’s say we wanted to use a gravitational attraction force. Remember the code we wrote back
in Chapter 2 in our Attractor class?

We can rewrite the exact same function using Vec2 instead and use it in a Box2D example.
Note how for our force calculation we can stay completely within the Box2D coordinate
system and never think about pixels.

PVector attract(Mover m) {
PVector force = PVector.sub(location,m.location);
float distance = force.mag();
distance = constrain(distance,5.0,25.0);
force.normalize();
float strength = (g * mass * m.mass) / (distance * distance);
force.mult(strength);
return force;

}

Vec2 attract(Mover m) {

We have to ask Box2D for the locations first!Vec2 pos = body.getWorldCenter();

Vec2 moverPos = m.body.getWorldCenter();
Vec2 force = pos.sub(moverPos);
float distance = force.length();
distance = constrain(distance,1,5);
force.normalize();
float strength = (G * 1 * m.body.m_mass) / (distance * distance);

Remember, it’s mulLocal() for Vec2.force.mulLocal(strength);

return force;
}
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Take any example you made previously using a force calculation and bring that force
calculation into Box2D.

Exercise 5.10Exercise 5.10

5.13 Collision Events5.13 Collision Events
Now we’ve seen a survey of what can be done with Box2D. Since this book is not called
“The Nature of Box2D,” it’s not my intention to cover every single possible feature of the
Box2D engine. But hopefully by looking at the basics of building bodies, shapes, and joints,
when it comes time to use an aspect of Box2D that we haven’t covered, the skills we’ve
gained here will make that process considerably less painful. There is one more feature of
Box2D, however, that I do think is worth covering.

Let’s ask a question you’ve likely been wondering about:

What if I want something to happen when two Box2D bodies collide? I mean, don’t get me
wrong—I’m thrilled that Box2D is handling all of the collisions for me. But if it takes care of
everything for me, how am I supposed to know when things are happening?

Your first thoughts when considering an event during which two objects collide might be as
follows: Well, if I know all the bodies in the system, and I know where they are all located,
then I can just start comparing the locations, see which ones are intersecting, and
determine that they’ve collided. That’s a nice thought, but hello??!? The whole point of using
Box2D is that Box2D will take care of that for us. If we are going to do the geometry to test
for intersection ourselves, then all we’re doing is re-implementing Box2D.

Of course, Box2D has thought of this problem before. It’s a pretty common one. After all, if
you intend to make a bajillion dollars selling some game called Angry Birds, you better well
make something happen when an ill-tempered pigeon smashes into a cardboard box.
Box2D alerts you to moments of collision with something called an “interface.” It’s worth
learning about interfaces, an advanced feature of object-oriented programming. You can
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take a look at the Java Interface Tutorial (http://download.oracle.com/javase/tutorial/java/
concepts/interface.html) as well as the JBox2D ContactListener class. (I have also included
an example on the website that demonstrates using the interface directly.)

If you are using PBox2D, as we are here, you don’t need to implement your own interface.
Detecting collision events is done through a callback function. Much like mousePressed() is
triggered when the mouse is pressed, beginContact() is triggered when two shapes collide.

Before the above will work, you must first let PBox2D know you intend to listen for collisions.
(This allows the library to reduce overhead by default; it won’t bother listening if it doesn’t
have to.)

There are four collision event callbacks.

1. beginContact() —Triggered whenever two shapes first come into contact with each
other.

2. endContact() —Triggered over and over again as long as shapes continue to be in
contact.

3. preSolve() —Triggered before Box2D solves the outcome of the collision, i.e.
before beginContact(). It can be used to disable a collision if necessary.

4. postSolve() —Triggered after the outcome of the collision is solved. It allows you
to gather information about that “solution” (known as an “impulse”).

The details behind preSolve() and postSolve() are beyond the scope of this book;
however, we are going to take a close look at beginContact(), which will cover the majority
of conventional cases in which you want to trigger an action when a collision occurs.
endContact() works identically to beginContact(), the only difference being that it occurs
the moment bodies separate.

The mousePressed event with which we are
comfortable.

void mousePressed() {

println("The mouse was pressed!");
}

What our "beginContact" event looks like.void beginContact(Contact cp) {

println("Something collided in the Box2D World!");
}

void setup() {
box2d = new PBox2D(this);
box2d.createWorld();

Add this line if you want to listen for
collisions.

box2d.listenForCollisions();

}
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beginContact() is written as follows:

Notice that the function above includes an argument of type Contact. A Contact object
includes all the data associated with a collision—the geometry and the forces. Let’s say we
have a Processing sketch with Particle objects that store a reference to a Box2D body.
Here is the process we are going to follow.

void beginContact(Contact cp) {

}

Step 1: Contact, could you tell me what two things collided?Step 1: Contact, could you tell me what two things collided?

Now, what has collided here? Is it the bodies? The shapes? The fixtures? Box2D detects
collisions between shapes; after all, these are the entities that have geometry. However,
because shapes are attached to bodies with fixtures, what we really want to ask Box2D is:
“Could you tell me which two fixtures collided?”

The contact stores the fixtures as A and B.Fixture f1 = cp.getFixtureA();
Fixture f2 = cp.getFixtureB();

Step 2: Fixtures, could you tell me which body you are attached to?Step 2: Fixtures, could you tell me which body you are attached to?

getBody() gives us the body to which the
Fixture is attached.

Body b1 = f1.getBody();
Body b2 = f2.getBody();

Step 3: Bodies, could you tell me which Particles you are associatedStep 3: Bodies, could you tell me which Particles you are associated
with?with?

OK, this is the harder part. After all, Box2D doesn’t know anything about our code. Sure, it is
doing all sorts of stuff to keep track of the relationships between shapes and bodies and
joints, but it’s up to us to manage our own objects and their associations with Box2D
elements. Luckily for us, Box2D provides a function that allows us to attach our Processing
object (a Particle) to a Box2D body via the setUserData() and getUserData() methods.

Let’s take a look at the constructor in our Particle class where the body is made. We are
expanding our body-making procedure by one line of code, noted below.
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Later, in our addContact() function, once we know the body, we can access the Particle
object with getUserData().

Example 5.9: CollisionListening

class Particle {
Body body;

Particle(float x, float y, float r) {
BodyDef bd = new BodyDef();
bd.position = box2d.coordPixelsToWorld(x, y);
bd.type = BodyType.DYNAMIC;
body = box2d.createBody(bd);
CircleShape cs = new CircleShape();
cs.m_radius = box2d.scalarPixelsToWorld(r);
body.createFixture(fd,1);

"this" refers to this Particle object. We are
telling the Box2D Body to store a reference
to this Particle that we can access later.

body.setUserData(this);

}

void beginContact(Contact cp) {

Fixture f1 = cp.getFixtureA();
Fixture f2 = cp.getFixtureB();

Body b1 = f1.getBody();
Body b2 = f2.getBody();

When we pull the “user data” object out of
the Body object, we have to remind our
program that it is a Particle object. Box2D
doesn’t know this.

Particle p1 = (Particle) b1.getUserData();
Particle p2 = (Particle) b2.getUserData();

Once we have the particles, we can do
anything to them. Here we just call a
function that changes their color.

p1.change();
p2.change();

}
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Now, in many cases, we cannot assume that the objects that collided are all Particle
objects. We might have a sketch with Boundary objects, Particle objects, Box objects, etc.
So often we will have to query the “user data” and find out what kind of object it is before
proceeding.

It should also be noted that due to how Box2D triggers these callbacks, you cannot create
or destroy Box2D entities inside of beginContact(), endContact(), preSolve(), or
postSolve(). If you want to do this, you’ll need to set a variable inside an object
(something like: markForDeletion = true), which you check during draw() and then
delete objects.

Getting a generic objectObject o1 = b1.getUserData();

Asking that object if it’s a Particleif (o1.getClass() == Particle.class) {

Particle p = (Particle) o1;
p.change();

}

Consider how polymorphism could help in the above case. Build an example in which
several classes extend one class and therefore eliminate the need for such testing.

Exercise 5.11Exercise 5.11

Create a simulation in which Particle objects disappear when they collide with one
another. Use the methodology I just described.

Exercise 5.12Exercise 5.12

5.14 A Brief Interlude—Integration Methods5.14 A Brief Interlude—Integration Methods
Has the following ever happened to you? You’re at a fancy cocktail party regaling your
friends with tall tales of software physics simulations. Someone pipes up: “Enchanting! But
what integration method are you using?” “What?!” you think to yourself. “Integration?”

Maybe you’ve heard the term before. Along with “differentiation,” it’s one of the two main
operations in calculus. Right, calculus. The good news is, we’ve gotten through about 90%
of the material in this book related to physics simulation and we haven’t really needed to
dive into calculus. But as we’re coming close to finishing this topic, it’s worth taking a
moment to examine the calculus behind what we have been doing and how it relates to the
methodology in certain physics libraries (like Box2D and the upcoming toxiclibs).
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Let’s begin by answering the question: “What does integration have to do with location,
velocity, and acceleration?” Well, first let’s define differentiationdifferentiation, the process of finding a
“derivative.” The derivative of a function is a measure of how a function changes over time.
Consider location and its derivative. Location is a point in space, while velocity is change in
location over time. Therefore, velocity can be described as the “derivative” of location. What is
acceleration? The change in velocity over time—i.e. the “derivative” of velocity.

Now that we understand the derivative (differentiation), we can define the integral (integration)
as the inverse of the derivative. In other words, the integral of an object’s velocity over time
tells us the object’s new location when that time period ends. Location is the integral of
velocity, and velocity is the integral of acceleration. Since our physics simulation is founded
upon the process of calculating acceleration based on forces, we need integration to figure
out where the object is after a certain period of time (like one frame of animation!)

So we’ve been doing integration all along! It looks like this:

The above methodology is known as Euler integration (named for the mathematician Leonhard
Euler, pronounced “Oiler”) or the Euler method. It’s essentially the simplest form of integration
and very easy to implement in our code (see the two lines above!) However, it is not
necessarily the most efficient form, nor is it close to being the most accurate. Why is Euler
inaccurate? Let’s think about it this way. When you drive a car down the road pressing the gas
pedal with your foot and accelerating, does the car sit in one location at time equals one
second, then disappear and suddenly reappear in a new location at time equals two seconds,
and do the same thing for three seconds, and four, and five? No, of course not. The car moves
continuously down the road. But what’s happening in our Processing sketch? A circle is at one
location at frame 0, another at frame 1, another at frame 2. Sure, at thirty frames per second,
we’re seeing the illusion of motion. But we only calculate a new location every N units of time,
whereas the real world is perfectly continuous. This results in some inaccuracies, as shown in
the diagram below:

velocity.add(acceleration);
location.add(velocity);
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The “real world” is the curve; Euler simulation is the series of line segments.

One option to improve on Euler is to use smaller timesteps—instead of once per frame, we
could recalculate an object’s location twenty times per frame. But this isn’t practical; our
sketch would then run too slowly.

I still believe that Euler is the best method for learning the basics, and it’s also perfectly
adequate for most of the projects we might make in Processing. Anything we lose in
efficiency or inaccuracy we make up in ease of use and understandability. For better
accuracy, Box2D uses something called symplectic Euler (http://en.wikipedia.org/wiki/
Symplectic_Euler_method), or semi-explicit Euler, a slight modification of Euler.

There is also an integration method called Runge-Kutta (named for German mathematicians
C. Runge and M. W. Kutta), which is used in some physics engines.

A very popular integration method that our next physics library uses is known as “Verlet
integration.” A simple way to describe Verlet integration is to think of our typical motion
algorithm without velocity. After all, we don’t really need to store the velocity. If we always
know where an object was at one point in time and where it is now, we can extrapolate its
velocity. Verlet integration does precisely this, though instead of having a variable for
velocity, it calculates velocity while the program is running. Verlet integration is particularly
well suited for particle systems, especially particle systems with spring connections
between the particles. We don’t need to worry about the details because toxiclibs, as we’ll
see below, takes care of them for us. However, if you are interested, here is the seminal
paper on Verlet physics, from which just about every Verlet computer graphics simulation is
derived: "Advanced Character Physics" (http://www.gamasutra.com/resource_guide/
20030121/jacobson_pfv.htm). And of course, you can find out more about Verlet integration
from Wikipedia (http://en.wikipedia.org/wiki/Verlet_integration).

Figure 5.13
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5.15 Verlet Physics with toxiclibs5.15 Verlet Physics with toxiclibs
From toxiclibs.org:

“toxiclibs is an independent, open source library collection for computational design tasks
with Java & Processing developed by Karsten “toxi” Schmidt (thus far). The classes are
purposefully kept fairly generic in order to maximize re-use in different contexts ranging from
generative design, animation, interaction/interface design, data visualization to architecture
and digital fabrication, use as teaching tool and more.”

In other words, we should thank our lucky stars for toxiclibs. We are only going to focus on a
few examples related to Verlet physics, but toxiclibs includes a suite of other wonderful
packages that help with audio, color, geometry, and more. In particular, if you are looking to
work with form and fabrication in Processing, take a look at the geometry package. Demos
can be found at Open Processing (http://www.openprocessing.org/portal/?userID=4530).

We should note that toxiclibs was designed specifically for use with Processing. This is great
news. The trouble we had with making Box2D work in Processing (multiple coordinate
systems, Box2D vs. JBox2D vs. PBox2D) is not an issue here. toxiclibs is a library that you just
download, stick in your libraries folder, and use. And the coordinate system that we’ll use for
the physics engine is the coordinate system of Processing, so no translating back and forth. In
addition, toxiclibs is not limited to a 2D world; all of the physics simulations and functions
work in both two and three dimensions. So how do you decide which library you should use?
Box2D or toxiclibs? If you fall into one of the following two categories, your decision is a bit
easier:

1. My project involves collisions. I have circles, squares, and other strangely shaped objects1. My project involves collisions. I have circles, squares, and other strangely shaped objects
that knock each other around and bounce off each other.that knock each other around and bounce off each other.

In this case, you are going to need Box2D. toxiclibs does not handle collisions.

2. My project involves lots of particles flying around the screen. Sometimes they attract2. My project involves lots of particles flying around the screen. Sometimes they attract
each other. Sometimes they repel each other. And sometimes they are connected witheach other. Sometimes they repel each other. And sometimes they are connected with
springs.springs.

In this case, toxiclibs is likely your best choice. It is simpler to use than Box2D and particularly
well suited to connected systems of particles. toxiclibs is also very high performance, due to
the speed of the Verlet integration algorithm (not to mention the fact that the program gets to
ignore all of the collision geometry).

Here is a little chart that covers some of the features for each physics library.
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FeatureFeature Box2DBox2D toxiclibs VerletPhysicstoxiclibs VerletPhysics

Collision geometry Yes No

3D physics No Yes

Particle attraction /
repulsion forces

No Yes

Spring connections Yes Yes

Other connections: revolute,
pulley, gear, prismatic

Yes No

Motors Yes No

Friction Yes No

Getting toxiclibsGetting toxiclibs

Everything you need to download and install toxiclibs can be found at:

toxiclibs (http://toxiclibs.org/)

When you download the library, you’ll notice that it comes with eight modules (i.e. sub-
folders), each a library in its own right. For the examples in this chapter, you will only need
“verletphysics” and “toxiclibscore”; however, I recommend you take a look at and consider
using all of the modules!

Once you have the library installed to your Processing library folder
(http://wiki.processing.org/w/How_to_Install_a_Contributed_Library), you are ready to start
looking at the following examples.

Core Elements of VerletPhysicsCore Elements of VerletPhysics

We spent a lot of time working through the core elements of a Box2D world: world, body,
shape, joint. This gives us a head start on understanding toxiclibs, since it follows a similar
structure.
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Box2DBox2D toxiclibs VerletPhysicstoxiclibs VerletPhysics

World VerletPhysics

Body VerletParticle

Shape
Nothing! toxiclibs does not handle shape

geometry

Fixture
Nothing! toxiclibs does not handle shape

geometry

Joint VerletSpring

Vectors with toxiclibsVectors with toxiclibs

Here we go again. Remember all that time we spent learning the ins and outs of the PVector
class? Then remember how when we got to Box2D, we had to translate all those concepts to a
Box2D vector class: Vec2? Well, it’s time to do it again. toxiclibs also includes its own vector
classes, one for two dimensions and one for three: Vec2D and Vec3D.

Again, toxiclibs vectors are the same conceptually, but we need to learn a bit of new syntax.
You can find all of the documentation for these vector classes here:

Vec2D (http://toxiclibs.org/docs/core/toxi/geom/Vec2D.html)
Vec3D (http://toxiclibs.org/docs/core/toxi/geom/Vec3D.html)

And let’s just review some of the basic vector math operations with PVector translated to
Vec2D (we’re sticking with 2D for simplicity’s sake).

PVectorPVector Vec2DVec2D

PVector a = new PVector(1,-1);
PVector b = new PVector(3,4);
a.add(b);

Vec2D a = new Vec2D(1,-1);
Vec2D b = new Vec2D(3,4);
a.addSelf(b);

PVector a = new PVector(1,-1);
PVector b = new PVector(3,4);
PVector c = PVector.add(a,b);

Vec2D a = new Vec2D(1,-1);
Vec2D b = new Vec2D(3,4);
Vec2D c = a.add(b);

PVector a = new PVector(1,-1);
float m = a.mag();
a.normalize();

Vec2D a = new Vec2D(1,-1);
float m = a.magnitude();
a.normalize();
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Building the toxiclibs physics worldBuilding the toxiclibs physics world

The first thing we need to do to create a toxiclibs physics world in our examples is import
the library itself.

Then we’ll need a reference to our physics world, a VerletPhysics or VerletPhysics2D
object (depending on whether we are working in two or three dimensions). The examples in
this chapter will operate in 2D only for simplicity, but they could easily be extended into 3D
(and 3D versions are available with the chapter download).

Once you have your VerletPhysics object, you can set some global properties for your
world. For example, if you want it to have hard boundaries past which objects cannot travel,
you can set its limits:

In addition, you can add gravity to the physics world with a GravityBehavior object. A
gravity behavior requires a vector—how strong and in what direction is the gravity?

Finally, in order to calculate the physics of the world and move the objects in the world, we
have to call update(). Typically this would happen once per frame in draw().

Importing the librariesimport toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

VerletPhysics2D physics;

void setup() {

Creating a toxiclibs Verlet physics worldphysics=new VerletPhysics2D();

physics.setWorldBounds(new Rect(0,0,width,height));

physics.addBehavior(new GravityBehavior(new Vec2D(0,0.5)));
}

void draw() {

This is the same as Box2D’s “step()”
function

physics.update();

}

5.16 Particles and Springs in toxiclibs5.16 Particles and Springs in toxiclibs

In the Box2D examples, we saw how we can create our own class (called, say, Particle)
and include a reference to a Box2D body.
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This technique is somewhat redundant since Box2D itself keeps track of all of the bodies in its
world. However, it allows us to manage which body is which (and therefore how each body is
drawn) without having to rely on iterating through Box2D’s internal lists.

Let’s look at how we might take the same approach with the class VerletParticle2D in
toxiclibs. We want to make our own Particle class so that we can draw our particles a certain
way and include any custom properties. We’d probably write our code as follows:

Looking at the above, we should first be thrilled to notice that drawing the particle is as simple
as grabbing the x and y and using them. No awkward conversions between coordinate
systems here since toxiclibs is designed to think in pixels. Second, you might notice that this
Particle class’s sole purpose is to store a reference to a VerletParticle2D object. This
hints at something. Remember our discussion of inheritance back in Chapter 4: Particle
Systems? What is a Particle object other than an “augmented” VerletParticle? Why
bother making a verlet particle inside a particle when we could simply extend
VerletParticle?

class Particle {
Body body;

class Particle {

Our Particle has a reference to a
VerletParticle.

VerletParticle2D p;

Particle(Vec2D pos) {

A VerletParticle needs an initial location (an
x and y).

p = new VerletParticle2D(pos);

}

void display() {
fill(0,150);
stroke(0);

When it comes time to draw the Particle, we
ask the VerletParticle for its x and y
coordinates.

ellipse(p.x,p.y,16,16);

}
}

class Particle extends VerletParticle2D {

Particle(Vec2D loc) {

Calling super() so that the object is
initialized properly

super(loc);

}

We want this to be just like a VerletParticle,
only with a display() method.

void display() {

fill(175);
stroke(0);
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Remember our multi-step process with the Box2D examples? We had to ask the body for its
location, then convert that location to pixels, then use that location in a drawing function.
Now, because we have inherited everything from the VerletParticle class, our only step
is to draw the shape at x and y!

Incidentally, it’s interesting to note that the VerletParticle2D class is a subclass of Vec2D.
So in addition to inheriting everything from VerletParticle2D, our Particle class actually
has all of the Vec2D functions available as well.

We can now create particles anywhere within our sketch.

Just making a particle isn’t enough, however. We have to make sure we tell our physics
world about them with the addParticle() function.

If you look at the toxiclibs documentation, you’ll see that the addParticle() expects a
VerletParticle2D object.

addParticle(VerletParticle2D particle)

And how can we then pass into the function our own Particle object? Remember that
other tenet of object-oriented programming—polymorphism? Here, because our Particle
class extends VerletParticle2D, we can choose to treat our particle in two different
ways—as a Particle or as a VerletParticle2D. This is an incredibly powerful feature of
object-oriented programming. If we build our custom classes based on classes from
toxiclibs, we can use our objects in conjunction with all of the functions toxiclibs has to
offer.

In addition to the VerletParticle class, toxiclibs has a set of classes that allow you to
connect particles with spring forces. There are three types of springs in toxiclibs:

• VerletSpring: This class creates a springy connection between two particles in
space. A spring’s properties can be configured in such a way as to create a stiff
stick-like connection or a highly elastic stretchy connection. A particle can also be
locked so that only one end of the spring can move.

We’ve inherited x and y from VerletParticle!ellipse(x,y,16,16);

}
}

Particle p1 = new Particle(new Vec2D(100,20));
Particle p2 = new Particle(new Vec2D(100,180));

physics.addParticle(p1);
physics.addParticle(p2);
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• VerletConstrainedSpring: A VerletConstrainedSpring object is a spring whose
maximum distance can be limited. This can help the whole spring system achieve
better stability.

• VerletMinDistanceSpring: A VerletMinDistanceSpring object is a spring that
only enforces its rest length if the current distance is less than its rest length. This is
handy if you want to ensure objects are at least a certain distance from each other,
but don’t care if the distance is bigger than the enforced minimum.

The inheritance and polymorphism technique we employed in the previous section also
proves to be useful when creating springs. A spring expects two particles when it is created.
And again, because our Particle class extends VerletParticle, a VerletSpring object
will accept our Particle objects passed into the constructor. Let’s take a look at some
example code that assumes the existence of our two previous particles p1 and p2 and creates
a connection between them with a given rest length and strength.

Just as with particles, in order for the connection to actually be part of the physics world, we
need to explicitly add it.

What is the rest length of the spring?float len = 80;

How strong is the spring?float strength = 0.01;

VerletSpring2D spring=new VerletSpring2D(p1,p2,len,strength);

physics.addSpring(spring);

5.17 Putting It All Together: A Simple Interactive5.17 Putting It All Together: A Simple Interactive
SpringSpring
One thing we saw with Box2D is that the physics simulation broke down when we overrode it
and manually set the location of a body. With toxiclibs, we don’t have this problem. If we want
to move the location of a particle, we can simply set its x and y location manually. However,
before we do so, it’s generally a good idea to call the lock() function.

lock() is typically used to lock a particle in place and is identical to setting a Box2D body’s
density to 0. However, here we are going to show how to lock a particle temporarily, move it,
and then unlock it so that it continues to move according to the physics simulation.  Let’s say
you want to move a given particle whenever you click the mouse.

if (mousePressed) {
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And now we’re ready to put all of these elements together in a simple example that
connects two particles with a spring. One particle is locked in place, and the other can be
moved by dragging the mouse. Note that this example is virtually identical to Example 3.11
(see page 139).

Example 5.10: Simple Spring with toxiclibs

First lock the particle, then set the x and y,
then unlock() it.

p2.lock();
p2.x = mouseX;
p2.y = mouseY;
p2.unlock();

}

import toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

VerletPhysics2D physics;
Particle p1;
Particle p2;

void setup() {
size(200,200);

Creating a physics worldphysics=new VerletPhysics2D();

physics.addBehavior(new GravityBehavior2D(new Vec2D(0,0.5)));
physics.setWorldBounds(new Rect(0,0,width,height));

Creating two Particlesp1 = new Particle(new Vec2D(100,20));

p2 = new Particle(new Vec2D(100,180));

Locking Particle 1 in placep1.lock();

VerletSpring2D spring=new VerletSpring2D(p1,p2,80,0.01);

Creating one Spring
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Must add everything to the worldphysics.addParticle(p1);

physics.addParticle(p2);
physics.addSpring(spring);

}

void draw() {

Must update the physicsphysics.update();

background(255);

Drawing everythingline(p1.x,p1.y,p2.x,p2.y);

p1.display();
p2.display();

if (mousePressed) {

Moving a Particle according to the mousep2.lock();
p2.x = mouseX;
p2.y = mouseY;
p2.unlock();

}
}

How cute is our simple Particle class?!class Particle extends VerletParticle2D {

Particle(Vec2D loc) {
super(loc);

}

void display() {
fill(175);
stroke(0);
ellipse(x,y,16,16);

}
}

5.18 Connected Systems Part I: String5.18 Connected Systems Part I: String
The above example, two particles connected with a single spring, is the core building block
for what toxiclibs’ physics is particularly well suited for: soft body simulations. For example, a
string can be simulated by connecting a line of particles with springs. A blanket can be
simulated by connecting a grid of particles with springs. And a cute, cuddly, squishy cartoon
character can be simulated by a custom layout of particles connected with springs.
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Let’s begin by simulating a “soft pendulum”—a bob hanging from a string, instead of a rigid
arm like we had in Chapter 3 (see page 131). Let’s use the "string" in Figure 5.14 above as
our model.

First, we’ll need a list of particles (let’s use the same Particle class we built in the previous
example).

Now, let’s say we want to have 20 particles, all spaced 10 pixels apart.

We can loop from i equals 0 all the way up to 20, with each particle’s y location set to i *
10 so that the first particle is at (0,10), the second at (0,20), the third at (0,30), etc.

Figure 5.14

ArrayList<Particle> particles = new ArrayList<Particle>();

Figure 5.15

float len = 10;
float numParticles = 20;

for(int i=0; i < numPoints; i++) {

Spacing them out along the x-axisParticle particle=new Particle(i*len,10);

Add the particle to our list.physics.addParticle(particle);
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Even though it’s a bit redundant, we’re going to add the particle to both the toxiclibs physics
world and to our own list. In case we eventually have multiple strings, this will allow us to
know which particles are connected to which strings.

Now for the fun part: It’s time to connect all the particles. Particle 1 will be connected to
particle 0, particle 2 to particle 1, 3 to 2, 4 to 3, etc.

In other words, particle i needs to be connected to particle i-1 (except for when i equals
zero).

Now, what if we want the string to hang from a fixed point? We can lock one of the
particles—the first, the last, the middle one, etc. Here’s how we would access the first particle
(in the ArrayList) and lock it.

And if we want to draw all the particles as being connected with a line, along with a circle for
the last particle, we can use beginShape(), endShape(), and vertex(), accessing the
particle locations from our ArrayList.

Add the particle to the physics world.particles.add(particle);

}

Figure 5.16

if (i != 0) {

First we need a reference to the previous
particle.

Particle previous = particles.get(i-1);

VerletSpring2D spring = new VerletSpring2D(particle,previous,len,strength);

Then we make a spring connection between
the particle and the previous particle with a
rest length and strength (both floats).

We must not forget to add the spring to the
physics world.

physics.addSpring(spring);

}

Particle head=particles.get(0);
head.lock();
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Example 5.11: Soft swinging pendulum

The full code available with the chapter download also demonstrates how to drag the tail
particle with the mouse.

stroke(0);
noFill();
beginShape();
for (Particle p : particles) {

Each particle is one point in the line.vertex(p.x,p.y);

}
endShape();
Particle tail = particles.get(numPoints-1);

This draws the last particle as a circle.tail.display();

Create a hanging cloth simulation using the technique above, but connect all the
particles with a grid as demonstrated in the screenshot below.

Exercise 5.13Exercise 5.13
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5.19 Connected Systems Part II: Force-Directed5.19 Connected Systems Part II: Force-Directed
GraphGraph
Have you ever encountered the following scenario?

“I have a whole bunch of stuff I want to draw on the screen and I want all that stuff to be
spaced out evenly in a nice, neat, organized manner. Otherwise I have trouble sleeping at
night.”

This is not an uncommon problem in computational design. One solution is typically referred
to as a “force-directed graph.” A force-directed graph is a visualization of elements—let’s call
them “nodes”—in which the positions of those nodes are not manually assigned. Rather, the
nodes arrange themselves according to a set of forces. While any forces can be used, a
typical example involves spring forces. And so toxiclibs is perfect for this scenario.

How do we implement the above?

First, we’ll need a Node class. This is the easy part; it can extend VerletParticle2D. Really,
this is just what we did before, only we’re calling it Node now instead of Particle.

Next we can write a class called Cluster, which will describe a list of nodes.

class Node extends VerletParticle2D {
Node(Vec2D pos) {

super(pos);
}

void display() {
fill(0,150);
stroke(0);
ellipse(x,y,16,16);

}
}
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Let’s assume we added a display() function to draw all the nodes in the cluster and
created a Cluster object in setup() and displayed it in draw(). If we ran the sketch as is,
nothing would happen. Why? Because we forgot the whole force-directed graph part! We
need to connect every single node to every other node with a force. But what exactly do we
mean by that? Let’s assume we have four Node objects: 0, 1, 2 and 3. Here are our
connections:

0 connected to 1
0 connected to 2
0 connected to 3
1 connected to 2
1 connected to 3
2 connected to 3

Notice two important details about our connection list.

• No node is connected to itself.No node is connected to itself. We don’t have 0 connected to 0 or 1 connected to
1.

• We don’t need to repeat connections in reverse.We don’t need to repeat connections in reverse. In other words, if we’ve already
said 0 is connected to 1, we don’t need to say 1 is connected to 0 because, well, it
already is!

So how do we write code to make these connections for N number of nodes?

Look at the left column. It reads: 000 11 22. So we know we need to access each node in
the list from 0 to N-1.

class Cluster {

ArrayList<Node> nodes;

We’ll use this variable for the rest length
between all the nodes.

float diameter;

Cluster(int n, float d, Vec2D center) {
nodes = new ArrayList<Node>();
diameter = d;

for (int i = 0; i < n; i++) {

nodes.add(new Node(center.add(Vec2D.randomVector())));

}
}

Here’s a funny little detail. We’re going to
have a problem if all the Node objects start
in exactly the same location. So we add a
random vector to the center location so that
each Node is slightly offset.

for (int i = 0; i < nodes.size()-1; i++) {
VerletParticle2D ni = nodes.get(i);
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Now, we know we need to connect node 0 to nodes 1,2,3. For node 1: 2,3. For node 2: 3. So
for every node i, we must loop from i+1 until the end of the list.

With every two Nodes we find, all we have to do then is make a spring.

Assuming those connections are made in the Cluster constructor, we can now create a
cluster in our main tab and see the results!

Example 5.12: Cluster

Look how we start j at i + 1.for (int j = i+1; j < nodes.size(); j++) {

VerletParticle2D nj = nodes.get(j);

The Spring connects Nodes “ni” and “nj”.physics.addSpring(new
VerletSpring2D(ni,nj,diameter,0.01));

}
}

import toxi.geom.*;
import toxi.physics2d.*;

VerletPhysics2D physics;
Cluster cluster;

void setup() {
size(300,300);
physics=new VerletPhysics2D();

cluster = new Cluster(8,100,new Vec2D(width/2,height/2));

}

void draw() {
physics.update();
background(255);

Make a cluster.
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Draw the cluster.cluster.display();

}

Use the Cluster structure as a skeleton for a cute, cuddly, squishy creature (à la
“Nokia Friends”). Add gravity and also allow the creature to be dragged with the
mouse.

Exercise 5.14Exercise 5.14

Expand the force-directed graph to have more than one Cluster object. Use a
VerletMinDistanceSpring2D object to connect cluster to cluster.

Exercise 5.15Exercise 5.15

5.20 Attraction and Repulsion Behaviors5.20 Attraction and Repulsion Behaviors

When we looked at adding an attraction force to Box2D, we found that the Box2D Body
class included an applyForce() function. All we needed to do was calculate the attraction
force (Force = G * mass1 * mass2 / distance squared) as a vector and apply it to the body.
toxiclibs VerletParticle class also includes a function called addForce() that we can use
to apply any calculated force to a particle.

However, toxiclibs also takes this idea one step further by allowing us to attach some
common forces (let’s call them “behaviors”) to particles, calculating them and applying them
for us! For example, if we attach an AttractionBehavior object to a particle, then all other
particles in the physics world will be attracted to that particle.
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Let’s say we have a Particle class (that extends VerletParticle).

Once we’ve made a Particle object, we can create an AttractionBehavior object
associated with that particle.

Notice how the behavior is created with two parameters—distance and strength. The
distance specifies the range within which the behavior will be applied. For example, in the
above scenario, only other particles within twenty pixels will feel the attraction force. The
strength, of course, specifies how strong the force is.

Finally, in order for the force to be activated, the behavior needs to be added to the physics
world.

This means everything that lives in the physics simulation will always be attracted to that
particle, as long as it is within the distance threshold.

Even though toxiclibs does not handle collisions, you can create a collision-like effect by
adding a repulsive behavior to each and every particle (so that every particle repels every
other particle). Let’s look at how we might modify our Particle class to do this.

We could now recreate our attraction example by having a single Attractor object that
exerts an attraction behavior over the entire window.

Particle p = new Particle(new Vec2D(200,200));

float distance = 20;
float strength = 0.1;
AttractionBehavior behavior = new AttractionBehavior(p, distance, strength);

physics.addBehavior(behavior);

class Particle extends VerletParticle2D {

We’ve added a radius to every Particle.float r;

Particle (Vec2D loc) {
super(loc);
r = 4;

physics.addBehavior(new AttractionBehavior(this, r*4, -1));

}

void display () {
fill (255);
stroke (255);
ellipse (x, y, r*2, r*2);

}
}

Every time a Particle is made, an
AttractionBehavior is generated and added
to the physics world. Note that when the
strength is negative, it’s a repulsive force!
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Example 5.13: Attraction/Repulsion

class Attractor extends VerletParticle2D {

float r;

Attractor (Vec2D loc) {
super (loc);
r = 24;

physics.addBehavior(new AttractionBehavior(this, width, 0.1));

}

void display () {
fill(0);
ellipse (x, y, r*2, r*2);

}
}

The AttractionBehavior “distance” equals
the width so that it covers the entire
window.

Create an object that both attracts and repels. What if it attracts any particle that is far
away but repels those particles at a short distance?

Exercise 5.16Exercise 5.16

Use AttractionBehavior in conjunction with spring forces.

Exercise 5.17Exercise 5.17
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The Ecosystem ProjectThe Ecosystem Project

Step 5 Exercise:

Take your system of creatures from Step 4 and use a physics engine to drive their
motion and behaviors. Some possibilities:

• Use Box2D to allow collisions between creatures. Consider triggering
events when creatures collide.

• Use Box2D to augment the design of your creatures. Build a skeleton with
distance joints or make appendages with revolute joints.

• Use toxiclibs to augment the design of your creature. Use a chain of
toxiclibs particles for tentacles or a mesh of springs as a skeleton.

• Use toxiclibs to add attraction and repulsion behaviors to your creatures.
• Use spring (or joint) connections between objects to control their

interactions. Create and delete these springs on the fly. Consider making
these connections visible or invisible to the viewer.
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Chapter 6.Chapter 6.
Autonomous AgentsAutonomous Agents
“This is an exercise in fictional science, or science fiction, if you like that
better.”

— Valentino Braitenberg

Believe it or not, there is a purpose. Well, at least there’s a purpose to the first five chapters
of this book. We could stop right here; after all, we’ve looked at several different ways of
modeling motion and simulating physics. Angry Birds, here we come!

Still, let’s think for a moment. Why are we here? The nature of code, right? What have we
been designing so far? Inanimate objects. Lifeless shapes sitting on our screens that flop
around when affected by forces in their environment. What if we could breathe life into
those shapes? What if those shapes could live by their own rules? Can shapes have hopes
and dreams and fears? This is what we are here in this chapter to do—develop autonomous
agents.

6.1 Forces from Within6.1 Forces from Within
The term autonomous agentautonomous agent generally refers to an entity that makes its own choices about
how to act in its environment without any influence from a leader or global plan. For us,
“acting” will mean moving. This addition is a significant conceptual leap. Instead of a box
sitting on a boundary waiting to be pushed by another falling box, we are now going to
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design a box that has the ability and “desire” to leap out of the way of that other falling box, if
it so chooses. While the concept of forces that come from within is a major shift in our design
thinking, our code base will barely change, as these desires and actions are simply
that—forces.

Here are three key components of autonomous agents that we’ll want to keep in mind as we
build our examples.

• An autonomous agent has aAn autonomous agent has a limitedlimited ability to perceive environment.ability to perceive environment. It makes
sense that a living, breathing being should have an awareness of its environment.
What does this mean for us, however? As we look at examples in this chapter, we
will point out programming techniques for allowing objects to store references to
other objects and therefore “perceive” their environment. It’s also crucial that we
consider the word limited here. Are we designing an all-knowing rectangle that flies
around a Processing window, aware of everything else in that window? Or are we
creating a shape that can only examine any other object within fifteen pixels of
itself? Of course, there is no right answer to this question; it all depends. We’ll
explore some possibilities as we move forward. For a simulation to feel more
“natural,” however, limitations are a good thing. An insect, for example, may only be
aware of the sights and smells that immediately surround it. For a real-world
creature, we could study the exact science of these limitations. Luckily for us, we
can just make stuff up and try it out.

• An autonomous agent processes the information from its environment andAn autonomous agent processes the information from its environment and
calculates an action.calculates an action. This will be the easy part for us, as the action is a force. The
environment might tell the agent that there’s a big scary-looking shark swimming
right at it, and the action will be a powerful force in the opposite direction.

• An autonomous agent has no leader.An autonomous agent has no leader. This third principle is something we care a
little less about. After all, if you are designing a system where it makes sense to
have a leader barking commands at various entities, then that’s what you’ll want to
implement. Nevertheless, many of these examples will have no leader for an
important reason. As we get to the end of this chapter and examine group
behaviors, we will look at designing collections of autonomous agents that exhibit
the properties of complex systems— intelligent and structured group dynamics that
emerge not from a leader, but from the local interactions of the elements
themselves.

In the late 1980s, computer scientist Craig Reynolds (http://www.red3d.com/cwr/) developed
algorithmic steering behaviors for animated characters. These behaviors allowed individual
elements to navigate their digital environments in a “lifelike” manner with strategies for
fleeing, wandering, arriving, pursuing, evading, etc. Used in the case of a single autonomous
agent, these behaviors are fairly simple to understand and implement. In addition, by building
a system of multiple characters that steer themselves according to simple, locally based rules,
surprising levels of complexity emerge. The most famous example is Reynolds’s “boids”
model for “flocking/swarming” behavior.

The Nature of Code (v005)

261

http://www.red3d.com/cwr/


6.2 Vehicles and Steering6.2 Vehicles and Steering
Now that we understand the core concepts behind autonomous agents, we can begin
writing the code. There are many places where we could start. Artificial simulations of ant
and termite colonies are fantastic demonstrations of systems of autonomous agents. (For
more on this topic, I encourage you to read Turtles, Termites, and Traffic Jams by Mitchel
Resnick.) However, we want to begin by examining agent behaviors that build on the work
we’ve done in the first five chapters of this book: modeling motion with vectors and driving
motion with forces. And so it’s time to rename our Mover class that became our Particle
class once again. This time we are going to call it Vehicle.

In his 1999 paper “Steering Behaviors for Autonomous Characters,” Reynolds uses the word
“vehicle” to describe his autonomous agents, so we will follow suit.

Why Vehicle?Why Vehicle?

In 1986, Italian neuroscientist and cyberneticist Valentino Braitenberg described a
series of hypothetical vehicles with simple internal structures in his book Vehicles:
Experiments in Synthetic Psychology. Braitenberg argues that his extraordinarily
simple mechanical vehicles manifest behaviors such as fear, aggression, love,
foresight, and optimism. Reynolds took his inspiration from Braitenberg, and we’ll
take ours from Reynolds.

Reynolds describes the motion of idealized vehicles (idealized because we are not
concerned with the actual engineering of such vehicles, but simply assume that they exist
and will respond to our rules) as a series of three layers—Action SelectionAction Selection, SteeringSteering, and
LocomotionLocomotion.

1. Action Selection.Action Selection. A vehicle has a goal (or goals) and can select an action (or a
combination of actions) based on that goal. This is essentially where we left off
with autonomous agents. The vehicle takes a look at its environment and
calculates an action based on a desire: “I see a zombie marching towards me.
Since I don’t want my brains to be eaten, I’m going to flee from the zombie.” The
goal is to keep one’s brains and the action is to flee. Reynolds’s paper describes
many goals and associated actions such as: seek a target, avoid an obstacle, and

class Vehicle {

PVector location;
PVector velocity;
PVector acceleration;

// What else do we need to add?
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follow a path. In a moment, we’ll start building these examples out with Processing
code.

2. Steering.Steering. Once an action has been selected, the vehicle has to calculate its next
move. For us, the next move will be a force; more specifically, a steering force.
Luckily, Reynolds has developed a simple steering force formula that we’ll use
throughout the examples in this chapter: steering force = desired velocity - currentsteering force = desired velocity - current
velocityvelocity. We’ll get into the details of this formula and why it works so effectively in
the next section.

3. Locomotion.Locomotion. For the most part, we’re going to ignore this third layer. In the case of
fleeing zombies, the locomotion could be described as “left foot, right foot, left foot,
right foot, as fast as you can.” In our Processing world, however, a rectangle or circle
or triangle’s actual movement across a window is irrelevant given that it’s all an
illusion in the first place. Nevertheless, this isn’t to say that you should ignore
locomotion entirely. You will find great value in thinking about the locomotive design
of your vehicle and how you choose to animate it. The examples in this chapter will
remain visually bare, and a good exercise would be to elaborate on the animation
style —could you add spinning wheels or oscillating paddles or shuffling legs?

Ultimately, the most important layer for you to consider is #1—Action Selection. What are the
elements of your system and what are their goals? In this chapter, we are going to look at a
series of steering behaviors (i.e. actions): seek, flee, follow a path, follow a flow field, flock
with your neighbors, etc. It’s important to realize, however, that the point of understanding
how to write the code for these behaviors is not because you should use them in all of your
projects. Rather, these are a set of building blocks, a foundation from which you can design
and develop vehicles with creative goals and new and exciting behaviors. And even though
we will think literally in this chapter (follow that pixel!), you should allow yourself to think more
abstractly (like Braitenberg). What would it mean for your vehicle to have “love” or “fear” as its
goal, its driving force? Finally (and we’ll address this later in the chapter), you won’t get very
far by developing simulations with only one action. Yes, our first example will be “seek a
target.” But for you to be creative—to make these steering behaviors your own—it will all
come down to mixing and matching multiple actions within the same vehicle. So view these
examples not as singular behaviors to be emulated, but as pieces of a larger puzzle that you
will eventually assemble.

6.3 The Steering Force6.3 The Steering Force
We can entertain ourselves by discussing the theoretical principles behind autonomous
agents and steering as much as we like, but we can’t get anywhere without first
understanding the concept of a steering force. Consider the following scenario. A vehicle
moving with velocity desires to seek a target.
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Its goal and subsequent action is to seek
the target in Figure 6.1. If you think back to
Chapter 2, you might begin by making the
target an attractor and apply a gravitational
force that pulls the vehicle to the target.
This would be a perfectly reasonable
solution, but conceptually it’s not what
we’re looking for here. We don’t want to
simply calculate a force that pushes the
vehicle towards its target; rather, we are
asking the vehicle to make an intelligent
decision to steer towards the target based
on its perception of its state and
environment (i.e. how fast and in what
direction is it currently moving). The vehicle should look at how it desires to move (a vector
pointing to the target), compare that goal with how quickly it is currently moving (its
velocity), and apply a force accordingly.

steering force = desired velocity - current velocitysteering force = desired velocity - current velocity

Or as we might write in Processing:

In the above formula, velocity is no problem. After all, we’ve got a variable for that.
However, we don’t have the desired velocity; this is something we have to calculate. Let’s
take a look at Figure 6.2. If we’ve defined the vehicle’s goal as “seeking the target,” then its
desired velocity is a vector that points from its current location to the target location.

Assuming a PVector target, we then have:

Figure 6.1

PVector steer = PVector.sub(desired,velocity);

Figure 6.2

PVector desired = PVector.sub(target,location);
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But this isn’t particularly realistic. What if we have a very high-resolution window and the
target is thousands of pixels away? Sure, the vehicle might desire to teleport itself instantly to
the target location with a massive velocity, but this won’t make for an effective animation.
What we really want to say is:

The vehicle desires to move towards the target at maximum speed.

In other words, the vector should point from location to target and with a magnitude equal to
maximum speed (i.e. the fastest the vehicle can go). So first, we need to make sure we add a
variable to our Vehicle class that stores maximum speed.

Then, in our desired velocity calculation, we scale according to maximum speed.

Putting this all together, we can write a function called seek() that receives a PVector target
and calculates a steering force towards that target.

class Vehicle {
PVector location;
PVector velocity;
PVector acceleration;

Maximum speedfloat maxspeed;

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);

Figure 6.3

void seek(PVector target) {
PVector desired = PVector.sub(target,location);
desired.normalize();

Calculating the desired velocity to target at
max speed

desired.mult(maxspeed);

Reynolds’s formula for steering forcePVector steer = PVector.sub(desired,velocity);
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Note how in the above function we finish by passing the steering force into applyForce().
This assumes that we are basing this example on the foundation we built in Chapter 2 (see
page 66). However, you could just as easily use the steering force with Box2D’s
applyForce() function or toxiclibs’ addForce() function.

So why does this all work so well? Let’s see what the steering force looks like relative to the
vehicle and target locations.

Again, notice how this is not at all the same force as gravitational attraction. Remember one
of our principles of autonomous agents: An autonomous agent has a limited ability to
perceive its environment. Here is that ability, subtly embedded into Reynolds’s steering
formula. If the vehicle weren’t moving at all (zero velocity), desired minus velocity would be
equal to desired. But this is not the case. The vehicle is aware of its own velocity and its
steering force compensates accordingly. This creates a more active simulation, as the way
in which the vehicle moves towards the targets depends on the way it is moving in the first
place.

In all of this excitement, however, we’ve missed one last step. What sort of vehicle is this? Is
it a super sleek race car with amazing handling? Or a giant Mack truck that needs a lot of
advance notice to turn? A graceful panda, or a lumbering elephant? Our example code, as it
stands, has no feature to account for this variability in steering ability. Steering ability can
be controlled by limiting the magnitude of the steering force. Let’s call that limit the
“maximum force” (or maxforce for short). And so finally, we have:

Using our physics model and applying the
force to the object’s acceleration

applyForce(steer);

}

Figure 6.4

class Vehicle {
PVector location;
PVector velocity;
PVector acceleration;
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followed by:

Limiting the steering force brings up an important point. We must always remember that it’s
not actually our goal to get the vehicle to the target as fast as possible. If that were the case,
we would just say “location equals target” and there the vehicle would be. Our goal, as
Reynolds puts it, is to move the vehicle in a “lifelike and improvisational manner.” We’re trying
to make it appear as if the vehicle is steering its way to the target, and so it’s up to us to play
with the forces and variables of the system to simulate a given behavior. For example, a large
maximum steering force would result in a very different path than a small one. One is not
inherently better or worse than the other; it depends on your desired effect. (And of course,
these values need not be fixed and could change based on other conditions. Perhaps a
vehicle has health: the higher the health, the better it can steer.)

Here is the full Vehicle class, incorporating the rest of the elements from the Chapter 2
Mover object.

Maximum speedfloat maxspeed;

Now we also have maximum force.float maxforce;

void seek(PVector target) {
PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);
PVector steer = PVector.sub(desired,velocity);

Limit the magnitude of the steering force.steer.limit(maxforce);

applyForce(steer);
}

Figure 6.5
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Example 6.1: Seeking a target

class Vehicle {

PVector location;
PVector velocity;
PVector acceleration;

Additional variable for sizefloat r;

float maxforce;
float maxspeed;

Vehicle(float x, float y) {
acceleration = new PVector(0,0);
velocity = new PVector(0,0);
location = new PVector(x,y);
r = 3.0;

Arbitrary values for maxspeed and force;
try varying these!

maxspeed = 4;
maxforce = 0.1;

}

Our standard “Euler integration” motion
model

void update() {

velocity.add(acceleration);
velocity.limit(maxspeed);
location.add(velocity);
acceleration.mult(0);

}

Newton’s second law; we could divide by
mass if we wanted.

void applyForce(PVector force) {

acceleration.add(force);
}
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Our seek steering force algorithmvoid seek(PVector target) {

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);
PVector steer = PVector.sub(desired,velocity);
steer.limit(maxforce);
applyForce(steer);

}

void display() {

Vehicle is a triangle pointing in the direction
of velocity; since it is drawn pointing up, we
rotate it an additional 90 degrees.

float theta = velocity.heading2D() + PI/2;

fill(175);
stroke(0);
pushMatrix();
translate(location.x,location.y);
rotate(theta);
beginShape();
vertex(0, -r*2);
vertex(-r, r*2);
vertex(r, r*2);
endShape(CLOSE);
popMatrix();

}

Implement a “fleeing” steering behavior (desired vector is inverse of “seek”).

Exercise 6.1Exercise 6.1

Implement seeking a moving target, often referred to as “pursuit.” In this case, your
desired vector won’t point towards the object’s current location, but rather its “future”
location as extrapolated from its current velocity. We’ll see this ability for a vehicle to
“predict the future” in later examples.

Exercise 6.2Exercise 6.2

Create a sketch where a vehicle’s maximum force and maximum speed do not remain
constant, but rather vary according to environmental factors.

Exercise 6.3Exercise 6.3
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6.4 Arriving Behavior6.4 Arriving Behavior
After working for a bit with the seeking behavior, you probably are asking yourself, “What if
I want my vehicle to slow down as it approaches the target?” Before we can even begin to
answer this question, we should look at the reasons behind why the seek behavior causes
the vehicle to fly past the target so that it has to turn around and go back. Let’s consider the
brain of a seeking vehicle. What is it thinking?

Frame 1: I want to go as fast as possible towards the target!
Frame 2: I want to go as fast as possible towards the target!
Frame 3: I want to go as fast as possible towards the target!
Frame 4: I want to go as fast as possible towards the target!
Frame 5: I want to go as fast as possible towards the target!
etc.

The vehicle is so gosh darn excited about getting to the target that it doesn’t bother to
make any intelligent decisions about its speed relative to the target’s proximity. Whether it’s
far away or very close, it always wants to go as fast as possible.

In some cases, this is the desired behavior (if a missile is flying at a target, it should always
travel at maximum speed.) However, in many other cases (a car pulling into a parking spot, a
bee landing on a flower), the vehicle’s thought process needs to consider its speed relative
to the distance from its target. For example:

Frame 1: I’m very far away. I want to go as fast as possible towards the target!
Frame 2: I’m very far away. I want to go as fast as possible towards the target!
Frame 3: I’m somewhat far away. I want to go as fast as possible towards the target!
Frame 4: I’m getting close. I want to go more slowly towards the target!
Frame 5: I’m almost there. I want to go very slowly towards the target!
Frame 6: I’m there. I want to stop!

How can we implement this “arriving” behavior in code? Let’s return to our seek() function
and find the line of code where we set the magnitude of the desired velocity.

Figure 6.6

Figure 6.7
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In Example 6.1, the magnitude of the desired vector is always “maximum” speed.

What if we instead said the desired velocity is equal to half the distance?

While this nicely demonstrates our goal of a desired speed tied to our distance from the
target, it’s not particularly reasonable. After all, 10 pixels away is rather close and a desired
speed of 5 is rather large. Something like a desired velocity with a magnitude of 5% of the
distance would work much better.

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);

Figure 6.8

Figure 6.9

PVector desired = PVector.sub(target,location);
desired.div(2);
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Reynolds describes a more sophisticated approach. Let’s imagine a circle around the target
with a given radius. If the vehicle is within that circle, it slows down—at the edge of the
circle, its desired speed is maximum speed, and at the target itself, its desired speed is 0.

In other words, if the distance from the target is less than r, the desired speed is between 0
and maximum speed mapped according to that distance.

Example 6.2: Arrive steering behavior

PVector desired = PVector.sub(target,location);
desired.mult(0.05);

Figure 6.10

void arrive(PVector target) {
PVector desired = PVector.sub(target,location);

The distance is the magnitude of the vector
pointing from location to target.

float d = desired.mag();

desired.normalize();
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The arrive behavior is a great demonstration of the magic of “desired minus velocity.” Let’s
examine this model again relative to how we calculated forces in earlier chapters. In the
“gravitational attraction” examples, the force always pointed directly from the object to the
target (the exact direction of the desired velocity), whether the force was strong or weak.

The steering function, however, says: “I have the ability to perceive the environment.” The
force isn’t based on just the desired velocity, but on the desired velocity relative to the current
velocity. Only things that are alive can know their current velocity. A box falling off a table
doesn’t know it’s falling. A cheetah chasing its prey, however, knows it is chasing.

The steering force, therefore, is essentially a manifestation of the current velocity’s errorerror: "I’m
supposed to be going this fast in this direction, but I’m actually going this fast in another
direction. My error is the difference between where I want to go and where I am currently
going." Taking that error and applying it as a steering force results in more dynamic, lifelike
simulations. With gravitational attraction, you would never have a force pointing away from the
target, no matter how close. But with arriving via steering, if you are moving too fast towards
the target, the error would actually tell you to slow down!

If we are closer than 100 pixels...if (d < 100) {

...set the magnitude according to how close
we are.

float m = map(d,0,100,0,maxspeed);
desired.mult(m);

} else {

Otherwise, proceed at maximum speed.desired.mult(maxspeed);

}

The usual steering = desired - velocityPVector steer = PVector.sub(desired,velocity);

steer.limit(maxforce);
applyForce(steer);

}

Figure 6.11
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6.5 Your Own Desires: Desired Velocity6.5 Your Own Desires: Desired Velocity
The first two examples we’ve covered—seek and arrive—boil down to calculating a single
vector for each behavior: the desired velocity. And in fact, every single one of Reynolds’s
steering behaviors follows this same pattern. In this chapter, we’re going to walk through
several more of Reynolds’s behaviors—flow field, path-following, flocking. First, however, I
want to emphasize again that these are examples—demonstrations of common steering
behaviors that are useful in procedural animation. They are not the be-all and end-all of
what you can do. As long as you can come up with a vector that describes a vehicle’s
desired velocity, then you have created your own steering behavior.

Let’s see how Reynolds defines the desired velocity for his wandering behavior.

“Wandering is a type of random steering which has some long term order: the steering
direction on one frame is related to the steering direction on the next frame. This produces
more interesting motion than, for example, simply generating a random steering direction
each frame.”

—Craig Reynolds (http://www.red3d.com/cwr/steer/Wander.html)

For Reynolds, the goal of wandering is not
simply random motion, but rather a sense
of moving in one direction for a little while,
wandering off to the next for a little bit, and
so on and so forth. So how does Reynolds
calculate a desired vector to achieve such
an effect?

Figure 6.12 illustrates how the vehicle
predicts its future location as a fixed
distance in front of it (in the direction of its
velocity), draws a circle with radius r at that
location, and picks a random point along
the circumference of the circle. That
random point moves randomly around the
circle in each frame of animation. And that
random point is the vehicle’s target, its desired vector pointing in that direction.

Sounds a bit absurd, right? Or, at the very least, rather arbitrary. In fact, this is a very clever
and thoughtful solution—it uses randomness to drive a vehicle’s steering, but constrains that
randomness along the path of a circle to keep the vehicle’s movement from appearing
jittery, and, well, random.

But the seemingly random and arbitrary nature of this solution should drive home the point
I’m trying to make—these are made-up behaviors inspired by real-life motion. You can just
as easily concoct some elaborate scenario to compute a desired velocity yourself. And you
should.

Figure 6.12
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Let’s say we want to create a steering behavior called “stay within walls.” We’ll define the
desired velocity as:

If a vehicle comes within a distanceIf a vehicle comes within a distance d of a wall, it desires to move at maximum speed inof a wall, it desires to move at maximum speed in
the opposite direction of the wall.the opposite direction of the wall.

If we define the walls of the space as the edges of a Processing window and the distance d as
25, the code is rather simple.

Write the code for Reynolds’s wandering behavior. Use polar coordinates to calculate
the vehicle’s target along a circular path.

Exercise 6.4Exercise 6.4

Figure 6.13
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Example 6.3: “Stay within walls” steering behavior

if (location. x > 25) {

PVector desired = new PVector(maxspeed,velocity.y);

PVector steer = PVector.sub(desired, velocity);
steer.limit(maxforce);
applyForce(steer);

}

Make a desired vector that retains the y
direction of the vehicle but points the x
direction directly away from the window’s
left edge.

Come up with your own arbitrary scheme for calculating a desired velocity.

Exercise 6.5Exercise 6.5

6.6 Flow Fields6.6 Flow Fields
Now back to the task at hand. Let’s examine a couple more of Reynolds’s steering
behaviors. First, flow field followingflow field following. What is a flow field? Think of your Processing window
as a grid. In each cell of the grid lives an arrow pointing in some direction—you know, a
vector. As a vehicle moves around the screen, it asks, “Hey, what arrow is beneath me?
That’s my desired velocity!”
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Reynolds’s flow field following example has the vehicle predicting its future location and
following the vector at that spot, but for simplicity’s sake, we’ll have the vehicle simply look to
the vector at its current location.

Before we can write the additional code for our Vehicle class, we’ll need to build a class that
describes the flow field itself, the grid of vectors. A two-dimensional array is a convenient data
structure in which to store a grid of information. If you are not familiar with 2D arrays, I
suggest reviewing this online Processing tutorial: 2D array (http://processing.org/learning/
2darray/). The 2D array is convenient because we reference each element with two indices,
which we can think of as columns and rows.

Notice how we are defining a third variable called resolution above. What is this variable?
Let’s say we have a Processing window that is 200 pixels wide by 200 pixels high. We could
make a flow field that has a PVector object for every single pixel, or 40,000 PVectors (200 *
200). This isn’t terribly unreasonable, but in our case, it’s overkill. We don’t need a PVector

Figure 6.14

class FlowField {

Declaring a 2D array of PVectorsPVector[][] field;

How many columns and how many rows in
the grid?

int cols, rows;

Resolution of grid relative to window width
and height in pixels

int resolution;
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for every single pixel; we can achieve the same effect by having, say, one every ten pixels
(20 * 20 = 400). We use this resolution to define the number of columns and rows based on
the size of the window divided by resolution:

Now that we’ve set up the flow field’s data structures, it’s time to compute the vectors in the
flow field itself. How do we do that? However we feel like it! Perhaps we want to have every
vector in the flow field pointing to the right.

Or perhaps we want the vectors to point in random directions.

FlowField() {
resolution = 10;

Total columns equals width divided by
resolution.

cols = width/resolution;

Total rows equals height divided by
resolution.

rows = height/resolution;

field = new PVector[cols][rows];
}

Figure 6.15

Using a nested loop to hit every column
and every row of the flow field

for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {

Arbitrary decision to make each vector
point to the right

field[i][j] = new PVector(1,0);

}
}
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What if we use 2D Perlin noise (mapped to an angle)?

Figure 6.16

for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {

A random PVectorfield[i][j] = PVector.2D();

}
}

Figure 6.17

float xoff = 0;
for (int i = 0; i < cols; i++) {

float yoff = 0;
for (int j = 0; j < rows; j++) {

float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);

field[i][j] = new PVector(cos(theta),sin(theta));
yoff += 0.1;

}
xoff += 0.1;

}

Noise
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Now we’re getting somewhere. Flow fields can be used for simulating various effects, such
as an irregular gust of wind or the meandering path of a river. Calculating the direction of
your vectors using Perlin noise is one way to achieve such an effect. Of course, there’s no
“correct” way to calculate the vectors of a flow field; it’s really up to you to decide what
you’re looking to simulate.

Now that we have a two-dimensional array storing all of the flow field vectors, we need a
way for a vehicle to look up its desired vector in the flow field. Let’s say we have a vehicle
that lives at a PVector: its location. We first need to divide by the resolution of the grid. For
example, if the resolution is 10 and the vehicle is at (100,50), we need to look up column 10
and row 5.

Because a vehicle could theoretically wander off the Processing window, it’s also useful for
us to employ the constrain() function to make sure we don’t look outside of the flow field
array. Here is a function we’ll call lookup() that goes in the FlowField class—it receives a
PVector (presumably the location of our vehicle) and returns the corresponding flow field
PVector for that location.

Write the code to calculate a PVector at every location in the flow field that points
towards the center of a window.

PVector v = new PVector(____________,____________);
v.______________();
field[i][j] = v;

Exercise 6.6Exercise 6.6

int column = int(location.x/resolution);
int row = int(location.y/resolution);

PVector lookup(PVector lookup) {

Using constrain()
int column = int(constrain(lookup.x/resolution,0,cols-1));
int row = int(constrain(lookup.y/resolution,0,rows-1));
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Before we move on to the Vehicle class, let’s take a look at the FlowField class all together.

So let’s assume we have a FlowField object called “flow”. Using the lookup() function
above, our vehicle can then retrieve a desired vector from the flow field and use Reynolds’s
rules (steering = desired - velocity) to calculate a steering force.

Note the use of get() to ensure we return a
copy of the PVector.

return field[column][row].get();

}

class FlowField {

A flow field is a two-dimensional array of
PVectors.

PVector[][] field;

int cols, rows;
int resolution;

FlowField(int r) {
resolution = r;

Determine the number of columns and
rows.

cols = width/resolution;
rows = height/resolution;

field = new PVector[cols][rows];
init();

}

void init() {
float xoff = 0;
for (int i = 0; i < cols; i++) {

float yoff = 0;
for (int j = 0; j < rows; j++) {

float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);

In this example, we use Perlin noise to seed
the vectors.

field[i][j] = new PVector(cos(theta),sin(theta));

yoff += 0.1;
}
xoff += 0.1;

}
}

Polar to Cartesian coordinate transformation
to get x and y components of the vector

A function to return a PVector based on a
location

PVector lookup(PVector lookup) {

int column = int(constrain(lookup.x/resolution,0,cols-1));
int row = int(constrain(lookup.y/resolution,0,rows-1));
return field[column][row].get();

}

}
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Example 6.4: Flow field following

class Vehicle {

void follow(FlowField flow) {

What is the vector at that spot in the flow
field?

PVector desired = flow.lookup(location);

desired.mult(maxspeed);

Steering is desired minus velocityPVector steer = PVector.sub(desired,
velocity);

steer.limit(maxforce);
applyForce(steer);

}

Adapt the flow field example so that the PVectors change over time. (Hint: try using
the third dimension of Perlin noise!)

Exercise 6.7Exercise 6.7

Can you seed a flow field from a PImage? For example, try having the PVectors point
from dark to light colors (or vice versa).

Exercise 6.8Exercise 6.8

6.7 The Dot Product6.7 The Dot Product
In a moment, we’re going to work through the algorithm (along with accompanying
mathematics) and code for another of Craig Reynolds’s steering behaviors: Path Following
(http://www.red3d.com/cwr/steer/PathFollow.html). Before we can do this, however, we have
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to spend some time learning about another piece of vector math that we skipped in Chapter
1—the dot product. We haven’t needed it yet, but it’s likely going to prove quite useful for you
(beyond just this path-following example), so we’ll go over it in detail now.

Remember all the basic vector math we covered in Chapter 1? Add, subtract, multiply, and
divide?

Notice how in the above diagram, vector multiplication involves multiplying a vector by a
scalar value. This makes sense; when we want a vector to be twice as large (but facing the
same direction), we multiply it by 2. When we want it to be half the size, we multiply it by 0.5.

However, there are two other multiplication-like operations with vectors that are useful in
certain scenarios—the dot product and the cross product. For now we’re going to focus on the
dot product, which is defined as follows. Assume vectors A

→
and B→:

A
→ = (ax, ay)
B→ = (bx, by)

THE DOT PRODUCT: A
→ · B→ = ax×bx + ay×by

For example, if we have the following two vectors:

A
→ = (−3, 5)
B→ = (10, 1)

A
→ · B→ = −3 * 10 + 5 * 1 = − 30 + 5 = 35

Notice that the result of the dot product is a scalar value (a single number) and not a vector.

In Processing, this would translate to:

Figure 6.18
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And if we were to look in the guts of the PVector source, we’d find a pretty simple
implementation of this function:

This is simple enough, but why do we need the dot product, and when is it going to be
useful for us in code?

One of the more common uses of the dot product is to find the angle between two vectors.
Another way in which the dot product can be expressed is:

A
→ · B→ = ∥ A→ ∥ × ∥ B→ ∥ × cos(θ)

In other words, A dot B is equal to the magnitude of A times magnitude of B times cosine of
theta (with theta defined as the angle between the two vectors A and B).

The two formulas for dot product can be derived from one another with trigonometry
(http://mathworld.wolfram.com/DotProduct.html), but for our purposes we can be happy with
operating on the assumption that:

A
→ · B→ = ∥ A→ ∥ × ∥ B→ ∥ × cos(θ)
A
→ · B→ = ax×bx + ay×by

both hold true and therefore:

ax×bx + ay×by = ∥ A→ ∥ × ∥ B→ ∥ × cos(θ)

Now, let’s start with the following problem.
We have the vectors A and B:

A
→ = (10, 2)
B→ = (4, − 3)

We now have a situation in which we know
everything except for theta. We know the
components of the vector and can
calculate the magnitude of each vector. We
can therefore solve for cosine of theta:

cos(θ) = ( A→ · B→ ) / ( ∥ A→ ∥ × ∥ B→ ∥ )

PVector a = new PVector(-3,5);
PVector b = new PVector(10,1);

The PVector class includes a function to
calculate the dot product.

float n = a.dot(b);

public float dot(PVector v) {
return x*v.x + y*v.y + z*v.z;

}

Figure 6.19
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To solve for theta, we can take the inverse cosine (often expressed as cosine-1 or arccosine).

θ = cos−1 ( ( A→ · B→ ) / ( ∥ A→ ∥ × ∥ B→ ∥ ) )

Let’s now do the math with actual numbers:

∥ A→ ∥ = 10.2
∥ B→ ∥ = 5

Therefore:

θ = cos−1 ( ( 10 × 4 + 2 × -3 ) / ( 10.2 × 5 ) )
θ = cos−1 ( 34 / 51 )
θ = ∼ 48∘

The Processing version of this would be:

And, again, if we were to dig into the guts of the Processing source code, we would see a
function that implements this exact algorithm.

A couple things to note here:

PVector a = new PVector(10,2);
PVector b = new PVector(4,-3);
float theta = acos(a.dot(b) / (a.mag() * b.mag()));

static public float angleBetween(PVector v1, PVector v2) {
float dot = v1.dot(v2);
float theta = (float) Math.acos(dot / (v1.mag() * v2.mag()));
return theta;

}

Create a sketch that displays the angle
between two PVector objects.

Exercise 6.9Exercise 6.9
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1. If two vectors (A
→

and B→) are orthogonal (i.e. perpendicular), the dot product (A
→ · B→)

is equal to 0.

2. If two vectors are unit vectors, then the dot product is simply equal to cosine of
the angle between them, i.e. A

→ · B→ = cos(θ) if A
→

and B→ are of length 1.

6.8 Path Following6.8 Path Following
Now that we’ve got a basic understanding of the dot product under our belt, we can return
to a discussion of Craig Reynolds’s path-following algorithm. Let’s quickly clarify something.
We are talking about path following, not path finding. Pathfinding refers to a research topic
(commonly studied in artificial intelligence) that involves solving for the shortest distance
between two points, often in a maze. With path followingpath following, the path already exists and we’re
asking a vehicle to follow that path.

Before we work out the individual pieces, let’s take a look at the overall algorithm for path
following, as defined by Reynolds.

We’ll first define what we mean by a path. There are many ways we could implement a path,
but for us, a simple way will be to define a path as a series of connected points:

Figure 6.20
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An even simpler path would be a line between two points.

We’re also going to consider a path to have a radius. If we think of the path as a road, the
radius determines the road’s width. With a smaller radius, our vehicles will have to follow the
path more closely; a wider radius will allow them to stray a bit more.

Putting this into a class, we have:

Figure 6.21: Path

Figure 6.22: Simple path

class Path {

A Path is only two points, start and end.PVector start;
PVector end;

A path has a radius, i.e. how wide it is.float radius;

Path() {
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Now, let’s assume we have a vehicle (as depicted below) outside of the path’s radius,
moving with a velocity.

The first thing we want to do is predict, assuming a constant velocity, where that vehicle will
be in the future.

Once we have that location, it’s now our job to find out the vehicle’s current distance from
the path of that predicted location. If it’s very far away, well, then, we’ve strayed from the
path and need to steer back towards it. If it’s close, then we’re doing OK and are following
the path nicely.

Picking some arbitrary values to initialize
the path

radius = 20;

start = new PVector(0,height/3);
end = new PVector(width,2*height/3);

}

void display() { // Display the path.
strokeWeight(radius*2);
stroke(0,100);
line(start.x,start.y,end.x,end.y);
strokeWeight(1);
stroke(0);
line(start.x,start.y,end.x,end.y);

}
}

Figure 6.23

Start by making a copy of the velocity.PVector predict = vel.get();

Normalize it and look 25 pixels ahead by
scaling the vector up.

predict.normalize();
predict.mult(25);

Add vector to location to find the predicted
location.

PVector predictLoc = PVector.add(loc, predict);
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So, how do we find the distance between a point and a line? This concept is key. The distance
between a point and a line is defined as the length of the normal between that point and line.
The normal is a vector that extends from that point and is perpendicular to the line.

Let’s figure out what we do know. We know we have a vector (call it A
→

) that extends from the
path’s starting point to the vehicle’s predicted location.

We also know that we can define a vector (call it B
→

) that points from the start of the path to the
end.

Now, with basic trigonometry, we know that the distance from the path’s start to the normal
point is: |A| * cos(theta).

If we knew theta, we could easily define that normal point as follows:

Figure 6.24

PVector a = PVector.sub(predictLoc,path.start);

PVector b = PVector.sub(path.end,path.start);

Figure 6.25
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And if the dot product has taught us anything, it’s that given two vectors, we can get theta,
the angle between.

While the above code will work, there’s one more simplification we can make. If you’ll
notice, the desired magnitude for vector B

→
is:

a.mag()*cos(theta)

which is the code translation of:

∥ A→ ∥ × cos(θ)

And if you recall:

A
→ · B→ = ∥ A→ ∥ × ∥ B→ ∥ × cos(θ)

Now, what if vector B
→

is a unit vector, i.e. length 1? Then:

A
→ · B→ = ∥ A→ ∥ × 1 × cos(θ)

or

A
→ · B→ = ∥ A→ ∥ × cos(θ)

And what are we doing in our code? Normalizing b!

Because of this fact, we can simplify our code as:

The distance from START to NORMALfloat d = a.mag()*cos(theta);

b.normalize();

Scale PVector b to that distance.b.mult(d);

The normal point can be found by adding
the scaled version of b to the path’s starting
point.

PVector normalPoint = PVector.add(path.start,b);

What is theta? The angle between A and Bfloat theta = PVector.angleBetween(a,b);

b.normalize();
b.mult(a.mag()*cos(theta));
PVector normalPoint = PVector.add(path.start,b);

b.normalize();

float theta = PVector.angleBetween(a,b);

b.normalize();
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This process is commonly known as “scalar projection.” |A| cos(θ) is the scalar projection of|A| cos(θ) is the scalar projection of
A onto B.A onto B.

Once we have the normal point along the path, we have to decide whether the vehicle should
steer towards the path and how. Reynolds’s algorithm states that the vehicle should only steer
towards the path if it strays beyond the path (i.e., if the distance between the normal point and
the predicted future location is greater than the path radius).

We can use the dot product to scale b’s
length.

b.mult(a.dot(b));

PVector normalPoint = PVector.add(path.start,b);

Figure 6.26

Figure 6.27

float distance = PVector.dist(predictLoc, normalPoint);

If the vehicle is outside the path, seek the
target.

if (distance > path.radius) {

We don’t have to work out the desired
velocity and steering force; all that is taken
care of by seek(), which we already wrote in
Example 6.1.

seek(target);

}

The Nature of Code (v005)

291



But what is the target?

Reynolds’s algorithm involves picking a point ahead of the normal on the path (see step #3
above). But for simplicity, we could just say that the target is the normal itself. This will work
fairly well:

Since we know the vector that defines the path (we’re calling it “B”), we can implement
Reynolds’s “point ahead on the path” without too much trouble.

Putting it all together, we have the following steering function in our Vehicle class.

float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {

Seek the normal point on the path.seek(normalPoint);

}

Figure 6.28

float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {

Normalize and scale b (pick 25 pixels
arbitrarily).

b.normalize();
b.mult(25);

By adding b to normalPoint, we now move
25 pixels ahead on the path.

PVector target = PVector.add(normalPoint,b);

seek(target);
}
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Example 6.5: Simple path following

Now, you may notice above that instead of using all that dot product/scalar projection code to
find the normal point, we instead call a function: getNormalPoint(). In cases like this, it’s
useful to break out the code that performs a specific task (finding a normal point) into a
function that it can be used generically in any case where it is required. The function takes
three PVectors: the first defines a point in Cartesian space and the second and third
arguments define a line segment.

void follow(Path p) {

Step 1: Predict the vehicle’s future location.PVector predict = vel.get();
predict.normalize();
predict.mult(25);
PVector predictLoc = PVector.add(loc, predict);

Step 2: Find the normal point along the
path.

PVector a = p.start;
PVector b = p.end;
PVector normalPoint = getNormalPoint(predictLoc, a, b);

Step 3: Move a little further along the path
and set a target.

PVector dir = PVector.sub(b, a);
dir.normalize();
dir.mult(10);
PVector target = PVector.add(normalPoint, dir);

Step 4: If we are off the path, seek that
target in order to stay on the path.

float distance =
PVector.dist(normalPoint, predictLoc);

if (distance > p.radius) {
seek(target);

}
}
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What do we have so far? We have a Path class that defines a path as a line between two
points. We have a Vehicle class that defines a vehicle that can follow the path (using a
steering behavior to seek a target along the path). What is missing?

Take a deep breath. We’re almost there.

Figure 6.29

PVector getNormalPoint(PVector p, PVector a, PVector b) {

PVector that points from a to pPVector ap = PVector.sub(p, a);

PVector that points from a to bPVector ab = PVector.sub(b, a);

Using the dot product for scalar projectionab.normalize();
ab.mult(ap.dot(ab));

Finding the normal point along the line
segment

PVector normalPoint = PVector.add(a, ab);

return normalPoint;
}

6.9 Path Following with Multiple Segments6.9 Path Following with Multiple Segments

We’ve built a great example so far, yes, but it’s pretty darn limiting. After all, what if we want
our path to be something that looks more like:

Figure 6.30
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While it’s true that we could make this example work for a curved path, we’re much less likely
to end up needing a cool compress on our forehead if we stick with line segments. In the end,
we can always employ the same technique we discovered with Box2D—we can draw whatever
fancy curved path we want and approximate it behind the scenes with simple geometric
forms.

So, what’s the problem? If we made path following work with one line segment, how do we
make it work with a series of connected line segments? Let’s take a look again at our vehicle
driving along the screen. Say we arrive at Step 3.

Step 3: Find a target point on the path.Step 3: Find a target point on the path.

To find the target, we need to find the normal to the line segment. But now that we have a
series of line segments, we have a series of normal points (see above)! Which one do we
choose? The solution we’ll employ is to pick the normal point that is (a) closest and (b) on the
path itself.

If we have a point and an infinitely long line, we’ll always have a normal. But, as in the path-
following example, if we have a point and a line segment, we won’t necessarily find a normal
that is on the line segment itself. So if this happens for any of the segments, we can disqualify
those normals. Once we are left with normals that are on the path itself (only two in the above
diagram), we simply pick the one that is closest to our vehicle’s location.

Figure 6.31

Figure 6.32
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In order to write the code for this, we’ll have to expand our Path class to have an
ArrayList of points (rather than just two, a start and an end).

Now that we have the Path class defined, it’s the vehicle’s turn to deal with multiple line
segments. All we did before was find the normal for one line segment. We can now find the
normals for all the line segments in a loop.

class Path {

A Path is now an ArrayList of points
(PVector objects).

ArrayList<PVector> points;

float radius;

Path() {
radius = 20;
points = new ArrayList<PVector>();

}

This function allows us to add points to the
path.

void addPoint(float x, float y) { .
PVector point = new PVector(x,y);
points.add(point);

}

Display the path as a series of points.void display() {
stroke(0);
noFill();
beginShape();
for (PVector v : points) {

vertex(v.x,v.y);
}
endShape();

}

}

for (int i = 0; i < p.points.size()-1; i++) {
PVector a = p.points.get(i);
PVector b = p.points.get(i+1);
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Then we should make sure the normal point is actually between points a and b. Since we
know our path goes from left to right in this example, we can test if the x component of
normalPoint is outside the x components of a and b.

As a little trick, we’ll say that if it’s not within the line segment, let’s just pretend the end point
of that line segment is the normal. This will ensure that our vehicle always stays on the path,
even if it strays out of the bounds of our line segments.

Finally, we’ll need to make sure we find the normal point that is closest to our vehicle. To
accomplish this, we start with a very high “world record” distance and iterate through each
normal point to see if it beats the record (i.e. is less than). Each time a normal point beats the
record, the world record is updated and the winning point is stored in a variable named
target. At the end of the loop, we’ll have the closest normal point in that variable.

Example 6.6: Path following

PVector normalPoint = getNormalPoint(predictLoc, a, b);

Finding the normals for each line segment

if (normalPoint.x < a.x || normalPoint.x > b.x) {

Use the end point of the segment as our
normal point if we can’t find one.

normalPoint = b.get();

}

PVector target = null;
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Start with a very high record that can easily
be beaten.

float worldRecord = 1000000;

for (int i = 0; i < p.points.size()-1; i++) {
PVector a = p.points.get(i);
PVector b = p.points.get(i+1);
PVector normalPoint = getNormalPoint(predictLoc, a, b);
if (normalPoint.x < a.x || normalPoint.x > b.x) {

normalPoint = b.get();
}

float distance = PVector.dist(predictLoc, normalPoint);

If we beat the record, then this should be
our target!

if (distance < worldRecord) {
worldRecord = distance;
target = normalPoint.get();

}

}

Update the path-following example so that the path can go in any direction. (Hint:
you’ll need to use the min() and max() function when determining if the normal point
is inside the line segment.)

if (normalPoint.x < ____(____,____) || normalPoint.x > ____(____,____)) {
normalPoint = b.get();

}

Exercise 6.10Exercise 6.10

Create a path that changes over time. Can the points that define the path itself have
their own steering behaviors?

Exercise 6.11Exercise 6.11

6.10 Complex Systems6.10 Complex Systems
Remember our purpose? To breathe life into the things that move around our Processing
windows? By learning to write the code for an autonomous agent and building a series of
examples of individual behaviors, hopefully our souls feel a little more full. But this is no
place to stop and rest on our laurels. We’re just getting started. After all, there is a deeper
purpose at work here. Yes, a vehicle is a simulated being that makes decisions about how
to seek and flow and follow. But what is a life led alone, without the love and support of

Chapter 6. Autonomous Agents

298



others? Our purpose here is not only to build individual behaviors for our vehicles, but to put
our vehicles into systems of many vehicles and allow those vehicles to interact with each
other.

Let’s think about a tiny, crawling ant—one single ant. An ant is an autonomous agent; it can
perceive its environment (using antennae to gather information about the direction and
strength of chemical signals) and make decisions about how to move based on those signals.
But can a single ant acting alone build a nest, gather food, defend its queen? An ant is a
simple unit and can only perceive its immediate environment. A colony of ants, however, is a
sophisticated complex system, a “superorganism” in which the components work together to
accomplish difficult and complicated goals.

We want to take what we’ve learned during the process of building autonomous agents in
Processing into simulations that involve many agents operating in parallel—agents that have
an ability to perceive not only their physical environment but also the actions of their fellow
agents, and then act accordingly. We want to create complex systems in Processing.

What is a complex system? A complex system is typically defined as a system that is “more
than the sum of its parts.” While the individual elements of the system may be incredibly
simple and easily understood, the behavior of the system as a whole can be highly complex,
intelligent, and difficult to predict. Here are three key principles of complex systems.

• Simple units with short-range relationships.Simple units with short-range relationships. This is what we’ve been building all
along: vehicles that have a limited perception of their environment.

• Simple units operate in parallel.Simple units operate in parallel. This is what we need to simulate in code. For
every cycle through Processing’s draw() loop, each unit will decide how to move (to
create the appearance of them all working in parallel).

• System as a whole exhibits emergent phenomena.System as a whole exhibits emergent phenomena. Out of the interactions between
these simple units emerges complex behavior, patterns, and intelligence. Here we’re
talking about the result we are hoping for in our sketches. Yes, we know this
happens in nature (ant colonies, termites, migration patterns, earthquakes,
snowflakes, etc.), but can we achieve the same result in our Processing sketches?

Following are three additional features of complex systems that will help frame the discussion,
as well as provide guidelines for features we will want to include in our software simulations.
It’s important to acknowledge that this is a fuzzy set of characteristics and not all complex
systems have all of them.

• Non-linearity.Non-linearity. This aspect of complex systems is often casually referred to as “the
butterfly effect,” coined by mathematician and meteorologist Edward Norton Lorenz,
a pioneer in the study of chaos theory. In 1961, Lorenz was running a computer
weather simulation for the second time and, perhaps to save a little time, typed in a
starting value of 0.506 instead of 0.506127. The end result was completely different
from the first result of the simulation. In other words, the theory is that a single
butterfly flapping its wings on the other side of the world could cause a massive
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weather shift and ruin our weekend at the beach. We call it “non-linear” because
there isn’t a linear relationship between a change in initial conditions and a
change in outcome. A small change in initial conditions can have a massive effect
on the outcome. Non-linear systems are a superset of chaotic systems. In the next
chapter, we’ll see how even in a system of many zeros and ones, if we change just
one bit, the result will be completely different.

• Competition and cooperation.Competition and cooperation. One of the things that often makes a complex
system tick is the presence of both competition and cooperation between the
elements. In our upcoming flocking system, we will have three rules—alignment,
cohesion, and separation. Alignment and cohesion will ask the elements to
“cooperate”—i.e. work together to stay together and move together. Separation,
however, will ask the elements to “compete” for space. As we get to the flocking
system, try taking out the cooperation or the competition and you’ll see how you
are left without complexity. Competition and cooperation are found in living
complex systems, but not in non-living complex systems like the weather.

• Feedback.Feedback. Complex systems often include a feedback loop where the the output
of the system is fed back into the system to influence its behavior in a positive or
negative direction. Let’s say you drive to work each day because the price of gas
is low. In fact, everyone drives to work. The price of gas goes up as demand
begins to exceed supply. You, and everyone else, decide to take the train to work
because driving is too expensive. And the price of gas declines as the demand
declines. The price of gas is both the input of the system (determining whether
you choose to drive or ride the train) and the output (the demand that results from
your choice). I should note that economic models (like supply/demand, the stock
market) are one example of a human complex system. Others include fads and
trends, elections, crowds, and traffic flow.

Complexity will serve as a theme for the remaining content in this book. In this chapter, we’ll
begin by adding one more feature to our Vehicle class: an ability to look at neighboring
vehicles.

6.11 Group Behaviors (or: Let’s not run into each6.11 Group Behaviors (or: Let’s not run into each
other)other)
A group is certainly not a new concept. We’ve done this before—in Chapter 4, where we
developed a framework for managing collections of particles in a ParticleSystem class.
There, we stored a list of particles in an ArrayList. We’ll do the same thing here: store a
bunch of Vehicle objects in an ArrayList.
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Now when it comes time to deal with all the vehicles in draw(), we simply loop through all of
them and call the necessary functions.

OK, so maybe we want to add a behavior, a force to be applied to all the vehicles. This could
be seeking the mouse.

But that’s an individual behavior. We’ve already spent thirty-odd pages worrying about
individual behaviors. We’re here because we want to apply a group behavior. Let’s begin with
separation, a behavior that commands, “Avoid colliding with your neighbors!”

Is that right? It sounds good, but it’s not. What’s missing? In the case of seek, we said, “Seek
mouseX and mouseY.” In the case of separate, we’re saying “separate from everyone else.”
Who is everyone else? It’s the list of all the other vehicles.

This is the big leap beyond what we did before with particle systems. Instead of having each
element (particle or vehicle) operate on its own, we’re now saying, “Hey you, the vehicle!
When it comes time for you to operate, you need to operate with an awareness of everyone
else. So I’m going to go ahead and pass you the ArrayList of everyone else.”

This is how we’ve mapped out setup() and draw() to deal with a group behavior.

Declare an ArrayList of Vehicle objects.ArrayList<Vehicle> vehicles;

void setup() {

Initialize and fill the ArrayList with a bunch of
Vehicles.

vehicles = new ArrayList<Vehicle>;

for (int i = 0; i < 100; i++) {
vehicles.add(new Vehicle(random(width),random(height)));

}
}

void draw(){
for (Vehicle v : vehicles) {

v.update();
v.display();

}
}

v.seek(mouseX,mouseY);

v.separate();

v.separate(vehicles);
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Of course, this is just the beginning. The
real work happens inside the separate()
function itself. Let’s figure out how we want
to define separation. Reynolds states:
“Steer to avoid crowding.” In other words, if
a given vehicle is too close to you, steer
away from that vehicle. Sound familiar? Remember the seek behavior where a vehicle steers
towards a target? Reverse that force and we have the flee behavior.

But what if more than one vehicle is too
close? In this case, we’ll define separation
as the average of all the vectors pointing
away from any close vehicles.

Let’s begin to write the code. As we just
worked out, we’re writing a function called
separate() that receives an ArrayList of
Vehicle objects as an argument.

Inside this function, we’re going to loop through all of the vehicles and see if any are too
close.

ArrayList<Vehicle> vehicles;

void setup() {
size(320,240);
vehicles = new ArrayList<Vehicle>();
for (int i = 0; i < 100; i++) {

vehicles.add(new Vehicle(random(width),random(height)));
}

}

void draw() {
background(255);

for (Vehicle v : vehicles) {

This is really the only new thing we’re
doing in this section. We’re asking a
Vehicle object to examine all the other
vehicles in the process of calculating a
separation force.

v.separate(vehicles);

v.update();
v.display();

}
}

Figure 6.33

Figure 6.34

void separate (ArrayList<Vehicle> vehicles) {

}

Chapter 6. Autonomous Agents

302



Notice how in the above code, we are not only checking if the distance is less than a desired
separation (i.e. too close!), but also if the distance is greater than zero. This is a little trick that
makes sure we don’t ask a vehicle to separate from itself. Remember, all the vehicles are in
the ArrayList, so if you aren’t careful you’ll be comparing each vehicle to itself!

Once we know that two vehicles are too close, we need to make a vector that points away
from the offending vehicle.

This is not enough. We have that vector now, but we need to make sure we calculate the
average of all vectors pointing away from close vehicles. How do we compute average? We
add up all the vectors and divide by the total.

This variable specifies how close is too
close.

float desiredseparation = 20;

for (Vehicle other : vehicles) {

float d = PVector.dist(location, other.location);

if ((d > 0) && (d < desiredseparation)) {

What is the distance between me and
another Vehicle?

Any code here will be executed if the
Vehicle is within 20 pixels.

}
}

if ((d > 0) && (d < desiredseparation)) {

PVector diff = PVector.sub(location, other.location);

diff.normalize();
}

A PVector pointing away from the other’s
location

Start with an empty PVector.PVector sum = new PVector();

int count = 0;

We have to keep track of how many
Vehicles are too close.

for (Vehicle other : vehicles) {

float d = PVector.dist(location, other.location);
if ((d > 0) && (d < desiredseparation)) {

PVector diff = PVector.sub(location, other.location);
diff.normalize();

Add all the vectors together and increment
the count.

sum.add(diff);

count++;
}

}
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Once we have the average vector (stored in the PVector object “sum”), that PVector can be
scaled to maximum speed and become our desired velocity—we desire to move in that
direction at maximum speed! And once we have the desired velocity, it’s the same old
Reynolds story: steering equals desired minus velocity.

Let’s see the function in its entirety. There are two additional improvements, noted in the
code comments.

Example 6.7: Group behavior: Separation

We have to make sure we found at least
one close vehicle. We don’t want to bother
doing anything if nothing is too close (not to
mention we can’t divide by zero!)

if (count > 0) {

sum.div(count);
}

if (count > 0) {
sum.div(count);

Scale average to maxspeed (this becomes
desired).

sum.setMag(maxspeed);

Reynolds’s steering formulaPVector steer = PVector.sub(sum,vel);

steer.limit(maxforce);

Apply the force to the Vehicle’s
acceleration.

applyForce(steer);

}

void separate (ArrayList<Vehicle> vehicles) {

Chapter 6. Autonomous Agents

304



Note how the desired separation is based
on the Vehicle’s size.

float desiredseparation = r*2;

PVector sum = new PVector();
int count = 0;
for (Vehicle other : vehicles) {

float d = PVector.dist(location, other.location);
if ((d > 0) && (d < desiredseparation)) {

PVector diff = PVector.sub(location, other.location);
diff.normalize();

What is the magnitude of the PVector
pointing away from the other vehicle? The
closer it is, the more we should flee. The
farther, the less. So we divide by the
distance to weight it appropriately.

diff.div(d);

sum.add(diff);
count++;

}
}
if (count > 0) {

sum.div(count);
sum.normalize();
sum.mult(maxspeed);
PVector steer = PVector.sub(sum, vel);
steer.limit(maxforce);
applyForce(steer);

}

}

Rewrite separate() to work in the opposite fashion (“cohesion”). If a vehicle is beyond
a certain distance, steer towards that vehicle. This will keep the group together. (Note
that in a moment, we’re going to look at what happens when we have both cohesion
and separation in the same simulation.)

Exercise 6.12Exercise 6.12
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Add the separation force to path following to create a simulation of Reynolds’s
“Crowd Path Following.”

Exercise 6.13Exercise 6.13

6.12 Combinations6.12 Combinations
The previous two exercises hint at what is perhaps the most important aspect of this
chapter. After all, what is a Processing sketch with one steering force compared to one with
many? How could we even begin to simulate emergence in our sketches with only one rule?
The most exciting and intriguing behaviors will come from mixing and matching multiple
steering forces, and we’ll need a mechanism for doing so.

You may be thinking, “Duh, this is nothing new. We do this all the time.” You would be right.
In fact, we did this as early as Chapter 2.

Here we have a mover that responds to two forces. This all works nicely because of the way
we designed the Mover class to accumulate the force vectors into its acceleration vector. In
this chapter, however, our forces stem from internal desires of the movers (now called
vehicles). And those desires can be weighted. Let’s consider a sketch where all vehicles
have two desires:

• Seek the mouse location.Seek the mouse location.

• Separate from any vehicles that are too close.Separate from any vehicles that are too close.

PVector wind = new PVector(0.001,0);
PVector gravity = new PVector(0,0.1);
mover.applyForce(wind);
mover.applyForce(gravity);
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We might begin by adding a function to the Vehicle class that manages all of the behaviors.
Let’s call it applyBehaviors().

Here we see how a single function takes care of calling the other functions that apply the
forces—separate() and seek(). We could start mucking around with those functions and see
if we can adjust the strength of the forces they are calculating. But it would be easier for us to
ask those functions to return the forces so that we can adjust their strength before applying
them to the vehicle’s acceleration.

Let’s look at how the seek function changed.

This is a subtle change, but incredibly important for us: it allows us to alter the strength of
these forces in one place.

void applyBehaviors(ArrayList<Vehicle> vehicles) {
separate(vehicles);
seek(new PVector(mouseX,mouseY));

}

void applyBehaviors(ArrayList<Vehicle> vehicles) {
PVector separate = separate(vehicles);
PVector seek = seek(new PVector(mouseX,mouseY));

We have to apply the force here since
seek() and separate() no longer do so.

applyForce(separate);
applyForce(seek);

}

PVector seek(PVector target) {
PVector desired = PVector.sub(target,loc);
desired.normalize();
desired.mult(maxspeed);
PVector steer = PVector.sub(desired,vel);
steer.limit(maxforce);

Instead of applying the force we return the
PVector.

applyForce(steer);
return steer;

}
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Example 6.8: Combining steering behaviors: Seek and separate

void applyBehaviors(ArrayList<Vehicle> vehicles) {
PVector separate = separate(vehicles);
PVector seek = seek(new PVector(mouseX,mouseY));

These values can be whatever you want
them to be! They can be variables that are
customized for each vehicle, or they can
change over time.

separate.mult(1.5);
seek.mult(0.5);

applyForce(separate);
applyForce(seek);

}

Redo Example 6.8 so that the behavior weights are not constants. What happens if
they change over time (according to a sine wave or Perlin noise)? Or if some vehicles
are more concerned with seeking and others more concerned with separating? Can
you introduce other steering behaviors as well?

Exercise 6.14Exercise 6.14

6.13 Flocking6.13 Flocking
Flocking is an group animal behavior that is characteristic of many living creatures, such as
birds, fish, and insects. In 1986, Craig Reynolds created a computer simulation of flocking
behavior and documented the algorithm in his paper, “Flocks, Herds, and Schools: A
Distributed Behavioral Model.” Recreating this simulation in Processing will bring together
all the concepts in this chapter.

1. We will use the steering force formula (steer = desired - velocity) to implement the
rules of flocking.

2. These steering forces will be group behaviors and require each vehicle to look at
all the other vehicles.

3. We will combine and weight multiple forces.

4. The result will be a complex system—intelligent group behavior will emerge from
the simple rules of flocking without the presence of a centralized system or
leader.

The good news is, we’ve already done items 1 through 3 in this chapter, so this section will
be about just putting it all together and seeing the result.
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Before we begin, I should mention that we’re going to change the name of our Vehicle class
(yet again). Reynolds uses the term “boid” (a made-up word that refers to a bird-like object) to
describe the elements of a flocking system and we will do the same.

Let’s take an overview of the three rules of flocking.

1. SeparationSeparation (also known as “avoidance”): Steer to avoid colliding with your
neighbors.

2. AlignmentAlignment (also known as “copy”): Steer in the same direction as your neighbors.

3. CohesionCohesion (also known as “center”): Steer towards the center of your neighbors (stay
with the group).

Just as we did with our separate and seek example, we’ll want our Boid objects to have a
single function that manages all the above behaviors. We’ll call this function flock().

Now, it’s just a matter of implementing the three rules. We did separation before; it’s identical
to our previous example. Let’s take a look at alignment, or steering in the same direction as

Figure 6.35

void flock(ArrayList<Boid> boids) {

The three flocking rulesPVector sep = separate(boids);
PVector ali = align(boids);
PVector coh = cohesion(boids);

Arbitrary weights for these forces (Try
different ones!)

sep.mult(1.5);
ali.mult(1.0);
coh.mult(1.0);

Applying all the forcesapplyForce(sep);
applyForce(ali);
applyForce(coh);

}
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your neighbors. As with all of our steering behaviors, we’ve got to boil down this concept
into a desire: the boid’s desired velocity is the average velocity of its neighbors.

So our algorithm is to calculate the average velocity of all the other boids and set that to
desired.

The above is pretty good, but it’s missing one rather crucial detail. One of the key principles
behind complex systems like flocking is that the elements (in this case, boids) have short-
range relationships. Thinking about ants again, it’s pretty easy to imagine an ant being able
to sense its immediate environment, but less so an ant having an awareness of what
another ant is doing hundreds of feet away. The fact that the ants can perform such
complex collective behavior from only these neighboring relationships is what makes them
so exciting in the first place.

In our alignment function, we’re taking the average velocity of all the boids, whereas we
should really only be looking at the boids within a certain distance. That distance threshold
is up to you, of course. You could design boids that can see only twenty pixels away or
boids that can see a hundred pixels away.

PVector align (ArrayList<Boid> boids) {

Add up all the velocities and divide by the
total to calculate the average velocity.

PVector sum = new PVector(0,0);
for (Boid other : boids) {

sum.add(other.velocity);
}
sum.div(boids.size());

We desire to go in that direction at
maximum speed.

sum.setMag(maxspeed);

Reynolds’s steering force formulaPVector steer = PVector.sub(sum,velocity);

steer.limit(maxforce);
return steer;

}
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Much like we did with separation (only calculating a force for others within a certain distance),
we’ll want to do the same with alignment (and cohesion).

Figure 6.36

PVector align (ArrayList<Boid> boids) {

This is an arbitrary value and could vary
from boid to boid.

float neighbordist = 50;

PVector sum = new PVector(0,0);
int count = 0;
for (Boid other : boids) {

float d = PVector.dist(location,other.location);
if ((d > 0) && (d < neighbordist)) {

sum.add(other.velocity);

For an average, we need to keep track of
how many boids are within the distance.

count++;

}
}
if (count > 0) {

sum.div(count);
sum.normalize();
sum.mult(maxspeed);
PVector steer = PVector.sub(sum,velocity);
steer.limit(maxforce);
return steer;

If we don’t find any close boids, the steering
force is zero.

} else {
return new PVector(0,0);

}

}

The Nature of Code (v005)

311



Finally, we are ready for cohesion. Here our code is virtually identical to that for
alignment—only instead of calculating the average velocity of the boid’s neighbors, we want
to calculate the average location of the boid’s neighbors (and use that as a target to seek).

It’s also worth taking the time to write a class called Flock, which will be virtually identical
to the ParticleSystem class we wrote in Chapter 4 with only one tiny change: When we
call run() on each Boid object (as we did to each Particle object), we’ll pass in a
reference to the entire ArrayList of boids.

Can you write the above code so that
boids can only see other boids that are
actually within their “peripheral” vision
(as if they had eyes)?

Exercise 6.15Exercise 6.15

PVector cohesion (ArrayList<Boid> boids) {
float neighbordist = 50;
PVector sum = new PVector(0,0);
int count = 0;
for (Boid other : boids) {

float d = PVector.dist(location,other.location);
if ((d > 0) && (d < neighbordist)) {

Adding up all the others’ locationssum.add(other.location);

count++;
}

}
if (count > 0) {

sum.div(count);

Here we make use of the seek() function
we wrote in Example 6.8. The target we
seek is the average location of our
neighbors.

return seek(sum);

} else {
return new PVector(0,0);

}
}
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And our main program will look like:

Example 6.9: Flocking

class Flock {
ArrayList<Boid> boids;

Flock() {
boids = new ArrayList<Boid>();

}

void run() {
for (Boid b : boids) {

Each Boid object must know about all the
other Boids.

b.run(boids);

}
}

void addBoid(Boid b) {
boids.add(b);

}
}

A Flock object manages the entire group.Flock flock;

void setup() {
size(300,200);
flock = new Flock();
for (int i = 0; i < 100; i++) {

Boid b = new Boid(width/2,height/2);

The Flock starts out with 100 Boids.flock.addBoid(b);

}
}

void draw() {
background(255);
flock.run();

}
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Combine flocking with some other steering behaviors.

Exercise 6.16Exercise 6.16

In his book The Computational Beauty
of Nature (MIT Press, 2000), Gary Flake
describes a fourth rule for flocking:
“View: move laterally away from any
boid that blocks the view.” Have your
boids follow this rule.

Exercise 6.17Exercise 6.17

Create a flocking simulation where all of the parameters (separation weight, cohesion
weight, alignment weight, maximum force, maximum speed) change over time. They
could be controlled by Perlin noise or by user interaction. (For example, you could
use a library such as controlp5 (http://www.sojamo.de/libraries/controlP5/) to tie the
values to slider positions.)

Exercise 6.18Exercise 6.18

Visualize the flock in an entirely different way.

Exercise 6.19Exercise 6.19

Chapter 6. Autonomous Agents

314

http://www.sojamo.de/libraries/controlP5/


6.14 Algorithmic Efficiency (or: Why does my $@(*%!6.14 Algorithmic Efficiency (or: Why does my $@(*%!
run so slowly?)run so slowly?)
I would like to hide the dark truth behind we’ve just done, because I would like you to be
happy and live a fulfilling and meaningful life. But I also would like to be able to sleep at night
without worrying about you so much. So it is with a heavy heart that I must bring up this topic.
Group behaviors are wonderful. But they can be slow, and the more elements in the group,
the slower they can be. Usually, when we talk about Processing sketches running slowly, it’s
because drawing to the screen can be slow—the more you draw, the slower your sketch runs.
This is actually a case, however, where the slowness derives from the algorithm itself. Let’s
discuss.

Computer scientists classify algorithms with something called “Big O notation,” which
describes the efficiency of an algorithm: how many computational cycles does it require to
complete? Let’s consider a simple analog search problem. You have a basket containing one
hundred chocolate treats, only one of which is pure dark chocolate. That’s the one you want
to eat. To find it, you pick the chocolates out of the basket one by one. Sure, you might be
lucky and find it on the first try, but in the worst-case scenario you have to check all one
hundred before you find the dark chocolate. To find one thing in one hundred, you have to
check one hundred things (or to find one thing in N things, you have to check N times.) Your
Big O Notation is N. This, incidentally, is the Big O Notation that describes our simple particle
system. If we have N particles, we have to run and display those particles N times.

Now, let’s think about a group behavior (such as flocking). For every Boid object, we have to
check every other Boid object (for its velocity and location). Let’s say we have one hundred
boids. For boid #1, we need to check one hundred boids; for boid #2, we need to check one
hundred boids, and so on and so forth. For one hundred boids, we need to perform one
hundred times one hundred checks, or ten thousand. No problem: computers are fast and can
do things ten thousand times pretty easily. Let’s try one thousand.

1,000 x 1,000 = 1,000,000 cycles.

OK, this is rather slow, but still somewhat manageable. Let’s try 10,000 elements:

10,000 x 10,000 elements = 100,000,000 cycles.

Now, we’re really getting slow. Really, really, really slow.

Notice something odd? As the number of elements increases by a factor of 10, the number of
required cycles increases by a factor of 100. Or as the number of elements increases by a
factor of N, the cycles increase by a factor of N times N. This is known as Big O Notation N-
Squared.

I know what you are thinking. You are thinking: “No problem; with flocking, we only need to
consider the boids that are close to other boids. So even if we have 1,000 boids, we can just
look at, say, the 5 closest boids and then we only have 5,000 cycles.” You pause for a
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moment, and then start thinking: “So for each boid I just need to check all the boids and find
the five closest ones and I’m good!” See the catch-22? Even if we only want to look at the
close ones, the only way to know what the close ones are would be to check all of them.

Or is there another way?

Let’s take a number that we might actually want to use, but would still run too slowly: 2,000
(4,000,000 cycles required).

What if we could divide the screen into a grid? We would take all 2,000 boids and assign
each boid to a cell within that grid. We would then be able to look at each boid and
compare it to its neighbors within that cell at any given moment. Imagine a 10 x 10 grid. In a
system of 2,000 elements, on average, approximately 20 elements would be found in each
cell (20 x 10 x 10 = 2,000). Each cell would then require 20 x 20 = 400 cycles. With 100 cells,
we’d have 100 x 400 = 40,000 cycles, a massive savings over 4,000,000.

This technique is known as “bin-lattice spatial subdivision” and is outlined in more detail in
(surprise, surprise) Reynolds’s 2000 paper, “Interaction with Groups of Autonomous
Characters” (http://www.red3d.com/cwr/papers/2000/pip.pdf). How do we implement such
an algorithm in Processing? One way is to keep multiple ArrayLists. One ArrayList would
keep track of all the boids, just like in our flocking example.

In addition to that ArrayList, we store an additional reference to each Boid object in a
two-dimensional ArrayList. For each cell in the grid, there is an ArrayList that tracks the
objects in that cell.

Figure 6.37

ArrayList<Boid> boids;
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In the main draw() loop, each Boid object then registers itself in the appropriate cell
according to its location.

Then when it comes time to have the boids check for neighbors, they can look at only those in
their particular cell (in truth, we also need to check neighboring cells to deal with border
cases).

Example 6.10: Bin-lattice spatial subdivision

We’re only covering the basics here; for the full code, check the book’s website.

Now, there are certainly flaws with this system. What if all the boids congregate in the corner
and live in the same cell? Then don’t we have to check all 2,000 against all 2,000?

The good news is that this need for optimization is a common one and there are a wide
variety of similar techniques out there. For us, it’s likely that a basic approach will be good
enough (in most cases, you won’t need one at all.) For another, more sophisticated approach,
check out toxiclibs' Octree examples (http://toxiclibs.org/2010/02/new-package-simutils/).

ArrayList<Boid>[][] grid;

int column = int(boid.x) / resolution;
int row = int(boid.y) /resolution;
grid[column][row].add(boid);

int column = int(boid.x) / resolution;
int row = int(boid.y) /resolution;
boid.flock(boids);

Instead of looking at all the boids, just this
cell

boid.flock(grid[column][row]);

6.15 A Few Last Notes: Optimization Tricks6.15 A Few Last Notes: Optimization Tricks
This is something of a momentous occasion. The end of Chapter 6 marks the end of our story
of motion (in the context of this book, that is). We started with the concept of a vector, moved
on to forces, designed systems of many elements, examined physics libraries, built entities
with hopes and dreams and fears, and simulated emergence. The story doesn’t end here, but
it does take a bit of a turn. The next two chapters won’t focus on moving bodies, but rather on
systems of rules. Before we get there, I have a few quick items I’d like to mention that are
important when working with the examples in Chapters 1 through 6. They also relate to
optimizing your code, which fits in with the previous section.
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1) Magnitude squared (or sometimes distance squared)1) Magnitude squared (or sometimes distance squared)

What is magnitude squared and when should you use it? Let’s revisit how the magnitude of
a vector is calculated.

Magnitude requires the square root operation. And it should. After all, if you want the
magnitude of a vector, then you’ve got to look up the Pythagorean theorem and compute it
(we did this in Chapter 1). However, if you could somehow skip using the square root, your
code would run faster. Let’s consider a situation where you just want to know the relative
magnitude of a vector. For example, is the magnitude greater than ten? (Assume a PVector
v.)

Well, this is equivalent to saying:

And how is magnitude squared calculated?

Same as magnitude, but without the square root. In the case of a single PVector object, this
will never make a significant difference on a Processing sketch. However, if you are
computing the magnitude of thousands of PVector objects each time through draw(), using
magSq() instead of mag() could help your code run a wee bit faster. (Note: magSq() is only
available in Processing 2.0a1 or later.)

float mag() {
return sqrt(x*x + y*y);

}

if (v.mag() > 10) {
// Do Something!

}

if (v.magSq() > 100) {
// Do Something!

}

float magSq() {
return x*x + y*y;

}

2) Sine and cosine lookup tables2) Sine and cosine lookup tables

There’s a pattern here. What kinds of functions are slow to compute? Square root. Sine.
Cosine. Tangent. Again, if you just need a sine or cosine value here or there in your code,
you are never going to run into a problem. But what if you had something like this?
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Sure, this is a totally ridiculous code snippet that you would never write. But it illustrates a
certain point. If you are calculating the sine of pi ten thousand times, why not just calculate it
once, save that value, and refer to it whenever necessary? This is the principle behind sine
and cosine lookup tables. Instead of calling the sine and cosine functions in your code
whenever you need them, you can build an array that stores the results of sine and cosine at
angles between 0 and TWO_PI and just look up the values when you need them. For example,
here are two arrays that store the sine and cosine values for every angle, 0 to 359 degrees.

Now, what if you need the value of sine of pi?

A more sophisticated example of this technique is available on the Processing wiki
(http://wiki.processing.org/w/Sin/Cos_look-up_table).

void draw() {
for (int i = 0; i < 10000; i++) {

println(sin(PI));
}

}

float sinvalues[] = new float[360];
float cosvalues[] = new float[360];
for (int i = 0; i < 360; i++) {

sinvalues[i] = sin(radians(i));
cosvalues[i] = cos(radians(i));

}

int angle = int(degrees(PI));
float answer = sinvalues[angle];

3) Making gajillions of unnecessary PVector objects3) Making gajillions of unnecessary PVector objects

I have to admit, I am perhaps the biggest culprit of this last note. In fact, in the interest of
writing clear and understandable examples, I often choose to make extra PVector objects
when I absolutely do not need to. For the most part, this is not a problem at all. But
sometimes, it can be. Let’s take a look at an example.

Let’s say our ArrayList of vehicles has one thousand vehicles in it. We just made one
thousand new PVector objects every single time through draw(). Now, on any ol’ laptop or
desktop computer you’ve purchased in recent times, your sketch will likely not register a
complaint, run slowly, or have any problems. After all, you’ve got tons of RAM, and Java will

void draw() {
for (Vehicle v : vehicles) {
PVector mouse = new PVector(mouseX,mouseY);
v.seek(mouse);

}
}
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be able to handle making a thousand or so temporary objects and dispose of them without
much of a problem.

If your numbers grow larger (and they easily could) or perhaps more likely, if you are
working with Processing on Android, you will almost certainly run into a problem. In cases
like this you want to look for ways to reduce the number of PVector objects you make. An
obvious fix for the above code is:

Now you’ve made just one PVector instead of one thousand. Even better, you could turn
the PVector into a global variable and just assign the x and y value:

Now you never make a new PVector; you use just one over the length of your sketch!

Throughout the book’s examples, you can find lots of opportunities to reduce the number of
temporary objects. Let’s look at one more. Here is a snippet from our seek() function.

See how we’ve made two PVector objects? First, we figure out the desired vector, then we
calculate the steering force. Notice how we could rewrite this to create only one PVector.

void draw() {
PVector mouse = new PVector(mouseX,mouseY);
for (Vehicle v : vehicles) {
v.seek(mouse);

}
}

PVector mouse = new PVector();

void draw() {
mouse.x = mouseX;
mouse.y = mouseY;
for (Vehicle v : vehicles) {
v.seek(mouse);

}
}

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);

Create a new PVector to store the steering
force.

PVector steer = PVector.sub(desired,velocity);

steer.limit(maxforce);
return steer;

PVector desired = PVector.sub(target, location);
desired.normalize();
desired.mult(maxspeed);
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We don’t actually need a second PVector called steer. We could just use the desired
PVector object and turn it into the steering force by subtracting velocity. I didn’t do this in my
example because it is more confusing to read. But in some cases, it may be greatly more
efficient.

Calculate the steering force in the desired
PVector.

desired.sub(velocity);

desired.limit(maxforce);
return desired;

Eliminate as many temporary PVector objects from the flocking example as possible.
Also use magSq() where possible.

Exercise 6.20Exercise 6.20

Use steering behaviors with Box2D or toxiclibs.

Exercise 6.21Exercise 6.21
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The Ecosystem ProjectThe Ecosystem Project

Step 6 Exercise:

Use the concept of steering forces to drive the behavior of the creatures in your
ecosystem. Some possibilities:

• Create “schools” or “flocks” of creatures.
• Use a seeking behavior for creatures to search for food (for chasing

moving prey, consider “pursuit”).
• Use a flow field for the ecosystem environment. For example, how does

your system behave if the creatures live in a flowing river?
• Build a creature with countless steering behaviors (as many as you can

reasonably add). Think about ways to vary the weights of these
behaviors so that you can dial those behaviors up and down, mixing and
matching on the fly. How are creatures’ initial weights set? What rules
drive how the weights change over time?

• Complex systems can be nested. Can you design a single creature out of
a flock of boids? And can you then make a flock of those creatures?

• Complex systems can have memory (and be adaptive). Can the history of
your ecosystem affect the behavior in its current state? (This could be
the driving force behind how the creatures adjust their steering force
weights.)
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Chapter 7. CellularChapter 7. Cellular
AutomataAutomata
“To play life you must have a fairly large checkerboard and a plentiful
supply of flat counters of two colors. It is possible to work with pencil and
graph paper but it is much easier, particularly for beginners, to use
counters and a board.”

— Martin Gardner, Scientific American (October 1970)

In this chapter, we’re going to take a break from talking about vectors and motion. In fact, the
rest of the book will mostly focus on systems and algorithms (albeit ones that we can, should,
and will apply to moving bodies). In the previous chapter, we encountered our first Processing
example of a complex system: flocking. We briefly stated the core principles behind complex
systems: more than the sum of its parts, a complex system is a system of elements, operating
in parallel, with short-range relationships that as a whole exhibit emergent behavior. This
entire chapter is going to be dedicated to building another complex system simulation in
Processing. Oddly, we are going to take some steps backward and simplify the elements of
our system. No longer are the individual elements going to be members of a physics world;
instead we will build a system out of the simplest digital element possible, a single bit. This bit
is going to be called a cell and its value (0 or 1) will be called its state. Working with such
simple elements will help us understand more of the details behind how complex systems
work, and we’ll also be able to elaborate on some programming techniques that we can apply
to code-based projects.
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7.1 What Is a Cellular Automaton?7.1 What Is a Cellular Automaton?
First, let’s get one thing straight. The term cellular automatacellular automata is plural. Our code examples
will simulate just one—a cellular automatoncellular automaton, singular. To simplify our lives, we’ll also refer
to cellular automata as “CA.”

In Chapters 1 through 6, our objects (mover, particle, vehicle, boid) generally existed in only
one “state.” They might have moved around with advanced behaviors and physics, but
ultimately they remained the same type of object over the course of their digital lifetime.
We’ve alluded to the possibility that these entities can change over time (for example, the
weights of steering “desires” can vary), but we haven’t fully put this into practice. In this
context, cellular automata make a great first step in building a system of many objects that
have varying states over time.

A cellular automaton is a model of a system of “cell” objects with the following
characteristics.

• The cells live on a gridgrid. (We’ll see examples in both one and two dimensions in
this chapter, though a cellular automaton can exist in any finite number of
dimensions.)

• Each cell has a statestate. The number of state possibilities is typically finite. The
simplest example has the two possibilities of 1 and 0 (otherwise referred to as “on”
and “off” or “alive” and “dead”).

• Each cell has a neighborhoodneighborhood. This can be defined in any number of ways, but it is
typically a list of adjacent cells.

The development of cellular automata systems is typically attributed to Stanisław Ulam and
John von Neumann, who were both researchers at the Los Alamos National Laboratory in

Figure 7.1
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New Mexico in the 1940s. Ulam was studying the growth of crystals and von Neumann was
imagining a world of self-replicating robots. That’s right, robots that build copies of
themselves. Once we see some examples of CA visualized, it’ll be clear how one might
imagine modeling crystal growth; the robots idea is perhaps less obvious. Consider the design
of a robot as a pattern on a grid of cells (think of filling in some squares on a piece of graph
paper). Now consider a set of simple rules that would allow that pattern to create copies of
itself on that grid. This is essentially the process of a CA that exhibits behavior similar to
biological reproduction and evolution. (Incidentally, von Neumann’s cells had twenty-nine
possible states.) Von Neumann’s work in self-replication and CA is conceptually similar to
what is probably the most famous cellular automaton: the “Game of Life,” which we will
discuss in detail in section 7.3.

Perhaps the most significant scientific (and lengthy) work studying cellular automata arrived in
2002: Stephen Wolfram’s 1,280-page A New Kind of Science (http://www.wolframscience.com/
nksonline/toc.html). Available in its entirety for free online, Wolfram’s book discusses how CA
are not simply neat tricks, but are relevant to the study of biology, chemistry, physics, and all
branches of science. This chapter will barely scratch the surface of the theories Wolfram
outlines (we will focus on the code implementation) so if the examples provided spark your
curiosity, you’ll find plenty more to read about in his book.

7.2 Elementary Cellular Automata7.2 Elementary Cellular Automata
The examples in this chapter will begin with a simulation of Wolfram’s work. To understand
Wolfram’s elementary CA, we should ask ourselves the question: “What is the simplest cellular
automaton we can imagine?” What’s exciting about this question and its answer is that even
with the simplest CA imaginable, we will see the properties of complex systems at work.

Let’s build Wolfram’s elementary CA from scratch. Concepts first, then code. What are the
three key elements of a CA?

1) GridGrid. The simplest grid would be one-dimensional: a line of cells.

2) StatesStates. The simplest set of states (beyond having only one state) would be two states: 0 or
1.

Figure 7.2

Figure 7.3
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3) NeighborhoodNeighborhood. The simplest neighborhood in one dimension for any given cell would be
the cell itself and its two adjacent neighbors: one to the left and one to the right.

So we begin with a line of cells, each with an initial state (let’s say it is random), and each
with two neighbors. We’ll have to figure out what we want to do with the cells on the edges
(since those have only one neighbor each), but this is something we can sort out later.

We haven’t yet discussed, however, what is perhaps the most important detail of how
cellular automata work—time. We’re not really talking about real-world time here, but about
the CA living over a period of time, which could also be called a generationgeneration and, in our
case, will likely refer to the frame countframe count of an animation. The figures above show us the CA
at time equals 0 or generation 0. The questions we have to ask ourselves are: How do we
compute the states for all cells at generation 1? And generation 2? And so on and so forth.

Let’s say we have an individual cell in the CA, and let’s call it CELL. The formula for
calculating CELL’s state at any given time t is as follows:

CELL state at time t = f(CELL neighborhood at time t - 1)

In other words, a cell’s new state is a function of all the states in the cell’s neighborhood at
the previous moment in time (or during the previous generation). We calculate a new state
value by looking at all the previous neighbor states.

Figure 7.4: A neighborhood is three cells.

Figure 7.5: The edge cell only has a neighborhood of two.

Figure 7.6
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Now, in the world of cellular automata, there are many ways we could compute a cell’s state
from a group of cells. Consider blurring an image. (Guess what? Image processing works with
CA-like rules.) A pixel’s new state (i.e. its color) is the average of all of its neighbors’ colors.
We could also say that a cell’s new state is the sum of all of its neighbors’ states. With
Wolfram’s elementary CA, however, we can actually do something a bit simpler and seemingly
absurd: We can look at all the possible configurations of a cell and its neighbor and define the
state outcome for every possible configuration. It seems ridiculous—wouldn’t there be way too
many possibilities for this to be practical? Let’s give it a try.

We have three cells, each with a state of 0 or 1. How many possible ways can we configure
the states? If you love binary, you’ll notice that three cells define a 3-bit number, and how high
can you count with 3 bits? Up to 8. Let’s have a look.

Once we have defined all the possible neighborhoods, we need to define an outcome (new
state value: 0 or 1) for each neighborhood configuration.

The standard Wolfram model is to start generation 0 with all cells having a state of 0 except
for the middle cell, which should have a state of 1.

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10
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Referring to the ruleset above, let’s see how a given cell (we’ll pick the center one) would
change from generation 0 to generation 1.

Try applying the same logic to all of the cells above and fill in the empty cells.

Now, let’s go past just one generation and color the cells —0 means white, 1 means
black—and stack the generations, with each new generation appearing below the previous
one.

The low-resolution shape we’re seeing above is the “Sierpiński triangle.” Named after the
Polish mathematician Wacław Sierpiński, it’s a fractal pattern that we’ll examine in the next
chapter. That’s right: this incredibly simple system of 0s and 1s, with little neighborhoods of
three cells, can generate a shape as sophisticated and detailed as the Sierpiński triangle.
Let’s look at it again, only with each cell a single pixel wide so that the resolution is much
higher.

Figure 7.11

Figure 7.12: Rule 90
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This particular result didn’t happen by accident. I picked this set of rules because of the
pattern it generates. Take a look at Figure 7.8 one more time. Notice how there are eight
possible neighborhood configurations; we therefore define a “ruleset” as a list of 8 bits.

So this particular rule can be illustrated as follows:

Eight 0s and 1s means an 8-bit number. How many combinations of eight 0s and 1s are there?
256. This is just like how we define the components of an RGB color. We get 8 bits for red,
green, and blue, meaning we make colors with values from 0 to 255 (256 possibilities).

In terms of a Wolfram elementary CA, we have now discovered that there are 256 possible
rulesets. The above ruleset is commonly referred to as “Rule 90” because if you convert the
binary sequence—01011010—to a decimal number, you’ll get the integer 90. Let’s try looking at
the results of another ruleset.

Figure 7.13: Rule 90

Figure 7.14: Rule 90
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As we can now see, the simple act of
creating a CA and defining a ruleset does
not guarantee visually interesting results.
Out of all 256 rulesets, only a handful
produce compelling outcomes. However,
it’s quite incredible that even one of these
rulesets for a one-dimensional CA with only
two possible states can produce the
patterns we see every day in nature (see
Figure 7.16), and it demonstrates how
valuable these systems can be in
simulation and pattern generation.

Before we go too far down the road of how
Wolfram classifies the results of varying
rulesets, let’s look at how we actually build
a Processing sketch that generates the
Wolfram CA and visualizes it onscreen.

Figure 7.15: Rule 222

Figure 7.16: A Textile Cone Snail (Conus textile),
Cod Hole, Great Barrier Reef, Australia, 7
August 2005. Photographer: Richard Ling
richard@research.canon.com.au

7.3 How to Program an Elementary CA7.3 How to Program an Elementary CA
You may be thinking: “OK, I’ve got this cell thing. And the cell thing has some properties,
like a state, what generation it’s on, who its neighbors are, where it lives pixel-wise on the
screen. And maybe it has some functions: it can display itself, it can generate its new state,
etc.” This line of thinking is an excellent one and would likely lead you to write some code
like this:

class Cell {

}
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This line of thinking, however, is not the road we will first travel. Later in this chapter, we will
discuss why an object-oriented approach could prove valuable in developing a CA simulation,
but to begin, we can work with a more elementary data structure. After all, what is an
elementary CA but a list of 0s and 1s? Certainly, we could describe the following CA
generation using an array:

To draw that array, we simply check if we’ve got a 0 or a 1 and create a fill accordingly.

Now that we have the array to describe the cell states of a given generation (which we’ll
ultimately consider the “current” generation), we need a mechanism by which to compute the
next generation. Let’s think about the pseudocode of what we are doing at the moment.

For every cell in the array:For every cell in the array:

• Take a look at the neighborhood states: left, middle, right.Take a look at the neighborhood states: left, middle, right.

• Look up the new value for the cell state according to some ruleset.Look up the new value for the cell state according to some ruleset.

• Set the cell’s state to that new value.Set the cell’s state to that new value.

This may lead you to write some code like this:

Figure 7.17

int[] cells = {1,0,1,0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,0};

Loop through every cell.for (int i = 0; i < cells.length; i++) {

if (cells[i] == 0) fill(255);

Create a fill based on its state (0 or 1).else fill(0);

stroke(0);
rect(i*50,0,50,50);

}

For every cell in the array...for (int i = 0; i < cells.length; i++) {

...take a look at the neighborhood.int left = cell[i-1];
int middle = cell[i];
int right = cell[i+1];

Look up the new value according to the
rules.

int newstate = rules(left,middle,right);
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We’re fairly close to getting this right, but we’ve made one minor blunder and one major
blunder in the above code. Let’s talk about what we’ve done well so far.

Notice how easy it is to look at a cell’s neighbors. Because an array is an ordered list of
data, we can use the fact that the indices are numbered to know which cells are next to
which cells. We know that cell number 15, for example, has cell 14 to its left and 16 to its
right. More generally, we can say that for any cell i, its neighbors are i-1 and i+1.

We’re also farming out the calculation of a new state value to some function called rules().
Obviously, we’re going to have to write this function ourselves, but the point we’re making
here is modularity. We have a basic framework for the CA in this function, and if we later
want to change how the rules operate, we don’t have to touch that framework; we can
simply rewrite the rules() function to compute the new states differently.

So what have we done wrong? Let’s talk through how the code will execute. First, we look
at cell index i equals 0. Now let’s look at 0’s neighbors. Left is index -1. Middle is index 0.
And right is index 1. However, our array by definition does not have an element with the
index -1. It starts with 0. This is a problem we’ve alluded to before: the edge cases.

How do we deal with the cells on the edge who don’t have a neighbor to both their left and
their right? Here are three possible solutions to this problem:

1. Edges remain constant.Edges remain constant. This is perhaps the simplest solution. We never bother to
evaluate the edges and always leave their state value constant (0 or 1).

2. Edges wrap around.Edges wrap around. Think of the CA as a strip of paper and turn that strip of
paper into a ring. The cell on the left edge is a neighbor of the cell on the right
and vice versa. This can create the appearance of an infinite grid and is probably
the most used solution.

3. Edges have different neighborhoods and rules.Edges have different neighborhoods and rules. If we wanted to, we could treat
the edge cells differently and create rules for cells that have a neighborhood of
two instead of three. You may want to do this in some circumstances, but in our
case, it’s going to be a lot of extra lines of code for little benefit.

To make the code easiest to read and understand right now, we’ll go with option #1 and just
skip the edge cases, leaving their values constant. This can be accomplished by starting the
loop one cell later and ending one cell earlier:

Set the cell’s state to the new value.cell[i] = newstate;

}
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There’s one more problem we have to fix before we’re done. It’s subtle and you won’t get a
compilation error; the CA just won’t perform correctly. However, identifying this problem is
absolutely fundamental to the techniques behind programming CA simulations. It all lies in this
line of code:

This seems like a perfectly innocent line. After all, we’ve computed the new state value and
we’re simply giving the cell its new state. But in the next iteration, you’ll discover a massive
bug. Let’s say we’ve just computed the new state for cell #5. What do we do next? We
calculate the new state value for cell #6.

Cell #6, generation 0 = some state, 0 or 1
Cell #6, generation 1 = a function of states for cell #5cell #5, cell #6, and cell #7 at *generation 0*

Notice how we need the value of cell #5 at generation 0 in order to calculate cell #6’s new
state at generation 1? A cell’s new state is a function of the previous neighbor states. Do we
know cell #5’s value at generation 0? Remember, Processing just executes this line of code
for i = 5.

Once this happens, we no longer have access to cell #5’s state at generation 0, and cell index
5 is storing the value for generation 1. We cannot overwrite the values in the array while we
are processing the array, because we need those values to calculate the new values. A
solution to this problem is to have two arrays, one to store the current generation states and
one for the next generation states.

A loop that ignores the first and last cellfor (int i = 1; i < cells.length-1; i++) {

int left = cell[i-1];
int middle = cell[i];
int right = cell[i+1];
int newstate = rules(left,middle,right);
cell[i] = newstate;

}

cell[i] = newstate;

cell[i] = newstate;

Another array to store the states for the next
generation.

int[] newcells = new int[cells.length];

for (int i = 1; i < cells.length-1; i++) {

Look at the states from the current array.int left = cell[i-1];
int middle = cell[i];
int right = cell[i+1];

int newstate = rules(left,middle,right);

Saving the new state in the new arraynewcells[i] = newstate;

}
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Once the entire array of values is processed, we can then discard the old array and set it
equal to the new array of states.

We’re almost done. The above code is complete except for the fact that we haven’t yet
written the rules() function that computes the new state value based on the neighborhood
(left, middle, and right cells). We know that function needs to return an integer (0 or 1) as
well as receive three arguments (for the three neighbors).

Now, there are many ways we could write this function, but I’d like to start with a long-
winded one that will hopefully provide a clear illustration of what we are doing.

Let’s first establish how we are storing the ruleset. The ruleset, if you remember from the
previous section, is a series of 8 bits (0 or 1) that defines that outcome for every possible
neighborhood configuration.

We can store this ruleset in Processing as an array.

And then say:

If left, middle, and right all have the state 1, then that matches the configuration 111 and the
new state should be equal to the first value in the ruleset array. We can now duplicate this
strategy for all eight possibilities.

The new generation becomes the current
generation.

cells = newcells;

Function receives 3 ints and returns 1.int rules (int a, int b, int c) {

Figure 7.14 (repeated)

int[] ruleset = {0,1,0,1,1,0,1,0};

if (a == 1 && b == 1 && c == 1) return ruleset[0];
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I like having the example written as above because it describes line by line exactly what is
happening for each neighborhood configuration. However, it’s not a great solution. After all,
what if we design a CA that has 4 possible states (0-3) and suddenly we have 64 possible
neighborhood configurations? With 10 possible states, we have 1,000 configurations. Certainly
we don’t want to type in 1,000 lines of code!

Another solution, though perhaps a bit more difficult to follow, is to convert the neighborhood
configuration (a 3-bit number) into a regular integer and use that value as the index into the
ruleset array. This can be done in Java like so.

There’s one tiny problem with this solution, however. Let’s say we are implementing rule 222:

And we have the neighborhood “111”. The resulting state is equal to ruleset index 0, as we see
in the first way we wrote the function.

If we convert “111” to a decimal number, we get 7. But we don’t want ruleset[7]; we want
ruleset[0]. For this to work, we need to write the ruleset with the bits in reverse order, i.e.

int rules (int a, int b, int c) {
if (a == 1 && b == 1 && c == 1) return ruleset[0];
else if (a == 1 && b == 1 && c == 0) return ruleset[1];
else if (a == 1 && b == 0 && c == 1) return ruleset[2];
else if (a == 1 && b == 0 && c == 0) return ruleset[3];
else if (a == 0 && b == 1 && c == 1) return ruleset[4];
else if (a == 0 && b == 1 && c == 0) return ruleset[5];
else if (a == 0 && b == 0 && c == 1) return ruleset[6];
else if (a == 0 && b == 0 && c == 0) return ruleset[7];

For this function to be valid, we have to
make sure something is returned in cases
where the states do not match one of the
eight possibilities. We know this is
impossible given the rest of our code, but
Processing does not.

return 0;

}

int rules (int a, int b, int c) {

A quick way to join three bits into a StringString s = "" + a + b + c;

The second argument ‘2’ indicates that we
intend to parse a binary number (base 2).

int index = Integer.parseInt(s,2);

return ruleset[index];
}

Rule 222int[] ruleset = {1,1,0,1,1,1,1,0};

if (a == 1 && b == 1 && c == 1) return ruleset[0];
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So far in this section, we’ve written everything we need to compute the generations for a
Wolfram elementary CA. Let’s take a moment to organize the above code into a class, which
will ultimately help in the design of our overall sketch.

Rule 222 in “reverse” orderint[] ruleset = {0,1,1,1,1,0,1,1};

class CA {

We need an array for the cells and one for
the rules.

int[] cells;
int[] ruleset;

CA() {
cells = new int[width];

Arbitrarily starting with rule 90ruleset = {0,1,0,1,1,0,1,0};

for (int i = 0; i < cells.length; i++) {
cells[i] = 0;

}

All cells start with state 0, except the center
cell has state 1.

cells[cells.length/2] = 1;

}

void generate() {

Compute the next generation.int[] nextgen = new int[cells.length];
for (int i = 1; i < cells.length-1; i++) {

int left = cells[i-1];
int me = cells[i];
int right = cells[i+1];
nextgen[i] = rules(left, me, right);

}

cells = nextgen;
}

Look up a new state from the ruleset.int rules (int a, int b, int c) {
String s = "" + a + b + c;
int index = Integer.parseInt(s,2);
return ruleset[index];

}

}

7.4 Drawing an Elementary CA7.4 Drawing an Elementary CA
What’s missing? Presumably, it’s our intention to display cells and their states in visual form.
As we saw earlier, the standard technique for doing this is to stack the generations one on
top of each other and draw a rectangle that is black (for state 1) or white (for state 0).
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Before we implement this particular visualization, I’d like to point out two things.

One, this visual interpretation of the data is completely literal. It’s useful for demonstrating the
algorithms and results of Wolfram’s elementary CA, but it shouldn’t necessarily drive your own
personal work. It’s rather unlikely that you are building a project that needs precisely this
algorithm with this visual style. So while learning to draw the CA in this way will help you
understand and implement CA systems, this skill should exist only as a foundation.

Second, the fact that we are visualizing a one-dimensional CA with a two-dimensional image
can be confusing. It’s very important to remember that this is not a 2D CA. We are simply
choosing to show a history of all the generations stacked vertically. This technique creates a
two-dimensional image out of many instances of one-dimensional data. But the system itself is
one-dimensional. Later, we are going to look at an actual 2D CA (the Game of Life) and
discuss how we might choose to display such a system.

The good news is that drawing the CA is not particularly difficult. Let’s begin by looking at
how we would render a single generation. Assume we have a Processing window 600 pixels
wide and we want each cell to be a 10x10 square. We therefore have a CA with 60 cells. Of
course, we can calculate this value dynamically.

Assuming we’ve gone through the process of generating the cell states (which we did in the
previous section), we can now loop through the entire array of cells, drawing a black cell when
the state is 1 and a white one when the state is 0.

Figure 7.12 (repeated)

int w = 10;

How many cells fit across given a certain
width

int[] cells = new int[width/w];

for (int i = 0; i < cells.length; i++) {

Black or white fill?if (cells[i] == 1) fill(0);
else fill(255);
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In truth, we could optimize the above by having a white background and only drawing when
there is a black cell (saving us the work of drawing many white squares), but in most cases
this solution is good enough (and necessary for other more sophisticated designs with
varying colors, etc.) Also, if we wanted each cell to be represented as a single pixel, we
would not want to use Processing’s rect() function, but rather access the pixel array
directly.

In the above code, you’ll notice the y-location for each rectangle is 0. If we want the
generations to be drawn next to each other, with each row of cells marking a new
generation, we’ll also need to compute a y-location based on how many iterations of the CA
we’ve executed. We could accomplish this by adding a “generation” variable (an integer) to
our CA class and incrementing it each time through generate(). With these additions, we
can now look at the CA class with all the features for both computing and drawing the CA.

Example 7.1: Wolfram elementary cellular automata

Notice how the x-location is the cell index
times the cell width. In the above scenario,
this would give us cells located at x equals
0, 10, 20, 30, all the way up to 600.

rect(i*w, 0, w, w);

}

class CA {
int[] cells;
int[] ruleset;
int w = 10;

The CA should keep track of how many
generations.

int generation = 0;

CA() {
cells = new int[width/w];
ruleset = {0,1,0,1,1,0,1,0};
cells[cells.length/2] = 1;

}
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Function to compute the next generationvoid generate() {

int[] nextgen = new int[cells.length];
for (int i = 1; i < cells.length-1; i++) {

int left = cells[i-1];
int me = cells[i];
int right = cells[i+1];
nextgen[i] = rules(left, me, right);

}
cells = nextgen;

Increment the generation counter.generation++;

}

int rules(int a, int b, int c) {
String s = "" + a + b + c;
int index = Integer.parseInt(s,2);
return ruleset[index];

}

for (int i = 0; i < cells.length; i++) {
if (cells[i] == 1) fill(0);
else fill(255);

Set the y-location according to the
generation.

rect(i*w, generation*w, w, w);

}
}

Expand Example 7.1 to have the following feature: when the CA reaches the bottom of
the Processing window, the CA starts over with a new, random ruleset.

Exercise 7.1Exercise 7.1

Examine what patterns occur if you initialize the first generation with each cell having a
random state.

Exercise 7.2Exercise 7.2

Visualize the CA in a non-traditional way. Break all the rules you can; don’t feel tied to
using squares on a perfect grid with black and white.

Exercise 7.3Exercise 7.3
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Create a visualization of the CA that scrolls upwards as the generations increase so
that you can view the generations to “infinity.” Hint: instead of keeping track of only
one generation at a time, you’ll need to store a history of generations, always adding
a new one and deleting the oldest one in each frame.

Exercise 7.4Exercise 7.4

7.5 Wolfram Classification7.5 Wolfram Classification
Before we move on to looking at CA in two dimensions, it’s worth taking a brief look at
Wolfram’s classification for cellular automata. As we noted earlier, the vast majority of
elementary CA rulesets produce uninspiring results, while some result in wondrously
complex patterns like those found in nature. Wolfram has divided up the range of outcomes
into four classes:

Class 1: Uniformity.Class 1: Uniformity. Class 1 CAs end up, after some number of generations, with every cell
constant. This is not terribly exciting to watch. Rule 222 (above) is a class 1 CA; if you run it
for enough generations, every cell will eventually become and remain black.

Figure 7.18: Rule 222

Figure 7.19: Rule 190
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Class 2: Repetition.Class 2: Repetition. Like class 1 CAs, class 2 CAs remain stable, but the cell states are not
constant. Rather, they oscillate in some regular pattern back and forth from 0 to 1 to 0 to 1 and
so on. In rule 190 (above), each cell follows the sequence 11101110111011101110.

Class 3: Random.Class 3: Random. Class 3 CAs appear random and have no easily discernible pattern. In fact,
rule 30 (above) is used as a random number generator in Wolfram’s Mathematica software.
Again, this is a moment where we can feel amazed that such a simple system with simple rules
can descend into a chaotic and random pattern.

Class 4: Complexity.Class 4: Complexity. Class 4 CAs can be thought of as a mix between class 2 and class 3.
One can find repetitive, oscillating patterns inside the CA, but where and when these patterns
appear is unpredictable and seemingly random. Class 4 CA exhibit the properties of complex
systems that we described earlier in this chapter and in Chapter 6. If a class 3 CA wowed you,
then a class 4 like Rule 110 above should really blow your mind.

Figure 7.20: Rule 30

Figure 7.21: Rule 110

Exercise: Create a Processing sketch that saves an image for every possible ruleset.
Can you classify them?

Exercise 7.5Exercise 7.5
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7.6 The Game of Life7.6 The Game of Life
The next step we are going to take is to move from a one-dimensional CA to a two-
dimensional one. This will introduce some additional complexity; each cell will have a bigger
neighborhood, but that will open up the door to a range of possible applications. After all,
most of what we do in computer graphics lives in two dimensions, and this chapter will
demonstrate how to apply CA thinking to what we draw in our Processing sketches.

In 1970, Martin Gardner wrote an article in Scientific American that documented
mathematician John Conway’s new “Game of Life,” describing it as “recreational”
mathematics and suggesting that the reader get out a chessboard and some checkers and
“play.” While the Game of Life has become something of a computational cliché (make note
of the myriad projects that display the Game of Life on LEDs, screens, projection surfaces,
etc.), it is still important for us to build it from scratch. For one, it provides a good
opportunity to practice our skills with two-dimensional arrays, object orientation, etc. But
perhaps more importantly, its core principles are tied directly to our core goals—simulating
the natural world with code. Though we may want to avoid simply duplicating it without a
great deal of thought or care, the algorithm and its technical implementation will provide us
with the inspiration and foundation to build simulations that exhibit the characteristics and
behaviors of biological systems of reproduction.

Unlike von Neumann, who created an extraordinarily complex system of states and rules,
Conway wanted to achieve a similar “lifelike” result with the simplest set of rules possible.
Martin Gardner outlined Conway’s goals as follows:

“1. There should be no initial pattern for which there is a simple proof that the population
can grow without limit. 2. There should be initial patterns that apparently do grow
without limit. 3. There should be simple initial patterns that grow and change for a
considerable period of time before coming to an end in three possible ways: fading away
completely (from overcrowding or becoming too sparse), settling into a stable
configuration that remains unchanged thereafter, or entering an oscillating phase in
which they repeat an endless cycle of two or more periods.”

—Martin Gardner, Scientific American (http://www.ibiblio.org/lifepatterns/
october1970.html) 223 (October 1970): 120-123.

The above might sound a bit cryptic, but it essentially describes a Wolfram class 4 CA. The
CA should be patterned but unpredictable over time, eventually settling into a uniform or
oscillating state. In other words, though Conway didn’t use this terminology, it should have
all those properties of a complex system that we keep mentioning.

Let’s look at how the Game of Life works. It won’t take up too much time or space, since
we’ve covered the basics of CA already.
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First, instead of a line of cells, we now have
a two-dimensional matrix of cells. As with
the elementary CA, the possible states are 0
or 1. Only in this case, since we’re talking
about “life," 0 means dead and 1 means
alive.

The cell’s neighborhood has also expanded.
If a neighbor is an adjacent cell, a
neighborhood is now nine cells instead of
three.

With three cells, we had a 3-bit number or
eight possible configurations. With nine
cells, we have 9 bits, or 512 possible
neighborhoods. In most cases, it would be
impractical to define an outcome for every
single possibility. The Game of Life gets
around this problem by defining a set of rules according to general characteristics of the
neighborhood. In other words, is the neighborhood overpopulated with life? Surrounded by
death? Or just right? Here are the rules of life.

1. Death.Death. If a cell is alive (state = 1) it will die (state becomes 0) under the following
circumstances.

◦ Overpopulation:Overpopulation: If the cell has four or more alive neighbors, it dies.

◦ Loneliness:Loneliness: If the cell has one or fewer alive neighbors, it dies.

2. Birth.Birth. If a cell is dead (state = 0) it will come to life (state becomes 1) if it has exactly
three alive neighbors (no more, no less).

3. Stasis.Stasis. In all other cases, the cell state does not change. To be thorough, let’s
describe those scenarios.

◦ Staying Alive:Staying Alive: If a cell is alive and has exactly two or three live neighbors,
it stays alive.

◦ Staying Dead:Staying Dead: If a cell is dead and has anything other than three live
neighbors, it stays dead.

Let’s look at a few examples.

Figure 7.22
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With the elementary CA, we were able to look at all the generations next to each other,
stacked as rows in a 2D grid. With the Game of Life, however, the CA itself is in two
dimensions. We could try creating an elaborate 3D visualization of the results and stack all
the generations in a cube structure (and in fact, you might want to try this as an exercise).
Nevertheless, the typical way the Game of Life is displayed is to treat each generation as a
single frame in an animation. So instead of viewing all the generations at once, we see them
one at a time, and the result resembles rapidly growing bacteria in a petri dish.

One of the exciting aspects of the Game of Life is that there are initial patterns that yield
intriguing results. For example, some remain static and never change.

There are patterns that oscillate back and forth between two states.

Figure 7.23

Figure 7.24

Figure 7.25
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And there are also patterns that from generation to generation move about the grid. (It’s
important to note that the cells themselves aren’t actually moving, although we see the
appearance of motion in the result as the cells turn on and off.)

If you are interested in these patterns, there are several good “out of the box” Game of Life
demonstrations online that allow you to configure the CA’s initial state and watch it run at
varying speeds. Two examples you might want to examine are:

• Exploring Emergence (http://llk.media.mit.edu/projects/emergence/) by Mitchel
Resnick and Brian Silverman, Lifelong Kindergarten Group, MIT Media Laboratory

• Conway’s Game of Life (http://stevenklise.github.com/ConwaysGameOfLife) by
Steven Klise (uses Processing.js!)

For the example we’ll build from scratch in the next section, it will be easier to simply
randomly set the states for each cell.

Figure 7.26

7.7 Programming the Game of Life7.7 Programming the Game of Life
Now we just need to extend our code from the Wolfram CA to two dimensions. We used a
one-dimensional array to store the list of cell states before, and for the Game of Life, we can
use a two-dimensional array (http://www.processing.org/learning/2darray/).

We’ll begin by initializing each cell of the board with a random state: 0 or 1.

int[][] board = new int[columns][rows];

for (int x = 0; x < columns; x++) {
for (int y = 0; y < rows; y++) {

Initialize each cell with a 0 or 1.current[x][y] = int(random(2));

}
}
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And to compute the next generation, just as before, we need a fresh 2D array to write to as
we analyze each cell’s neighborhood and calculate a new state.

OK. Before we can sort out how to actually
calculate the new state, we need to know
how we can reference each cell’s neighbor.
In the case of the 1D CA, this was simple: if
a cell index was i, its neighbors were i-1
and i+1. Here each cell doesn’t have a
single index, but rather a column and row
index: x,y. As shown in Figure 7.27, we can
see that its neighbors are: (x-1,y-1) (x,y-1),
(x+1,y-2), (x-1,y), (x+1,y), (x-1,y+1), (x,y+1), and
(x+1,y+1).

All of the Game of Life rules operate by
knowing how many neighbors are alive. So
if we create a neighbor counter variable
and increment it each time we find a
neighbor with a state of 1, we’ll have the
total of live neighbors.

int[][] next = new int[columns][rows];

for (int x = 0; x < columns; x++) {
for (int y = 0; y < rows; y++) {

We need a new state for each cell.next[x][y] = _______________?;

}
}

Figure 7.27

int neighbors = 0;

Top row of neighborsif (board[x-1][y-1] == 1) neighbors++;
if (board[x ][y-1] == 1) neighbors++;
if (board[x+1][y-1] == 1) neighbors++;

Middle row of neighbors (note we don’t
count self)

if (board[x-1][y] == 1) neighbors++;
if (board[x+1][y] == 1) neighbors++;

Bottom row of neighborsif (board[x-1][y+1] == 1) neighbors++;
if (board[x ][y+1] == 1) neighbors++;
if (board[x+1][y+1] == 1) neighbors++;
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And again, just as with the Wolfram CA, we find ourselves in a situation where the above is a
useful and clear way to write the code for teaching purposes, allowing us to see every step
(each time we find a neighbor with a state of one, we increase a counter). Nevertheless, it’s a
bit silly to say, “If the cell state equals one, add one to a counter” when we could just say,
“Add the cell state to a counter.” After all, if the state is only a 0 or 1, the sum of all the
neighbors’ states will yield the total number of live cells. Since the neighbors are arranged in a
mini 3x3 grid, we can add them all up with another loop.

Of course, we’ve made a mistake in the code above. In the Game of Life, the cell itself does
not count as one of the neighbors. We could use a conditional to skip adding the state when
both i and j equal 0, but another option would be to just subtract the cell state once we’ve
finished the loop.

Finally, once we know the total number of live neighbors, we can decide what the cell’s new
state should be according to the rules: birth, death, or stasis.

Putting this all together, we have:

for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {

Add up all the neighbors’ states.neighbors += board[x+i][y+j];

}
}

Whoops! Subtract the cell’s state, which we
don’t want in the total.

neighbors -= board[x][y];

If it is alive and has less than 2 live
neighbors, it dies from loneliness.

if ((board[x][y] == 1) && (neighbors < 2)) {
next[x][y] = 0;

}

If it is alive and has more than 3 live
neighbors, it dies from overpopulation.

else if ((board[x][y] == 1) && (neighbors > 3)) {
next[x][y] = 0;

}

If it is dead and has exactly 3 live
neighbors, it is born!

else if ((board[x][y] == 0) && (neighbors == 3)) {
next[x][y] = 1;

}

In all other cases, its state remains the
same.

else {
next[x][y] = board[x][y];

}

The next boardint[][] next = new int[columns][rows];
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Finally, once the next generation is calculated, we can employ the same method we used to
draw the Wolfram CA—a square for each spot, white for off, black for on.

Example 7.2: Game of Life

Looping but skipping the edge cellsfor (int x = 1; x < columns-1; x++) {
for (int y = 1; y < rows-1; y++) {

Add up all the neighbor states to calculate
the number of live neighbors.

int neighbors = 0;

for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {

neighbors += board[x+i][y+j];
}

}

Correct by subtracting the cell state itself.neighbors -= board[x][y];

The rules of life!
if ((board[x][y] == 1) && (neighbors < 2)) next[x][y] = 0;
else if ((board[x][y] == 1) && (neighbors > 3)) next[x][y] = 0;
else if ((board[x][y] == 0) && (neighbors == 3)) next[x][y] = 1;
else next[x][y] = board[x][y];

}
}

The 2D array “next” is now the current
board.

board = next;

for ( int i = 0; i < columns;i++) {
for ( int j = 0; j < rows;j++) {

Black when state = 1if ((board[i][j] == 1)) fill(0);
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White when state = 0else fill(255);

stroke(0);

rect(i*w, j*w, w, w);
}

}

Create a Game of Life simulation that allows you to manually configure the grid by
drawing or with specific known patterns.

Exercise 7.6Exercise 7.6

Implement “wrap-around” for the Game of Life so that cells on the edges have
neighbors on the opposite side of the grid.

Exercise 7.7Exercise 7.7

While the above solution (Example 7.2) is convenient, it is not particularly memory-
efficient. It creates a new 2D array for every frame of animation! This matters very little
for a Processing desktop application, but if you were implementing the Game of Life on
a microcontroller or mobile device, you’d want to be more careful. One solution is to
have only two arrays and constantly swap them, writing the next set of states into
whichever one isn’t the current array. Implement this particular solution.

Exercise 7.8Exercise 7.8

7.8 Object-Oriented Cells7.8 Object-Oriented Cells
Over the course of the previous six chapters, we’ve slowly built examples of systems of
objects with properties that move about the screen. And in this chapter, although we’ve been
talking about a “cell” as if it were an object, we actually haven’t been using any object
orientation in our code (other than a class to describe the CA system as a whole). This has
worked because a cell is such an enormously simple object (a single bit). However, in a
moment, we are going to discuss some ideas for further developing CA systems, many of
which involve keeping track of multiple properties for each cell. For example, what if a cell
needed to remember its last ten states? Or what if we wanted to apply some of our motion
and physics thinking to a CA and have the cells move about the window, dynamically
changing their neighbors from frame to frame?
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To accomplish any of these ideas (and more), it would be helpful to see how we might treat
a cell as an object with multiple properties, rather than as a single 0 or 1. To show this, let’s
just recreate the Game of Life simulation. Only instead of:

Let’s have:

where Cell is a class we will write. What are the properties of a Cell object? In our Game
of Life example, each cell has a location and size, as well as a state.

In the non-OOP version, we used a separate 2D array to keep track of the states for the
current and next generation. By making a cell an object, however, each cell could keep
track of both states. In this case, we’ll think of the cell as remembering its previous state (for
when new states need to be computed).

This allows us to visualize more information about what the state is doing. For example, we
could choose to color a cell differently if its state has changed. For example:

Example 7.3: Game of Life OOP

int[][] board;

Cell[][] board;

class Cell {

Location and sizefloat x, y;
float w;

What is the cell’s state?int state;

What was its previous state?int previous;

void display() {
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Not much else about the code (at least for our purposes here) has to change. The neighbors
can still be counted the same way; the difference is that we now need to refer to the object’s
state variables as we loop through the 2D array.

If the cell is born, color it blue!if (previous == 0 && state == 1) fill(0,0,255);

else if (state == 1) fill(0);

else if (previous == 1 && state == 0) fill(255,0,0);

else fill(255);

rect(x, y, w, w);
}

If the cell dies, color it red!

for (int x = 1; x < columns-1; x++) {
for (int y = 1; y < rows-1; y++) {

int neighbors = 0;
for (int i = -1; i <= 1; i++) {

for (int j = -1; j <= 1; j++) {

Use the previous state when tracking
neighbors.

neighbors += board[x+i][y+j].previous;

}
}
neighbors -= board[x][y].previous;

We are calling a function newState() to
assign a new state to each cell.

if ((board[x][y].state == 1) && (neighbors < 2)) board[x][y].newState(0);
else if ((board[x][y].state == 1) && (neighbors > 3)) board[x][y].newState(0);
else if ((board[x][y].state == 0) && (neighbors == 3)) board[x][y].newState(1);

else do nothing!}

}

7.9 Variations of Traditional CA7.9 Variations of Traditional CA
Now that we have covered the basic concepts, algorithms, and programming strategies
behind the most famous 1D and 2D cellular automata, it’s time to think about how you might
take this foundation of code and build on it, developing creative applications of CAs in your
own work. In this section, we’ll talk through some ideas for expanding the features of the CA
examples. Example answers to each of these exercises can be found on the book website.

1) Non-rectangular Grids1) Non-rectangular Grids. There’s no particular reason why you should limit yourself to having
your cells on a rectangular grid. What happens if you design a CA with another type of shape?
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2) Probabilistic2) Probabilistic. The rules of a CA don’t necessarily have to define an exact outcome.

3) Continuous3) Continuous. We’ve looked at examples where the cell’s state can only be a 1 or a 0. But
what if the cell’s state was a floating point number between 0 and 1?

4) Image Processing4) Image Processing. We briefly touched on this earlier, but many image-processing
algorithms operate on CA-like rules. Blurring an image is creating a new pixel out of the
average of a neighborhood of pixels. Simulations of ink dispersing on paper or water
rippling over an image can be achieved with CA rules.

Create a CA using a grid of hexagons (as below), each with six neighbors.

Exercise 7.9Exercise 7.9

Rewrite the Game of Life rules as follows:

Overpopulation: If the cell has four or more alive neighbors, it has a 80% chance of
dying.
Loneliness: If the cell has one or fewer alive neighbors, it has a 60% chance of dying.
Etc.

Exercise 7.10Exercise 7.10

Adapt Wolfram elementary CA to have the state be a float. You could define rules
such as, “If the state is greater than 0.5” or “…less than 0.2.”

Exercise 7.11Exercise 7.11
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5) Historical5) Historical. In the Game of Life object-oriented example, we used two variables to keep
track of its state: current and previous. What if you use an array to keep track of a cell’s state
history? This relates to the idea of a “complex adaptive system,” one that has the ability to
adapt and change its rules over time by learning from its history. We’ll see an example of this
in Chapter 10: Neural Networks.

6) Moving cells6) Moving cells. In these basic examples, cells have a fixed position on a grid, but you could
build a CA with cells that have no fixed position and instead move about the screen.

7) Nesting7) Nesting. Another feature of complex systems is that they can be nested. Our world tends to
work this way: a city is a complex system of people, a person is a complex system of organs,
an organ is a complex system of cells, and so on and so forth.

Create a CA in which a pixel is a cell and a color is its state.

Exercise 7.12Exercise 7.12

Visualize the Game of Life by coloring each cell according to how long it’s been alive or
dead. Can you also use the cell’s history to inform the rules?

Exercise 7.13Exercise 7.13

Use CA rules in a flocking system. What if each boid had a state (that perhaps informs
its steering behaviors) and its neighborhood changed from frame to frame as it moved
closer to or further from other boids?

Exercise 7.14Exercise 7.14

Design a CA in which each cell itself is a smaller CA or a system of boids.

Exercise 7.15Exercise 7.15
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The Ecosystem ProjectThe Ecosystem Project

Step 7 Exercise:

Incorporate cellular automata into your ecosystem. Some possibilities:

• Give each creature a state. How can that state drive their behavior?
Taking inspiration from CA, how can that state change over time
according to its neighbors’ states?

• Consider the ecosystem’s world to be a CA. The creatures move from
tile to tile. Each tile has a state—is it land? water? food?

• Use a CA to generate a pattern for the design of a creature in your
ecosystem.
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Chapter 8. FractalsChapter 8. Fractals
“Pathological monsters! cried the terrified mathematician
Every one of them a splinter in my eye
I hate the Peano Space and the Koch Curve
I fear the Cantor Ternary Set
The Sierpinski Gasket makes me wanna cry
And a million miles away a butterfly flapped its wings
On a cold November day a man named Benoit Mandelbrot was born”

— Jonathan Coulton, lyrics from “Mandelbrot Set”

Once upon a time, I took a course in high school called “Geometry.” Perhaps you did too. You
learned about shapes in one dimension, two dimensions, and maybe even three. What is the
circumference of a circle? The area of a rectangle? The distance between a point and a line?
Come to think of it, we’ve been studying geometry all along in this book, using vectors to
describe the motion of bodies in Cartesian space. This sort of geometry is generally referred
to as Euclidean geometry, after the Greek mathematician Euclid.

Figure 8.1
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For us nature coders, we have to ask the question: Can we describe our world with
Euclidean geometry? The LCD screen I’m staring at right now sure looks like a rectangle.
And the plum I ate this morning is circular. But what if I were to look further, and consider
the trees that line the street, the leaves that hang off those trees, the lightning from last
night’s thunderstorm, the cauliflower I ate for dinner, the blood vessels in my body, and the
mountains and coastlines that cover land beyond New York City? Most of the stuff you find
in nature cannot be described by the idealized geometrical forms of Euclidean geometry. So
if we want to start building computational designs with patterns beyond the simple shapes
ellipse(), rect(), and line(), it’s time for us to learn about the concepts behind and
techniques for simulating the geometry of nature: fractals.

8.1 What Is a Fractal?8.1 What Is a Fractal?
The term fractalfractal (from the Latin fractus, meaning “broken”) was coined by the
mathematician Benoit Mandelbrot in 1975. In his seminal work “The Fractal Geometry of
Nature,” he defines a fractal as “a rough or fragmented geometric shape that can be split
into parts, each of which is (at least approximately) a reduced-size copy of the whole.”

Let’s illustrate this definition with two simple examples. First, let’s think about a tree
branching structure (for which we’ll write the code later):

Figure 8.2: One of the most well-known and recognizable fractal patterns is named for Benoit
Mandelbrot himself. Generating the Mandelbrot set involves testing the properties of complex
numbers after they are passed through an iterative function. Do they tend to infinity? Do they stay
bounded? While a fascinating mathematical discussion, this “escape-time” algorithm is a less
practical method for generating fractals than the recursive techniques we’ll examine in this chapter.
However, an example for generating the Mandelbrot set is included in the code examples.
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Notice how the tree in Figure 8.3 has a single root with two branches connected at its end.
Each one of those branches has two branches at its end and those branches have two
branches and so on and so forth. What if we were to pluck one branch from the tree and
examine it on its own?

Looking closely at a given section of the tree, we find that the shape of this branch resembles
the tree itself. This is known as self-similarityself-similarity; as Mandelbrot stated, each part is a “reduced-
size copy of the whole.”

The above tree is perfectly symmetrical and the parts are, in fact, exact replicas of the whole.
However, fractals do not have to be perfectly self-similar. Let’s take a look at a graph of the
stock market (adapted from actual Apple stock data).

And one more.

Figure 8.3

Figure 8.4

Figure 8.5: Graph A
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In these graphs, the x-axis is time and the y-axis is the stock’s value. It’s not an accident that
I omitted the labels, however. Graphs of stock market data are examples of fractals because
they look the same at any scale. Are these graphs of the stock over one year? One day?
One hour? There’s no way for you to know without a label. (Incidentally, graph A shows six
months’ worth of data and graph B zooms into a tiny part of graph A, showing six hours.)

This is an example of a stochasticstochastic fractal, meaning that it is built out of probabilities and
randomness. Unlike the deterministic tree-branching structure, it is statistically self-similar.
As we go through the examples in this chapter, we will look at both deterministic and
stochastic techniques for generating fractal patterns.

While self-similarity is a key trait of fractals, it’s important to realize that self-similarity alone
does not make a fractal. After all, a line is self-similar. A line looks the same at any scale,
and can be thought of as comprising lots of little lines. But it’s not a fractal. Fractals are
characterized by having a fine structure at small scales (keep zooming into the stock market
graph and you’ll continue to find fluctuations) and cannot be described with Euclidean
geometry. If you can say “It’s a line!” then it’s not a fractal.

Another fundamental component of fractal geometry is recursion. Fractals all have a
recursive definition. We’ll start with recursion before developing techniques and code
examples for building fractal patterns in Processing.

Figure 8.6: Graph B

Figure 8.7

8.2 Recursion8.2 Recursion
Let’s begin our discussion of recursion by examining the first appearance of fractals in
modern mathematics. In 1883, German mathematician George Cantor developed simple
rules to generate an infinite set:
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There is a feedback loop at work here. Take a single line and break it into two. Then return to
those two lines and apply the same rule, breaking each line into two, and now we’re left with
four. Then return to those four lines and apply the rule. Now you’ve got eight. This process is
known as recursionrecursion: the repeated application of a rule to successive results. Cantor was
interested in what happens when you apply these rules an infinite number of times. We,
however, are working in a finite pixel space and can mostly ignore the questions and
paradoxes that arise from infinite recursion. We will instead construct our code in such a way
that we do not apply the rules forever (which would cause our program to freeze).

Before we implement the Cantor set, let’s take a look at what it means to have recursion in
code. Here’s something we’re used to doing all the time—calling a function inside another
function.

What would happen if we called the function we are defining within the function itself? Can
someFunction() call someFunction()?

In fact, this is not only allowed, but it’s quite common (and essential to how we will implement
the Cantor set). Functions that call themselves are recursive and good for solving certain
problems. For example, certain mathematical calculations are implemented recursively; the
most common example is factorial.

The factorial of any number n, usually written as n!, is defined as:

n! = n * n – 1 * . . . . * 3 * 2 * 1
0! = 1

Here we’ll write a function in Processing that uses a for loop to calculate factorial:

Figure 8.8: The Cantor set

void someFunction() {

Calling the function background() in the
definition of someFunction()

background(0);

}

void someFunction() {
someFunction();

}

int factorial(int n) {
int f = 1;
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Upon close examination, you’ll notice something interesting about how factorial works. Let’s
look at 4! and 3!

4! = 4 * 3 * 2 * 1
3! = 3 * 2 * 1

therefore. . .therefore. . .

4! = 4 * 3!

In more general terms, for any positive integer n:

n! = n * (n-1)!
1! = 1

Written out:

The factorial of n is defined as n times the factorial of n-1.

The definition of factorialfactorial includes factorialfactorial?! It’s kind of like defining “tired" as “the feeling
you get when you are tired.” This concept of self-reference in functions is an example of
recursion. And we can use it to write a factorial function that calls itself.

It may look crazy, but it works. Here are the steps that happen when factorial(4) is
called.

Using a regular loop to compute factorialfor (int i = 0; i < n; i++) {
f = f * (i+1);

}

return f;
}

int factorial(int n) {
if (n == 1) {

return 1;
} else {

return n * factorial(n-1);
}

}
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We can apply the same principle to graphics with interesting results, as we will see in many
examples throughout this chapter. Take a look at this recursive function.

Example 8.1: Recursive Circles I

drawCircle() draws an ellipse based on a set of parameters that it receives as arguments. It
then calls itself with those same parameters, adjusting them slightly. The result is a series of
circles, each of which is drawn inside the previous circle.

Figure 8.9

void drawCircle(int x, int y, float radius) {
ellipse(x, y, radius, radius);
if(radius > 2) {

radius *= 0.75f;

The drawCircle() function is calling itself
recursively.

drawCircle(x, y, radius);

}
}
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Notice that the above function only recursively calls itself if the radius is greater than 2. This
is a crucial point. As with iteration, all recursive functions must have an exit condition! You
likely are already aware that all for and while loops must include a boolean expression
that eventually evaluates to false, thus exiting the loop. Without one, the program would
crash, caught inside of an infinite loop. The same can be said about recursion. If a recursive
function calls itself forever and ever, you’ll be most likely be treated to a nice frozen screen.

This circles example is rather trivial; it could easily be achieved through simple iteration.
However, for scenarios in which a function calls itself more than once, recursion becomes
wonderfully elegant.

Let’s make drawCircle() a bit more complex. For every circle displayed, draw a circle half
its size to the left and right of that circle.

Example 8.2: Recursion twice

void setup() {
size(400,400);
smooth();

}

void draw() {
background(255);
drawCircle(width/2,height/2,200);

}

void drawCircle(float x, float y, float radius) {
stroke(0);
noFill();
ellipse(x, y, radius, radius);
if(radius > 2) {

drawCircle() calls itself twice, creating a
branching effect. For every circle, a
smaller circle is drawn to the left and the
right.

drawCircle(x + radius/2, y, radius/2);
drawCircle(x - radius/2, y, radius/2);

}
}
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With just a little more code, we could also add a circle above and below each circle.

Example 8.3: Recursion four times

Try reproducing this sketch with iteration instead of recursion—I dare you!

void drawCircle(float x, float y, float radius) {
ellipse(x, y, radius, radius);
if(radius > 8) {

drawCircle(x + radius/2, y, radius/2);
drawCircle(x - radius/2, y, radius/2);
drawCircle(x, y + radius/2, radius/2);
drawCircle(x, y - radius/2, radius/2);

}
}

8.3 The Cantor Set with a Recursive Function8.3 The Cantor Set with a Recursive Function
Now we’re ready to visualize the Cantor set in Processing using a recursive function. Where
do we begin? Well, we know that the Cantor set begins with a line. So let’s start there and
write a function that draws a line.

The above cantor() function draws a line that starts at pixel coordinate (x,y) with a length of
len. (The line is drawn horizontally here, but this is an arbitrary decision.) So if we called that
function, saying:

we’d get the following:

void cantor(float x, float y, float len) {
line(x,y,x+len,y);

}

cantor(10, 20, width-20);
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Now, the Cantor rule tells us to erase the
middle third of that line, which leaves us
with two lines, one from the beginning of
the line to the one-third mark, and one from
the two-thirds mark to the end of the line.

We can now add two more lines of code to
draw the second pair of lines, moving the
y-location down a bunch of pixels so that
we can see the result below the original
line.

While this is a fine start, such a manual approach of calling line() for each line is not what
we want. It will get unwieldy very quickly, as we’d need four, then eight, then sixteen calls to
line(). Yes, a for loop is our usual way around such a problem, but give that a try and
you’ll see that working out the math for each iteration quickly proves inordinately
complicated. Here is where recursion comes and rescues us.

Take a look at where we draw that first line from the start to the one-third mark.

Instead of calling the line() function directly, we can simply call the cantor() function
itself. After all, what does the cantor() function do? It draws a line at an (x,y) location with a
given length! And so:

Figure 8.10

Figure 8.11

void cantor(float x, float y, float len) {
line(x,y,x+len,y);

y += 20;

From start to 1/3rdline(x,y,x+len/3,y);

From 2/3rd to endline(x+len*2/3,y,x+len,y);

}

Figure 8.12

line(x,y,x+len/3,y);

line(x,y,x+len/3,y); becomes -------> cantor(x,y,len/3);
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And for the second line:

Leaving us with:

And since the cantor() function is called recursively, the same rule will be applied to the next
lines and to the next and to the next as cantor() calls itself again and again! Now, don’t go
and run this code yet. We’re missing that crucial element: an exit condition. We’ll want to
make sure we stop at some point—for example, if the length of the line ever is less than 1
pixel.

Example 8.4: Cantor set

line(x+len*2/3,y,x+len,y); becomes -------> cantor(x+len*2/3,y,len/3);

void cantor(float x, float y, float len) {
line(x,y,x+len,y);

y += 20;

cantor(x,y,len/3);
cantor(x+len*2/3,y,len/3);

}

void cantor(float x, float y, float len) {

Stop at 1 pixel!if (len >= 1) {

line(x,y,x+len,y);
y += 20;
cantor(x,y,len/3);
cantor(x+len*2/3,y,len/3);

}
}
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Exercise: Using drawCircle() and the Cantor set as models, generate your own
pattern with recursion. Here is a screenshot of one that uses lines.

Exercise 8.1Exercise 8.1

8.4 The Koch Curve and the ArrayList Technique8.4 The Koch Curve and the ArrayList Technique
Writing a function that recursively calls itself is one technique for generating a fractal
pattern on screen. However, what if you wanted the lines in the above Cantor set to exist as
individual objects that could be moved independently? The recursive function is simple and
elegant, but it does not allow you to do much besides simply generating the pattern itself.
However, there is another way we can apply recursion in combination with an ArrayList
that will allow us to not only generate a fractal pattern, but keep track of all its individual
parts as objects.

To demonstrate this technique, let’s look at another famous fractal pattern, discovered in
1904 by Swedish mathematician Helge von Koch. Here are the rules. (Note that it starts the
same way as the Cantor set, with a single line.)
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The result looks like:

The “Monster” CurveThe “Monster” Curve

The Koch curve and other fractal patterns are often called “mathematical monsters.”
This is due to an odd paradox that emerges when you apply the recursive definition an
infinite number of times. If the length of the original starting line is one, the first
iteration of the Koch curve will yield a line of length four-thirds (each segment is one-
third the length of the starting line). Do it again and you get a length of sixteen-ninths.
As you iterate towards infinity, the length of the Koch curve approaches infinity. Yet it
fits in the tiny finite space provided right here on this paper (or screen)!

Since we are working in the Processing land of finite pixels, this theoretical paradox
won’t be a factor for us. We’ll have to limit the number of times we recursively apply
the Koch rules so that our program won’t run out of memory or crash.

We could proceed in the same manner as we did with the Cantor set, and write a recursive
function that iteratively applies the Koch rules over and over. Nevertheless, we are going to
tackle this problem in a different manner by treating each segment of the Koch curve as an
individual object. This will open up some design possibilities. For example, if each segment is

Figure 8.13

Figure 8.14
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an object, we could allow each segment to move independently from its original location
and participate in a physics simulation. In addition, we could use a random color, line
thickness, etc. to display each segment differently.

In order to accomplish our goal of treating each segment as an individual object, we must
first decide what this object should be in the first place. What data should it store? What
functions should it have?

The Koch curve is a series of connected lines, and so we will think of each segment as a
“KochLine.” Each Koch line has a start point (“a”) and an end point (“b”). These points are
PVector objects, and the line is drawn with Processing’s line() function.

Now that we have our KochLine class, we can get started on the main program. We’ll need
a data structure to keep track of what will eventually become many KochLine objects, and
an ArrayList (see Chapter 4 for a review of ArrayLists) will do just fine.

In setup(), we’ll want to create the ArrayList and add the first line segment to it, a line
that stretches from 0 to the width of the sketch.

class KochLine {

A line between two points: start and endPVector start;
PVector end;

KochLine(PVector a, PVector b) {
start = a.get();
end = b.get();

}

void display() {
stroke(0);

Draw the line from PVector start to end.line(start.x, start.y, end.x, end.y);

}
}

ArrayList<KochLine> lines;

void setup() {
size(600, 300);

Create the ArrayList.lines = new ArrayList<KochLine>();

Left side of windowPVector start = new PVector(0, 200);

Right side of windowPVector end = new PVector(width, 200);
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Then in draw(), all KochLine objects (just one right now) can be displayed in a loop.

This is our foundation. Let’s review what we have so far:

• KochLine class:KochLine class: A class to keep track of a line from point A to B.

• ArrayList:ArrayList: A list of all KochLine objects.

With the above elements, how and where do we apply Koch rules and principles of recursion?

Remember the Game of Life cellular automata? In that simulation, we always kept track of two
generations: current and next. When we were finished computing the next generation, next
became current and we moved on to computing the new next generation.  We are going to
apply a similar technique here. We have an ArrayList that keeps track of the current set of
KochLine objects (at the start of the program, there is only one). We will need a second
ArrayList (let’s call it “next”) where we will place all the new KochLine objects that are
generated from applying the Koch rules. For every KochLine object in the current ArrayList,
four new KochLine objects are added to the next ArrayList. When we’re done, the next
ArrayList becomes the current one.

The first KochLine objectlines.add(new KochLine(start, end));

}

void draw() {
background(255);
for (KochLine l : lines) {

l.display();
}

}

Figure 8.15
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Here’s how the code will look:

By calling generate() over and over again (for example, each time the mouse is pressed),
we recursively apply the Koch curve rules to the existing set of KochLine objects.  Of
course, the above omits the real “work” here, which is figuring out those rules. How do we
break one line segment into four as described by the rules? While this can be accomplished
with some simple arithmetic and trigonometry, since our KochLine object uses PVector, this
is a nice opportunity for us to practice our vector math. Let’s establish how many points we
need to compute for each KochLine object.

As you can see from the above figure, we need five points (a, b, c, d, and e) to generate the
new KochLine objects and make the new line segments (ab, cb, cd, and de).

Where do we get these points? Since we have a KochLine object, why not ask the
KochLine object to compute all these points for us?

void generate() {

Create the next ArrayList...ArrayList next = new ArrayList<KochLine>();

...for every current line.for (KochLine l : lines) {

Add four new lines. (We need to figure out
how to compute the locations of these
lines!)

next.add(new KochLine(???,???));
next.add(new KochLine(???,???));
next.add(new KochLine(???,???));
next.add(new KochLine(???,???));

}

The new ArrayList is now the one we care
about!

lines = next;

}

Figure 8.16

next.add(new KochLine(a,b));
next.add(new KochLine(b,c));
next.add(new KochLine(c,d));
next.add(new KochLine(d,e));

void generate() {
ArrayList next = new ArrayList<KochLine>();
for (KochLine l : lines) {
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Now we just need to write five new functions in the KochLine class, each one returning a
PVector according to Figure 8.16 (see page 370) above. Let’s knock off kochA() and kochE()
first, which are simply the start and end points of the original line.

Now let’s move on to points B and D. B is one-third of the way along the line segment and D is
two-thirds. Here we can make a PVector that points from start to end and shrink it to one-third
the length for B and two-thirds the length for D to find these points.

The KochLine object has five functions,
each of which return a PVector according to
the Koch rules.

PVector a = l.kochA();
PVector b = l.kochB();
PVector c = l.kochC();
PVector d = l.kochD();
PVector e = l.kochE();

next.add(new KochLine(a, b));
next.add(new KochLine(b, c));
next.add(new KochLine(c, d));
next.add(new KochLine(d, e));

}

lines = next;
}

PVector kochA() {

Note the use of get(), which returns a copy
of the PVector. As was noted in Chapter 6,
section 14, we want to avoid making copies
whenever possible, but here we will need a
new PVector in case we want the segments
to move independently of each other.

return start.get();

}

PVector kochE() {
return end.get();

}

Figure 8.17

PVector kochB() {

PVector from start to endPVector v = PVector.sub(end, start);

One-third the lengthv.div(3);
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The last point, C, is the most difficult one to find. However, if you recall that the angles of an
equilateral triangle are all sixty degrees, this makes it a little bit easier. If we know how to
find point B with a PVector one-third the length of the line, what if we were to rotate that
same PVector sixty degrees and move along that vector from point B? We’d be at point C!

Putting it all together, if we call generate() five times in setup(), we’ll see the following
result.

Add that PVector to the beginning of the
line to find the new point.

v.add(start);

return v;
}

PVector kochD() {
PVector v = PVector.sub(end, start);

Same thing here, only we need to move
two-thirds along the line instead of one-
third.

v.mult(2/3.0);

v.add(start);
return v;

}

Figure 8.18

PVector kochC() {

Start at the beginning.PVector a = start.get();

PVector v = PVector.sub(end, start);

Move 1/3rd of the way to point B.v.div(3);

a.add(v);

Rotate “above” the line 60 degrees.v.rotate(-radians(60));

Move along that vector to point C.a.add(v);

return a;
}
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Example 8.5: Koch curve

ArrayList<KochLine> lines;

void setup() {
size(600, 300);
background(255);
lines = new ArrayList<KochLine>();
PVector start = new PVector(0, 200);
PVector end = new PVector(width, 200);
lines.add(new KochLine(start, end));

Arbitrarily apply the Koch rules five times.for (int i = 0; i < 5; i++) {

generate();
}

}

Draw the Koch snowflake (or some other
variation of the Koch curve).

Exercise 8.2Exercise 8.2
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Try animating the Koch curve. For example, can you draw it from left to right? Can you
vary the visual design of the line segments? Can you move the line segments using
techniques from earlier chapters? What if each line segment were made into a spring
(toxiclibs) or joint (Box2D)?

Exercise 8.3Exercise 8.3

Rewrite the Cantor set example using objects and an ArrayList.

Exercise 8.4Exercise 8.4

Draw the Sierpiński triangle (as seen in Wolfram elementary CA) using recursion.

Exercise 8.5Exercise 8.5

8.5 Trees8.5 Trees
The fractals we have examined in this chapter so far are deterministic, meaning they have
no randomness and will always produce the identical outcome each time they are run. They
are excellent demonstrations of classic fractals and the programming techniques behind
drawing them, but are too precise to feel natural. In this next part of the chapter, I want to
examine some techniques behind generating a stochastic (or non-deterministic) fractal. The
example we’ll use is a branching tree. Let’s first walk through the steps to create a
deterministic version. Here are our production rules:
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Again, we have a nice fractal with a recursive definition: A branch is a line with two branches
connected to it.

The part that is a bit more difficult than our previous fractals lies in the use of the word rotate
in the fractal’s rules. Each new branch must rotate relative to the previous branch, which is
rotated relative to all its previous branches. Luckily for us, Processing has a mechanism to
keep track of rotations for us—the transformation matrixtransformation matrix. If you aren’t familiar with the
functions pushMatrix() and popMatrix(), I suggest you read the online Processing tutorial
2D Transformations (http://processing.org/learning/transform2d/), which will cover the
concepts you’ll need for this particular example.

Let’s begin by drawing a single branch, the trunk of the tree. Since we are going to involve the
rotate() function, we’ll need to make sure we are continuously translating along the
branches while we draw the tree. And since the root starts at the bottom of the window (see
above), the first step requires translating to that spot:

Figure 8.19

translate(width/2,height);
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…followed by drawing a line upwards
(Figure 8.20):

Once we’ve finished the root, we just need to translate to the end and rotate in order to
draw the next branch. (Eventually, we’re going to need to package up what we’re doing
right now into a recursive function, but let’s sort out the steps first.)

Remember, when we rotate in Processing, we are always rotating around the point of origin,
so here the point of origin must always be translated to the end of our current branch.

Now that we have a branch going to the right, we need one going to the left. We can use
pushMatrix() to save the transformation state before we rotate, letting us call
popMatrix() to restore that state and draw the branch to the left. Let’s look at all the code
together.

Figure 8.20

line(0,0,0,-100);

Figure 8.21

translate(0,-100);
rotate(PI/6);
line(0,0,0,-100);
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If you think of each call to the function line() as a “branch,” you can see from the code
above that we have implemented our definition of branching as a line that has two lines
connected to its end. We could keep adding more and more calls to line() for more and
more branches, but just as with the Cantor set and Koch curve, our code would become
incredibly complicated and unwieldy. Instead, we can use the above logic as our foundation
for writing a recursive function, replacing the direct calls to line() with our own function
called branch(). Let’s take a look.

Example 8.6: Recursive tree

Figure 8.22 Figure 8.23

translate(width/2,height);

The rootline(0,0,0,-100);

translate(0,-100);

pushMatrix();
rotate(PI/6);

Branch to the rightline(0,0,0,-100);

popMatrix();

rotate(-PI/6);

Branch to the leftline(0,0,0,-100);

void branch() {

Draw the branch itself.line(0, 0, 0, -100);

Translate to the end.translate(0, -100);

pushMatrix();
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Notice how in the above code we use pushMatrix() and popMatrix() around each
subsequent call to branch(). This is one of those elegant code solutions that feels almost
like magic. Each call to branch() takes a moment to remember the location of that
particular branch. If you turn yourself into Processing for a moment and try to follow the
recursive function with pencil and paper, you’ll notice that it draws all of the branches to the
right first. When it gets to the end, popMatrix() will pop us back along all of the branches
we’ve drawn and start sending branches out to the left.

You may have noticed that the recursive function we just wrote would not actually draw the
above tree. After all, it has no exit condition and would get stuck in infinite recursive calls to
itself. You’ll also probably notice that the branches of the tree get shorter at each level.
Let’s look at how we can shrink the length of the lines as the tree is drawn, and stop
branching once the lines have become too short.

Rotate to the right and branch again.rotate(PI/6);

branch();
popMatrix();

pushMatrix();

Rotate to the left and branch again.rotate(-PI/6);

branch();
popMatrix();

}

Emulate the Processing code in Example 8.6 (see page 377) and number the
branches in the above diagram in the order that Processing would actually draw each
one.

Exercise 8.6Exercise 8.6
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We’ve also included a variable for theta that allows us, when writing the rest of the code in
setup() and draw(), to vary the branching angle according to, say, the mouseX location.

Example 8.7: Recursive tree

Each branch now receives its length as an
argument.

void branch(float len) {

line(0, 0, 0, -len);
translate(0, -len);

Each branch’s length shrinks by two-thirds.len *= 0.66;

if (len > 2) {
pushMatrix();
rotate(theta);

Subsequent calls to branch() include the
length argument.

branch(len);

popMatrix();

pushMatrix();
rotate(-theta);
branch(len);
popMatrix();

}
}

float theta;

void setup() {
size(300, 200);

}

void draw() {
background(255);
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The recursive tree fractal is a nice example of a scenario in which adding a little bit of
randomness can make the tree look more natural. Take a look outside and you’ll notice that
branch lengths and angles vary from branch to branch, not to mention the fact that branches
don’t all have exactly the same number of smaller branches. First, let’s see what happens

Pick an angle according to the mouse
location.

theta = map(mouseX,0,width,0,PI/2);

The first branch starts at the bottom of the
window.

translate(width/2, height);

stroke(0);
branch(60);

}

Vary the strokeWeight() for each branch. Make the root thick and each subsequent
branch thinner.

Exercise 8.7Exercise 8.7

The tree structure can also be generated using the ArrayList technique
demonstrated with the Koch curve. Recreate the tree using a Branch object and an
ArrayList to keep track of the branches. Hint: you’ll want to keep track of the branch
directions and lengths using vector math instead of Processing transformations.

Exercise 8.8Exercise 8.8

Once you have the tree built with an ArrayList of Branch objects, animate the tree’s
growth. Can you draw leaves at the end of the branches?

Exercise 8.9Exercise 8.9
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when we simply vary the angle and length. This is a pretty easy one, given that we can just
ask Processing for a random number each time we draw the tree.

In the above function, we always call branch() twice. But why not pick a random number of
branches and call branch() that number of times?

void branch(float len) {

Start by picking a random angle for each
branch.

float theta = random(0,PI/3);

line(0, 0, 0, -len);
translate(0, -len);
len *= 0.66;
if (len > 2) {

pushMatrix();
rotate(theta);
branch(len);
popMatrix();
pushMatrix();
rotate(-theta);
branch(len);
popMatrix();

}
}
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Example 8.8: Stochastic tree

void branch(float len) {

line(0, 0, 0, -len);
translate(0, -len);

if (len > 2) {

Call branch() a random number of times.int n = int(random(1,4));

for (int i = 0; i < n; i++) {

Each branch gets its own random angle.float theta = random(-PI/2, PI/2);

pushMatrix();
rotate(theta);
branch(h);
popMatrix();

}
}

Set the angles of the branches of the tree according to Perlin noise values. Adjust the
noise values over time to animate the tree. See if you can get it to appear as if it is
blowing in the wind.

Exercise 8.10Exercise 8.10

Use toxiclibs to simulate tree physics. Each branch of the tree should be two particles
connected with a spring. How can you get the tree to stand up and not fall down?

Exercise 8.11Exercise 8.11

8.6 L-systems8.6 L-systems
In 1968, Hungarian botanist Aristid Lindenmayer developed a grammar-based system to
model the growth patterns of plants. L-systems (short for Lindenmayer systems) can be used
to generate all of the recursive fractal patterns we’ve seen so far in this chapter. We don’t
need L-systems to do the kind of work we’re doing here; however, they are incredibly useful
because they provide a mechanism for keeping track of fractal structures that require
complex and multi-faceted production rules.

Chapter 8. Fractals

382



In order to create an example that implements L-systems in Processing, we are going to have
to be comfortable with working with (a) recursion, (b) transformation matrices, and (c) strings.
So far we’ve worked with recursion and transformations, but strings are new here. We will
assume the basics, but if that is not comfortable for you, I would suggest taking a look at the
Processing tutorial Strings and Drawing Text (http://www.processing.org/learning/text/).

An L-system involves three main components:

• Alphabet.Alphabet. An L-system’s alphabet is comprised of the valid characters that can be
included. For example, we could say the alphabet is “ABC,” meaning that any valid
“sentence” (a string of characters) in an L-system can only include these three
characters.

• Axiom.Axiom. The axiom is a sentence (made up with characters from the alphabet) that
describes the initial state of the system. For example, with the alphabet “ABC,” some
example axioms are “AAA” or “B” or “ACBAB.”

• Rules.Rules. The rules of an L-system are applied to the axiom and then applied
recursively, generating new sentences over and over again. An L-system rule
includes two sentences, a “predecessor” and a “successor.” For example, with the
Rule “A —> AB”, whenever an “A” is found in a string, it is replaced with “AB.”

Let’s begin with a very simple L-system. (This is, in fact, Lindenmayer’s original L-system for
modeling the growth of algae.)

Alphabet: A B
Axiom: A
Rules: (A → AB) (B → A)

As with our recursive fractal shapes, we can
consider each successive application of the
L-system rules to be a generation.
Generation 0 is, by definition, the axiom.

Let’s look at how we might create these
generations with code. We’ll start by using a
String object to store the axiom.

And once again, just as we did with the Game of Life and the Koch curve ArrayList
examples, we will need an entirely separate string to keep track of the “next” generation.

Figure 8.24: And so on and so forth...

String current = "A";
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Now it’s time to apply the rules to the current generation and place the results in the next.

And when we’re done, current can become next.

To be sure this is working, let’s package it into a function and and call it every time the
mouse is pressed.

Example 8.9: Simple L-system sentence generation

String next = "";

for (int i = 0; i < current.length(); i++) {
char c = current.charAt(i);

Production rule A --> ABif (c == 'A') {

next += "AB";

Production rule B --> A} else if (c == 'B') {

next += "A";
}

}

current = next;

Start with an axiom.String current = "A";

Let’s keep track of how many generations.int count = 0;

void setup() {
println("Generation " + count + ": " + current);

}

void draw() {
}

void mousePressed() {
String next = "";
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Since the rules are applied recursively to each generation, the length of the string grows
exponentially. By generation #11, the sentence is 233 characters long; by generation #22, it is
over 46,000 characters long. The Java String class, while convenient to use, is a grossly
inefficient data structure for concatenating large strings. A String object is “immutable,”
which means once the object is created it can never be changed. Whenever you add on to the
end of a String object, Java has to make a brand new String object (even if you are using
the same variable name).

In most cases, this is fine, but why duplicate a 46,000-character string if you don’t have to?
For better efficiency in our L-system examples, we’ll use the StringBuffer class, which is
optimized for this type of task and can easily be converted into a string after concatenation is
complete.

You may find yourself wondering right about now: what exactly is the point of all this? After all,
isn’t this a chapter about drawing fractal patterns? Yes, the recursive nature of the L-system
sentence structure seems relevant to the discussion, but how exactly does this model plant
growth in a visual way?

Traverse the current String and make the
new one.

for (int i = 0; i < current.length(); i++) {

char c = current.charAt(i);
if (c == 'A') {

next += "AB";
} else if (c == 'B') {

next += "A";
}

}
current = next;
count++;
println("Generation " + count + ": " + current);

}

String s = "blah";
s += "add some more stuff";

A StringBuffer for the “next” sentenceStringBuffer next = new StringBuffer();

for (int i = 0; i < current.length(); i++) {
char c = current.charAt(i);
if (c == 'A') {

append() instead of +=next.append("AB");

} else if (c == 'B') {
next.append("A");

}
}

StringBuffer can easily be converted back to
a String.

current = next.toString();
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What we’ve left unsaid until now is that embedded into these L-system sentences are
instructions for drawing. Let’s see how this works with another example.

Alphabet: A B
Axiom: A
Rules: (A → ABA) (B → BBB)

To read a sentence, we’ll translate it in the following way:

A: Draw a line forward.
B: Move forward without drawing.

Let’s look at the sentence of each generation and its visual output.

Generation 0: A
Generation 1: ABA
Generation 2: ABABBBABA
Generation 3: ABABBBABABBBBBBBBBABABBBABA

Look familiar? This is the Cantor set generated with an L-system.

The following alphabet is often used with L-systems: “FG+-[]”, meaning:

F: Draw a line and move forward
G: Move forward (without drawing a line)
+: Turn right
-: Turn left
[: Save current location
]: Restore previous location

This type of drawing framework is often referred to as “Turtle graphics” (from the old days
of LOGO programming). Imagine a turtle sitting on your computer screen to which you could
issue a small set of commands: turn left, turn right, draw a line, etc. Processing isn’t set up
to operate this way by default, but by using translate(), rotate(), and line(), we can
emulate a Turtle graphics engine fairly easily.

Figure 8.25
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Here’s how we would translate the above L-system alphabet into Processing code.

F: line(0,0,0,len); translate(0,len);
G: translate(0,len);
+: rotate(angle);
-: rotate(-angle);
[: pushMatrix();
]: popMatrix();

Assuming we have a sentence generated from the L-system, we can walk through the
sentence character by character and call the appropriate function as outlined above.

The next example will draw a more elaborate structure with the following L-system.

Alphabet: FG+-[]
Axiom: F
Rules: F -→ FF+[+F-F-F]-[-F+F+F]

The example available for download on the book’s website takes all of the L-system code
provided in this section and organizes it into three classes:

• Rule: A class that stores the predecessor and successor strings for an L-system rule.

• LSystem: A class to iterate a new L-system generation (as demonstrated with the
StringBuffer technique).

• Turtle: A class to manage reading the L-system sentence and following its
instructions to draw on the screen.

for (int i = 0; i < sentence.length(); i++) {

Looking at each character one at a timechar c = sentence.charAt(i);

Performing the correct task for each
character. This could also be written with a
“case” statement, which might be nicer to
look at, but leaving it as an if/else if
structure helps readers not familiar with
case statements.

if (c == 'F') {
line(0,0,len,0);
translate(len,0);

} else if (c == 'F') {
translate(len,0);

} else if (c == '+') {
rotate(theta);

} else if (c == '-') {
rotate(-theta);

} else if (c == '[') {
pushMatrix();

} else if (c == ']') {
popMatrix();

}

}

The Nature of Code (v005)

387



We won’t write out these classes here since they simply duplicate the code we’ve already
worked out in this chapter. However, let’s see how they are put together in the main tab.

Example 8.10: LSystem

LSystem lsys;
Turtle turtle;

void setup() {
size(600,600);

A ruleset is an array of Rule objects.Rule[] ruleset = new Rule[1];

ruleset[0] = new Rule('F',"FF+[+F-F-F]-[-F+F+F]");

The L-system is created with an axiom and
a ruleset.

lsys = new LSystem("F",ruleset);

turtle = new Turtle(lsys.getSentence(),width/4,radians(25));

}

void draw() {
background(255);

The Turtle graphics renderer is given a
sentence, a starting length, and an angle
for rotations.

Start at the bottom of the window and draw.translate(width/2,height);

turtle.render();
}

void mousePressed() {

Generate a new sentence when the mouse
is pressed.

lsys.generate();

turtle.setToDo(lsys.getSentence());

The length shrinks each generation.turtle.changeLen(0.5);

}
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The Ecosystem ProjectThe Ecosystem Project

Step 8 Exercise:

Incorporate fractals into your ecosystem. Some possibilities:

• Add plant-like creatures to the ecosystem environment.
• Let’s say one of your plants is similar to a tree. Can you add leaves or

flowers to the end of the branches? What if the leaves can fall off the tree
(depending on a wind force)? What if you add fruit that can be picked and
eaten by the creatures?

• Design a creature with a fractal pattern.
• Use an L-system to generate instructions for how a creature should move

or behave.

Use an L-system as a set of instructions for creating objects stored in an ArrayList.
Use trigonometry and vector math to perform the rotations instead of matrix
transformations (much like we did in the Koch curve example).

Exercise 8.12Exercise 8.12

The seminal work in L-systems and plant structures, The Algorithmic Beauty of Plants
by Przemysław Prusinkiewicz and Aristid Lindenmayer, was published in 1990. It is
available for free in its entirety online (http://algorithmicbotany.org/papers/#abop).
Chapter 1 describes many sophisticated L-systems with additional drawing rules and
available alphabet characters. In addition, it describes several methods for generating
stochastic L-systems. Expand the L-system example to include one or more additional
features described by Prusinkiewicz and Lindenmayer.

Exercise 8.13Exercise 8.13

In this chapter, we emphasized using fractal algorithms for generating visual patterns.
However, fractals can be found in other creative mediums. For example, fractal patterns
are evident in Johann Sebastian Bach’s Cello Suite no. 3. The structure of David Foster
Wallace’s novel Infinite Jest was inspired by fractals. Consider using the examples in
this chapter to generate audio or text.

Exercise 8.14Exercise 8.14
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Chapter 9. TheChapter 9. The
Evolution of CodeEvolution of Code
“The fact that life evolved out of nearly nothing, some 10 billion years
after the universe evolved out of literally nothing, is a fact so staggering
that I would be mad to attempt words to do it justice.”

— Richard Dawkins

Let’s take a moment to think back to a simpler time, when you wrote your first Processing
sketches and life was free and easy. What is one of programming’s fundamental concepts
that you likely used in those first sketches and continue to use over and over again?
Variables. Variables allow you to save data and reuse that data while a program runs. This,
of course, is nothing new to us. In fact, we have moved far beyond a sketch with just one or
two variables and on to more complex data structures—variables made from custom types
(objects) that include both data and functionality. We’ve made our own little worlds of
movers and particles and vehicles and cells and trees.

In each and every example in this book, the variables of these objects have to be initialized.
Perhaps you made a whole bunch of particles with random colors and sizes or a list of
vehicles all starting at the same x,y location on screen. But instead of acting as “intelligent
designers” and assigning the properties of our objects through randomness or thoughtful
consideration, we can let a process found in nature—evolution—decide for us.

Can we think of the variables of an object as its DNA? Can objects make other objects and
pass down their DNA to a new generation? Can our simulation evolve?
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The answer to all these questions is yes. After all, we wouldn’t be able to face ourselves in the
mirror as nature-of-coders without tackling a simulation of one of the most powerful
algorithmic processes found in nature itself. This chapter is dedicated to examining the
principles behind biological evolution and finding ways to apply those principles in code.

9.1 Genetic Algorithms: Inspired by Actual Events9.1 Genetic Algorithms: Inspired by Actual Events
It’s important for us to clarify the goals of this chapter. We will not go into depth about the
science of genetics and evolution as it happens in the real world. We won’t be making Punnett
squares (sorry to disappoint) and there will be no discussion of nucleotides, protein synthesis,
RNA, and other topics related to the actual biological processes of evolution. Instead, we are
going to look at the core principles behind Darwinian evolutionary theory and develop a set of
algorithms inspired by these principles. We don’t care so much about an accurate simulation
of evolution; rather, we care about methods for applying evolutionary strategies in software.

This is not to say that a project with more scientific depth wouldn’t have value, and I
encourage readers with a particular interest in this topic to explore possibilities for expanding
the examples provided with additional evolutionary features. Nevertheless, for the sake of
keeping things manageable, we’re going to stick to the basics, which will be plenty complex
and exciting.

The term “genetic algorithm” refers to a specific algorithm implemented in a specific way to
solve specific sorts of problems. While the formal genetic algorithm itself will serve as the
foundation for the examples we create in this chapter, we needn’t worry about implementing
the algorithm with perfect accuracy, given that we are looking for creative uses of
evolutionary theories in our code. This chapter will be broken down into the following three
parts (with the majority of the time spent on the first).

1. Traditional Genetic Algorithm.Traditional Genetic Algorithm. We’ll begin with the traditional computer science
genetic algorithm. This algorithm was developed to solve problems in which the
solution space is so vast that a “brute force” algorithm would simply take too long.
Here’s an example: I’m thinking of a number. A number between one and one billion.
How long will it take for you to guess it? Solving a problem with “brute force” refers
to the process of checking every possible solution. Is it one? Is it two? Is it three? Is
it four? And so and and so forth. Though luck does play a factor here, with brute
force we would often find ourselves patiently waiting for years while you count to
one billion. However, what if I could tell you if an answer you gave was good or bad?
Warm or cold? Very warm? Hot? Super, super cold? If you could evaluate how “fit” a
guess is, you could pick other numbers closer to that guess and arrive at the answer
more quickly. Your answer could evolve.

2. Interactive Selection.Interactive Selection. Once we establish the traditional computer science algorithm,
we’ll look at other applications of genetic algorithms in the visual arts. Interactive
selection refers to the process of evolving something (often an computer-generated
image) through user interaction. Let’s say you walk into a museum gallery and see
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ten paintings. With interactive selection, you would pick your favorites and allow
an algorithmic process to generate (or “evolve”) new paintings based on your
preferences.

3. Ecosystem Simulation.Ecosystem Simulation. The traditional computer science genetic algorithm and
interactive selection technique are what you will likely find if you search online or
read a textbook about artificial intelligence. But as we’ll soon see, they don’t really
simulate the process of evolution as it happens in the real world. In this chapter, I
want to also explore techniques for simulating the process of evolution in an
ecosystem of pseudo-living beings. How can our objects that move about the
screen meet each other, mate, and pass their genes on to a new generation? This
would apply directly to the Ecosystem Project outlined at the end of each chapter.

9.2 Why Use Genetic Algorithms?9.2 Why Use Genetic Algorithms?
While computer simulations of evolutionary processes date back to the 1950s, much of what
we think of as genetic algorithms (also known as “GAs”) today was developed by John
Holland, a professor at the University of Michigan, whose book Adaptation in Natural and
Artificial Systems pioneered GA research. Today, more genetic algorithms are part of a
wider field of research, often referred to as "Evolutionary Computing."

To help illustrate the traditional genetic algorithm, we are going to start with monkeys. No,
not our evolutionary ancestors. We’re going to start with some fictional monkeys that bang
away on keyboards with the goal of typing out the complete works of Shakespeare.

Figure 9.1
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The “infinite monkey theorem” is stated as follows: A monkey hitting keys randomly on a
typewriter will eventually type the complete works of Shakespeare (given an infinite amount of
time). The problem with this theory is that the probability of said monkey actually typing
Shakespeare is so low that even if that monkey started at the Big Bang, it’s unbelievably
unlikely we’d even have Hamlet at this point.

Let’s consider a monkey named George. George types on a reduced typewriter containing
only twenty-seven characters: twenty-six letters and one space bar. So the probability of
George hitting any given key is one in twenty-seven.

Let’s consider the phrase “to be or not to be that is the question” (we’re simplifying it from the
original “To be, or not to be: that is the question”). The phrase is 39 characters long. If George
starts typing, the chance he’ll get the first character right is 1 in 27. Since the probability he’ll
get the second character right is also 1 in 27, he has a 1 in 27*27 chance of landing the first
two characters in correct order—which follows directly from our discussion of "event
probability" in the Introduction (see page 0). Therefore, the probability that George will type
the full phrase is:

(1/27) multiplied by itself 39 times, i.e. (1/27)39

which equals a 1 in
66,555,937,033,867,822,607,895,549,241,096,482,953,017,615,834,735,226,163 chance of
getting it right!

Needless to say, even hitting just this one phrase, not to mention an entire play, is highly
unlikely. Even if George is a computer simulation and can type one million random phrases
per second, for George to have a 99% probability of eventually getting it right, he would have
to type for 9,719,096,182,010,563,073,125,591,133,903,305,625,605,017 years. (Note that the
age of the universe is estimated to be a mere 13,750,000,000 years.)

The point of all these unfathomably large numbers is not to give you a headache, but to
demonstrate that a brute force algorithm (typing every possible random phrase) is not a
reasonable strategy for arriving randomly at “to be or not to be that is the question”. Enter
genetic algorithms, which will show that we can still start with random phrases and find the
solution through simulated evolution.

Now, it’s worth noting that this problem (arrive at the phrase “to be or not to be that is the
question”) is a ridiculous one. Since we know the answer, all we need to do is type it. Here’s a
Processing sketch that solves the problem.

Nevertheless, the point here is that solving a problem with a known answer allows us to easily
test our code. Once we’ve successfully solved the problem, we can feel more confident in
using genetic algorithms to do some actual useful work: solving problems with unknown
answers. So this first example serves no real purpose other than to demonstrate how genetic

string s = "To be or not to be that is the question";
println(s);
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algorithms work. If we test the GA results against the known answer and get “to be or not to
be”, then we’ve succeeded in writing our genetic algorithm.

Create a sketch that generates random strings. We’ll need to know how to do this in
order to implement the genetic algorithm example that will shortly follow. How long
does it take for Processing to randomly generate the string “cat”? How could you
adapt this to generate a random design using Processing’s shape-drawing functions?

Exercise 9.1Exercise 9.1

9.3 Darwinian Natural Selection9.3 Darwinian Natural Selection
Before we begin walking through the genetic algorithm, let’s take a moment to describe
three core principles of Darwinian evolution that will be required as we implement our
simulation. In order for natural selection to occur as it does in nature, all three of these
elements must be present.

1. Heredity.Heredity. There must be a process in place by which children receive the
properties of their parents. If creatures live long enough to reproduce, then their
traits are passed down to their children in the next generation of creatures.

2. Variation.Variation. There must be a variety of traits present in the population or a means
with which to introduce variation. For example, let’s say there is a population of
beetles in which all the beetles are exactly the same: same color, same size, same
wingspan, same everything. Without any variety in the population, the children will
always be identical to the parents and to each other. New combinations of traits
can never occur and nothing can evolve.

3. Selection.Selection. There must be a mechanism by which some members of a population
have the opportunity to be parents and pass down their genetic information and
some do not. This is typically referred to as “survival of the fittest.” For example,
let’s say a population of gazelles is chased by lions every day. The faster gazelles
are more likely to escape the lions and are therefore more likely to live longer and
have a chance to reproduce and pass their genes down to their children. The term
fittest, however, can be a bit misleading. Generally, we think of it as meaning
bigger, faster, or stronger. While this may be the case in some instances, natural
selection operates on the principle that some traits are better adapted for the
creature’s environment and therefore produce a greater likelihood of surviving
and reproducing. It has nothing to do with a given creature being “better” (after all,
this is a subjective term) or more “physically fit.” In the case of our typing
monkeys, for example, a more “fit” monkey is one that has typed a phrase closer
to “to be or not to be”.
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Next I’d like to walk through the narrative of the genetic algorithm. We’ll do this in the context
of the typing monkey. The algorithm itself will be divided into two parts: a set of conditions for
initialization (i.e. Processing’s setup()) and the steps that are repeated over and over again
(i.e. Processing’s draw()) until we arrive at the correct answer.

9.4 The Genetic Algorithm, Part I: Creating a9.4 The Genetic Algorithm, Part I: Creating a
PopulationPopulation
In the context of the typing monkey example, we will create a population of phrases. (Note
that we are using the term “phrase” rather loosely, meaning a string of characters.) This begs
the question: How do we create this population? Here is where the Darwinian principle of
variationvariation applies. Let’s say, for simplicity, that we are trying to evolve the phrase “cat” and
that we have a population of three phrases.

hug
rid
won

Sure, there is variety in the three phrases above, but try to mix and match the characters
every which way and you will never get cat. There is not enough variety here to evolve the
optimal solution. However, if we had a population of thousands of phrases, all generated
randomly, chances are that at least one member of the population will have a c as the first
character, one will have an a as the second, and one a t as the third. A large population will
most likely give us enough variety to generate the desired phrase (and in Part 2 of the
algorithm, we’ll have another opportunity to introduce even more variation in case there isn’t
enough in the first place). So we can be more specific in describing Step 1 and say:

Create a population of randomly generated elements.

This brings up another important question. What is the element itself? As we move through
the examples in this chapter, we’ll see several different scenarios; we might have a population
of images or a population of vehicles à la Chapter 6 (see page 308). The key, and the part that
is new for us in this chapter, is that each member of the population has a virtual “DNA,” a set
of properties (we can call them “genes”) that describe how a given element looks or behaves.
In the case of the typing monkey, for example, the DNA is simply a string of characters.

In the field of genetics, there is an important distinction between the concepts genotype and
phenotype. The actual genetic code—in our case, the digital information itself—is an element’s
genotypegenotype. This is what gets passed down from generation to generation. The phenotypephenotype,
however, is the expression of that data. This distinction is key to how you will use genetic
algorithms in your own work. What are the objects in your world? How will you design the
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genotype for your objects (the data structure to store each object’s properties) as well as
the phenotype (what are you using these variables to express?) We do this all the time in
graphics programming. The simplest example is probably color.

GenotypeGenotype PhenotypePhenotype

int c = 255;

int c = 127;

int c = 0;

As we can see, the genotype is the digital information. Each color is a variable that stores an
integer and we choose to express that integer as a color. But how we choose to express the
data is arbitrary. In a different approach, we could have used the integer to describe the
length of a line, the weight of a force, etc.

Same GenotypeSame Genotype Different Phenotype (line length)Different Phenotype (line length)

int c = 255;

int c = 127;

int c = 0;

The nice thing about our monkey-typing example is that there is no difference between
genotype and phenotype. The DNA data itself is a string of characters and the expression of
that data is that very string.

So, we can finally end the discussion of this first step and be more specific with its
description, saying:

Create a population of N elements, each with randomly generated DNA.
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9.5 The Genetic Algorithm, Part II: Selection9.5 The Genetic Algorithm, Part II: Selection
Here is where we apply the Darwinian principle of selection. We need to evaluate the
population and determine which members are fit to be selected as parents for the next
generation. The process of selection can be divided into two steps.

1) Evaluate fitness.1) Evaluate fitness.

For our genetic algorithm to function properly, we will need to design what is referred to as a
fitness functionfitness function. The function will produce a numeric score to describe the fitness of a given
member of the population. This, of course, is not how the real world works at all. Creatures are
not given a score; they simply survive or not. But in the case of the traditional genetic
algorithm, where we are trying to evolve an optimal solution to a problem, we need to be able
to numerically evaluate any given possible solution.

Let’s examine our current example, the typing monkey. Again, let’s simplify the scenario and
say we are attempting to evolve the word “cat”. We have three members of the population:
hut, car, and box. Car is obviously the most fit, given that it has two correct characters, hut has
only one, and box has zero. And there it is, our fitness function:

fitness = the number of correct characters

DNADNA FitnessFitness

hut 1

car 2

box 0

We will eventually want to look at examples with more sophisticated fitness functions, but this
is a good place to start.

2) Create a mating pool.2) Create a mating pool.

Once the fitness has been calculated for all members of the population, we can then select
which members are fit to become parents and place them in a mating pool. There are several
different approaches we could take here. For example, we could employ what is known as the
elitistelitist method and say, “Which two members of the population scored the highest? You two
will make all the children for the next generation.” This is probably one of the easier methods
to program; however, it flies in the face of the principle of variation. If two members of the
population (out of perhaps thousands) are the only ones available to reproduce, the next
generation will have little variety and this may stunt the evolutionary process. We could
instead make a mating pool out of a larger number—for example, the top 50% of the
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population, 500 out of 1,000. This is also just as easy to program, but it will not produce
optimal results. In this case, the high-scoring top elements would have the same chance of
being selected as a parent as the ones toward the middle. And why should element number
500 have a solid shot of reproducing, while element number 501 has no shot?

A better solution for the mating pool is to use a probabilisticprobabilistic method, which we’ll call the
“wheel of fortune” (also known as the “roulette wheel”). To illustrate this method, let’s
consider a simple example where we have a population of five elements, each with a fitness
score.

ElementElement FitnessFitness

A 3

B 4

C 0.5

D 1.5

E 1

The first thing we’ll want to do is normalizenormalize all the scores. Remember normalizing a vector?
That involved taking an vector and standardizing its length, setting it to 1. When we
normalize a set of fitness scores, we are standardizing their range to between 0 and 1, as a
percentage of total fitness. Let’s add up all the fitness scores.

total fitness = 3 + 4 + 0.5 + 1.5 + 1 = 10

Then let’s divide each score by the total fitness, giving us the normalized fitness.

ElementElement FitnessFitness Normalized FitnessNormalized Fitness
Expressed as aExpressed as a

PercentagePercentage

A 3 0.3 30%

B 4 0.4 40%

C 0.5 0.05 5%

D 1.5 0.15 15%

E 1 0.1 10%
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Now it’s time for the wheel of fortune.

Spin the wheel and you’ll notice that Element B has the highest chance of being selected,
followed by A, then D, then E, and finally C. This probability-based selection according to
fitness is an excellent approach. One, it guarantees that the highest-scoring elements will be
most likely to reproduce. Two, it does not entirely eliminate any variation from the population.
Unlike with the elitist method, even the lowest-scoring element (in this case C) has a chance
to pass its information down to the next generation. It’s quite possible (and often the case)
that even low-scoring elements have a tiny nugget of genetic code that is truly useful and
should not entirely be eliminated from the population. For example, in the case of evolving “to
be or not to be”, we might have the following elements.

A: to be or not to go
B: to be or not to pi
C: xxxxxxxxxxxxxxxxbe

As you can see, elements A and B are clearly the most fit and would have the highest score.
But neither contains the correct characters for the end of the phrase. Element C, even though
it would receive a very low score, happens to have the genetic data for the end of the phrase.
And so while we would want A and B to be picked to generate the majority of the next
generation, we would still want C to have a small chance to participate in the reproductive
process.

Figure 9.2

9.6 The Genetic Algorithm, Part III: Reproduction9.6 The Genetic Algorithm, Part III: Reproduction
Now that we have a strategy for picking parents, we need to figure out how to use
reproduction to make the population’s next generation, keeping in mind the Darwinian
principle of heredity—that children inherit properties from their parents. Again, there are a
number of different techniques we could employ here. For example, one reasonable (and easy
to program) strategy is asexual reproduction, meaning we pick just one parent and create a
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child that is an exact copy of that parent. The standard approach with genetic algorithms,
however, is to pick two parents and create a child according to the following steps.

1) Crossover.1) Crossover.

Crossover involves creating a child out of the genetic code of two parents. In the case of
the monkey-typing example, let’s assume we’ve picked two phrases from the mating pool
(as outlined in our selection step).

Parent A: FORK
Parent B: PLAY

It’s now up to us to make a child phrase from these two. Perhaps the most obvious way
(let’s call this the 50/50 method) would be to take the first two characters from A and the
second two from B, leaving us with:

A variation of this technique is to pick a random midpoint. In other words, we don’t have to
pick exactly half of the code from each parent. We could sometimes end up with FLAY, and
sometimes with FORY. This is preferable to the 50/50 approach, since we increase the
variety of possibilities for the next generation.

Figure 9.3

Figure 9.4: Picking a random midpoint
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Another possibility is to randomly select a parent for each character in the child string. You
can think of this as flipping a coin four times: heads take from parent A, tails from parent B.
Here we could end up with many different results such as: PLRY, FLRK, FLRY, FORY, etc.

This strategy will produce essentially the same results as the random midpoint method;
however, if the order of the genetic information plays some role in expressing the phenotype,
you may prefer one solution over the other.

2) Mutation.2) Mutation.

Once the child DNA has been created via crossover, we apply one final process before adding
the child to the next generation—mutationmutation. Mutation is an optional step, as there are some
cases in which it is unnecessary. However, it exists because of the Darwinian principle of
variation. We created an initial population randomly, making sure that we start with a variety of
elements. However, there can only be so much variety when seeding the first generation, and
mutation allows us to introduce additional variety throughout the evolutionary process itself.

Mutation is described in terms of a rate. A
given genetic algorithm might have a
mutation rate of 5% or 1% or 0.1%, etc. Let’s
assume we just finished with crossover and
ended up with the child FORY. If we have a
mutation rate of 1%, this means that for each
character in the phrase generated from
crossover, there is a 1% chance that it will
mutate. What does it mean for a character to
mutate? In this case, we define mutation as
picking a new random character. A 1%
probability is fairly low, and most of the time mutation will not occur at all in a four-character
string (96% of the time to be more precise). However, when it does, the mutated character is
replaced with a randomly generated one (see Figure 9.6).

Figure 9.5: Coin-flipping approach

Figure 9.6
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As we’ll see in some of the examples, the mutation rate can greatly affect the behavior of
the system. Certainly, a very high mutation rate (such as, say, 80%) would negate the
evolutionary process itself. If the majority of a child’s genes are generated randomly, then
we cannot guarantee that the more “fit” genes occur with greater frequency with each
successive generation.

The process of selection (picking two parents) and reproduction (crossover and mutation) is
applied over and over again N times until we have a new population of N elements. At this
point, the new population of children becomes the current population and we loop back to
evaluate fitness and perform selection and reproduction again.

Now that we have described all the steps of the genetic algorithm in detail, it’s time to
translate these steps into Processing code. Because the previous description was a bit
longwinded, let’s look at an overview of the algorithm first. We’ll then cover each of the
three steps in its own section, working out the code.

SETUP:SETUP:

Step 1: InitializeInitialize. Create a population of N elements, each with randomly generated DNA.

LOOP:LOOP:

Step 2: SelectionSelection. Evaluate the fitness of each element of the population and build a mating
pool.

Step 3: ReproductionReproduction. Repeat N times:

a) Pick two parents with probability according to relative fitness.
b) Crossover—create a “child” by combining the DNA of these two parents.
c) Mutation—mutate the child’s DNA based on a given probability.
d) Add the new child to a new population.

Step 4. Replace the old population with the new population and return to Step 2.

9.7 Code for Creating the Population9.7 Code for Creating the Population

Step 1: Initialize PopulationStep 1: Initialize Population

If we’re going to create a population, we need a data structure to store a list of members of
the population. In most cases (such as our typing-monkey example), the number of elements
in the population can be fixed, and so we use an array. (Later we’ll see examples that
involve a growing/shrinking population and we’ll use an ArrayList.) But an array of what?
We need an object that stores the genetic information for a member of the population. Let’s
call it DNADNA.
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The population will then be an array of DNA objects.

But what stuff goes in the DNA class? For a typing monkey, its DNA is the random phrase it
types, a string of characters.

While this is perfectly reasonable for this particular example, we’re not going to use an actual
String object as the genetic code. Instead, we’ll use an array of characters.

By using an array, we’ll be able to extend all the code we write into other examples. For
example, the DNA of a creature in a physics system might be an array of PVectors—or for an
image, an array of integers (RGB colors). We can describe any set of properties in an array,
and even though a string is convenient for this particular sketch, an array will serve as a better
foundation for future evolutionary examples.

Our genetic algorithm dictates that we create a population of N elements, each with randomly
generated DNA. Therefore, in the object’s constructor, we randomly create each character of
the array.

Now that we have the constructor, we can return to setup() and initialize each DNA object in
the population array.

class DNA {

}

A population of 100 DNA objectsDNA[] population = new DNA[100];

class DNA {
String phrase;

}

class DNA {

Each "gene" is one element of the array. We
need 18 genes because “to be or not to be”
is 18 characters long.

char[] genes = new char[18];

}

class DNA {
char[] genes = new char[18];

DNA() {
for (int i = 0; i < genes.length; i++) {

Picking randomly from a range of characters
with ASCII values between 32 and 128. For
more about ASCII: http://en.wikipedia.org/
wiki/ASCII

genes[i] = (char) random(32,128);

}
}

}
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Our DNA class is not at all complete. We’ll need to add functions to it to perform all the other
tasks in our genetic algorithm, which we’ll do as we walk through steps 2 and 3.

DNA[] population = new DNA[100];

void setup() {
for (int i = 0; i < population.length; i++) {

Initializing each member of the populationpopulation[i] = new DNA();

}
}

Step 2: SelectionStep 2: Selection

Step 2 reads, “Evaluate the fitness of each element of the population and build a mating
pool.” Let’s first evaluate each object’s fitness. Earlier we stated that one possible fitness
function for our typed phrases is the total number of correct characters. Let’s revise this
fitness function a little bit and state it as the percentage of correct characters—i.e., the total
number of correct characters divided by the total characters.

Fitness = Total # Characters Correct/Total # Characters

Where should we calculate the fitness? Since the DNA class contains the genetic information
(the phrase we will test against the target phrase), we can write a function inside the DNA
class itself to score its own fitness. Let’s assume we have a target phrase:

We can now compare each “gene” against the corresponding character in the target phrase,
incrementing a counter each time we get a correct character.

String target = "to be or not to be";

class DNA {

We are adding another variable to the DNA
class to track fitness.

float fitness;

Function to score fitnessvoid fitness () {

int score = 0;
for (int i = 0; i < genes.length; i++) {

Is the character correct?if (genes[i] == target.charAt(i)) {

If so, increment the score.score++;

}
}

Fitness is the percentage correct.fitness = float(score)/target.length();

}
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In the main tab’s draw(), the very first step we’ll take is to call the fitness function for each
member of the population.

After we have all the fitness scores, we can build the “mating pool” that we’ll need for the
reproduction step. The mating pool is a data structure from which we’ll continuously pick two
parents. Recalling our description of the selection process, we want to pick parents with
probabilities calculated according to fitness. In other words, the members of the population
that have the highest fitness scores should be most likely to be picked; those with the lowest
scores, the least likely.

In the Introduction (see page 7), we covered the basics of probability and generating a custom
distribution of random numbers. We’re going to use those techniques to assign a probability
to each member of the population, picking parents by spinning the “wheel of fortune.” Let’s
look at Figure 9.2 again.

It might be fun to do something ridiculous and actually program a simulation of a spinning
wheel as depicted above. But this is quite unnecessary.

void draw() {

for (int i = 0; i < population.length; i++) {
population[i].fitness();

}

Figure 9.2 (again)
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Instead we can pick from the five options
(ABCDE) according to their probabilities by
filling an ArrayList with multiple instances
of each parent. In other words, let’s say you
had a bucket of wooden letters—30 As, 40
Bs, 5 Cs, 15 Ds, and 10 Es.

If you pick a random letter out of that
bucket, there’s a 30% chance you’ll get an
A, a 5% chance you’ll get a C, and so on.
For us, that bucket is an ArrayList, and
each wooden letter is a potential parent.
We add each parent to the ArrayList N
number of times where N is equal to its
percentage score.

Figure 9.7

Start with an empty mating pool.ArrayList<DNA> matingPool = new
ArrayList<DNA>();

for (int i = 0; i < population.length; i++) {

n is equal to fitness times 100, which
leaves us with an integer between 0 and
100.

int n = int(population[i].fitness * 100);

for (int j = 0; j < n; j++) {

Add each member of the population to the
mating pool N times.

matingPool.add(population[i]);

}
}

One of the other methods we used to generate a custom distribution of random
numbers is called the Monte Carlo method. This technique involved picking two
random numbers, with the second number acting as a qualifying number and
determining if the first random number should be kept or thrown away. Rewrite the
above mating pool algorithm to use the Monte Carlo method instead.

Exercise 9.2Exercise 9.2
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In some cases, the wheel of fortune algorithm will have an extraordinarily high
preference for some elements over others. Take the following probabilities:

A: 98%
B: 1%
C: 1%

This is sometimes undesirable given how it will decrease the amount of variety in this
system. A solution to this problem is to replace the calculated fitness scores with the
ordinals of scoring (meaning their rank).

A: 50% (3/6)
B: 33% (2/6)
C: 17% (1/6)

Rewrite the mating pool algorithm to use this method instead.

Exercise 9.3Exercise 9.3

Step 3: ReproductionStep 3: Reproduction

With the mating pool ready to go, it’s time to make some babies. The first step is to pick two
parents. Again, it’s somewhat of an arbitrary decision to pick two parents. It certainly mirrors
human reproduction and is the standard means in the traditional GA, but in terms of your
work, there really aren’t any restrictions here. You could choose to perform “asexual”
reproduction with one parent, or come up with a scheme for picking three or four parents from
which to generate child DNA. For this code demonstration, we’ll stick to two parents and call
them parentA and parentB.

First thing we need are two random indices into the mating pool—random numbers between 0
and the size of the ArrayList.

We can use these indices to retrieve an actual DNA instance from the mating pool.

Because we have multiple instances of the same DNA objects in the mating pool (not to
mention that we could pick the same random number twice), it’s possible that parentA and
parentB could be the same DNA object. If we wanted to be strict, we could write some code to

int a = int(random(matingPool.size()));
int b = int(random(matingPool.size()));

DNA parentA = matingPool.get(a);
DNA parentB = matingPool.get(b);
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ensure that we haven’t picked the same parent twice, but we would gain very little
efficiency for all that extra code. Still, it‘s worth trying this as an exercise.

Once we have the two parents, we can perform crossovercrossover to generate the child DNA,
followed by mutationmutation.

Of course, the functions crossover() and mutate() don’t magically exist in our DNA class;
we have to write them. The way we called crossover() above indicates that the function
receives an instance of DNA as an argument and returns a new instance of DNA, the child.

The above crossover function uses the “random midpoint” method of crossover, in which
the first section of genes is taken from parent A and the second section from parent B.

Add code to the above to guarantee that you have picked two unique “parents.”

Exercise 9.4Exercise 9.4

A function for crossoverDNA child = parentA.crossover(parentB);

A function for mutationchild.mutate();

The function receives one argument (DNA)
and returns DNA.

DNA crossover(DNA partner) {

The child is a new instance of DNA. Note
that the DNA is generated randomly in the
constructor, but we will overwrite it below
with DNA from parents.

DNA child = new DNA();

Picking a random “midpoint” in the genes
array

int midpoint = int(random(genes.length));

for (int i = 0; i < genes.length; i++) {

Before midpoint copy genes from one
parent, after midpoint copy genes from the
other parent

if (i > midpoint) child.genes[i] = genes[i];
else child.genes[i] = partner.genes[i];

}

Return the new child DNAreturn child;

}
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The mutate() function is even simpler to write than crossover(). All we need to do is loop
through the array of genes and for each randomly pick a new character according to the
mutation rate. With a mutation rate of 1%, for example, we would pick a new character one
time out of a hundred.

The entire function therefore reads:

Rewrite the crossover function to use the “coin flipping” method instead, in which each
gene has a 50% chance of coming from parent A and a 50% chance of coming from
parent B.

Exercise 9.5Exercise 9.5

float mutationRate = 0.01;

if (random(1) < mutationRate) {

Any code here would be executed 1% of the
time.

}

void mutate() {

Looking at each gene in the arrayfor (int i = 0; i < genes.length; i++) {

if (random(1) < mutationRate) {

Mutation, a new random charactergenes[i] = (char) random(32,128);

}
}

}

9.8 Genetic Algorithms: Putting It All Together9.8 Genetic Algorithms: Putting It All Together
You may have noticed that we’ve essentially walked through the steps of the genetic
algorithm twice, once describing it in narrative form and another time with code snippets
implementing each of the steps. What I’d like to do in this section is condense the previous
two sections into one page, with the algorithm described in just three steps and the
corresponding code alongside.
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Example 9.1: Genetic algorithm: Evolving Shakespeare

Variables we need for our GA

Mutation ratefloat mutationRate;

Population totalint totalPopulation = 150;

Population arrayDNA[] population;

Mating pool ArrayListArrayList<DNA> matingPool;

Target phraseString target;

void setup() {
size(200, 200);

Initializing target phrase and mutation ratetarget = "to be or not to be";

mutationRate = 0.01;

Step 1: Initialize Populationpopulation = new DNA[totalPopulation];

for (int i = 0; i < population.length; i++) {
population[i] = new DNA();

}
}

void draw() {

Step 2: Selection

Step 2a: Calculate fitness.for (int i = 0; i < population.length; i++) {

population[i].fitness();
}
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The main tab precisely mirrors the steps of the genetic algorithm. However, most of the
functionality called upon is actually present in the DNA class itself.

Step 2b: Build mating pool.ArrayList<DNA> matingPool = new ArrayList<DNA>();

for (int i = 0; i < population.length; i++) {

Add each member n times according to its
fitness score.

int n = int(population[i].fitness * 100);
for (int j = 0; j < n; j++) {

matingPool.add(population[i]);
}

}

Step 3: Reproductionfor (int i = 0; i < population.length; i++) {

int a = int(random(matingPool.size()));
int b = int(random(matingPool.size()));
DNA partnerA = matingPool.get(a);
DNA partnerB = matingPool.get(b);

Step 3a: CrossoverDNA child = partnerA.crossover(partnerB);

Step 3b: Mutationchild.mutate(mutationRate);

Note that we are overwriting the population
with the new children. When draw() loops,
we will perform all the same steps with the
new population of children.

population[i] = child;

}
}

class DNA {

char[] genes;
float fitness;

Create DNA randomly.DNA() {
genes = new char[target.length()];
for (int i = 0; i < genes.length; i++) {

genes[i] = (char) random(32,128);
}

}

Calculate fitness.void fitness() {
int score = 0;
for (int i = 0; i < genes.length; i++) {

if (genes[i] == target.charAt(i)) {
score++;

}
}
fitness = float(score)/target.length();

}
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CrossoverDNA crossover(DNA partner) {
DNA child = new DNA(genes.length);
int midpoint = int(random(genes.length));
for (int i = 0; i < genes.length; i++) {

if (i > midpoint) child.genes[i] = genes[i];
else child.genes[i] = partner.genes[i];

}
return child;

}

Mutationvoid mutate(float mutationRate) {
for (int i = 0; i < genes.length; i++) {

if (random(1) < mutationRate) {
genes[i] = (char) random(32,128);

}
}

}

Convert to String—PHENOTYPE.String getPhrase() {
return new String(genes);

}

}

Add features to the above example to report more information about the progress of
the genetic algorithm itself. For example, show the phrase closest to the target each
generation, as well as report on the number of generations, average fitness, etc. Stop
the genetic algorithm once it has solved the phrase. Consider writing a Population
class to manage the GA (instead of including all the code in draw()).

Exercise 9.6Exercise 9.6
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9.9 Genetic Algorithms: Make Them Your Own9.9 Genetic Algorithms: Make Them Your Own
The nice thing about using genetic algorithms in a project is that example code can easily be
ported from application to application. The core mechanics of selection and reproduction
don’t need to change. There are, however, three key components to genetic algorithms that
you, the developer, will have to customize for each use. This is crucial to moving beyond
trivial demonstrations of evolutionary simulations (as in the Shakespeare example) to creative
uses in projects that you make in Processing and other creative programming environments.

Key #1: Varying the variablesKey #1: Varying the variables

There aren’t a lot of variables to the genetic algorithm itself. In fact, if you look at the previous
example’s code, you’ll see only two global variables (not including the arrays and ArrayLists
to store the population and mating pool).

These two variables can greatly affect the behavior of the system, and it’s not such a good
idea to arbitrarily assign them values (though tweaking them through trial and error is a
perfectly reasonable way to arrive at optimal values).

The values I chose for the Shakespeare demonstration were picked to virtually guarantee that
the genetic algorithm would solve for the phrase, but not too quickly (approximately 1,000
generations on average) so as to demonstrate the process over a reasonable period of time. A
much larger population, however, would yield faster results (if the goal were algorithmic
efficiency rather than demonstration). Here is a table of some results.

Total PopulationTotal Population Mutation RateMutation Rate
Number ofNumber of

Generations untilGenerations until
Phrase SolvedPhrase Solved

Total Time (inTotal Time (in
seconds) until Phraseseconds) until Phrase

SolvedSolved

150 1% 1089 18.8

300 1% 448 8.2

1,000 1% 71 1.8

50,000 1% 27 4.3

Notice how increasing the population size drastically reduces the number of generations
needed to solve for the phrase. However, it doesn’t necessarily reduce the amount of time.
Once our population balloons to fifty thousand elements, the sketch runs slowly, given the

float mutationRate = 0.01;
int totalPopulation = 150;
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amount of time required to process fitness and build a mating pool out of so many elements.
(There are, of course, optimizations that could be made should you require such a large
population.)

In addition to the population size, the mutation rate can greatly affect performance.

Total PopulationTotal Population Mutation RateMutation Rate
Number ofNumber of

Generations untilGenerations until
Phrase SolvedPhrase Solved

Total Time (inTotal Time (in
seconds) untilseconds) until
Phrase SolvedPhrase Solved

1,000 0% 37 or never? 1.2 or never?

1,000 1% 71 1.8

1,000 2% 60 1.6

1,000 10% never? never?

Without any mutation at all (0%), you just have to get lucky. If all the correct characters are
present somewhere in some member of the initial population, you’ll evolve the phrase very
quickly. If not, there is no way for the sketch to ever reach the exact phrase. Run it a few
times and you’ll see both instances. In addition, once the mutation rate gets high enough
(10%, for example), there is so much randomness involved (1 out of every 10 letters is
random in each new child) that the simulation is pretty much back to a random typing
monkey. In theory, it will eventually solve the phrase, but you may be waiting much, much
longer than is reasonable.

Key #2: The fitness functionKey #2: The fitness function

Playing around with the mutation rate or population total is pretty easy and involves little
more than typing numbers in your sketch. The real hard work of a developing a genetic
algorithm is in writing a fitness function. If you cannot define your problem’s goals and
evaluate numerically how well those goals have been achieved, then you will not have
successful evolution in your simulation.

Before we think about other scenarios with other fitness functions, let’s look at flaws in our
Shakespearean fitness function. Consider solving for a phrase that is not nineteen
characters long, but one thousand. Now, let’s say there are two members of the population,
one with 800 characters correct and one with 801. Here are their fitness scores:

Phrase A: 800 characters correct fitness = 80%

Phrase B: 801 characters correct fitness = 80.1%
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There are a couple of problems here. First, we are adding elements to the mating pool N
numbers of times, where N equals fitness multiplied by one hundred. Objects can only be
added to an ArrayList a whole number of times, and so A and B will both be added 80 times,
giving them an equal probability of being selected. Even with an improved solution that takes
floating point probabilities into account, 80.1% is only a teeny tiny bit higher than 80%. But
getting 801 characters right is a whole lot better than 800 in the evolutionary scenario. We
really want to make that additional character count. We want the fitness score for 801
characters to be exponentially better than the score for 800.

To put it another way, let’s graph the fitness function.

This is a linear graph; as the number of characters goes up, so does the fitness score.
However, what if the fitness increased exponentially as the number of correct characters
increased? Our graph could then look something like:

The more correct characters, the even greater the fitness. We can achieve this type of result
in a number of different ways. For example, we could say:

fitness = (number of correct characters) * (number of correct characters)

Let’s say we have two members of the population, one with five correct characters and one
with six. The number 6 is a 20% increase over the number 5. Let’s look at the fitness scores
squared.

Figure 9.8

Figure 9.9
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Characters correctCharacters correct FitnessFitness

5 25

6 36

The fitness scores increase exponentially relative to the number of correct characters. 36 is
a 44% increase over 25.

Here’s another formula.

fitness = 2(number of correct characters)

Characters correctCharacters correct FitnessFitness

1 2

2 4

3 8

4 16

Here, the fitness scores increase at a faster rate, doubling with each additional correct
character.

While this rather specific discussion of exponential vs. linear fitness functions is an
important detail in the design of a good fitness function, I don’t want us to miss the more
important point here: Design your own fitness function! I seriously doubt that any project
you undertake in Processing with genetic algorithms will actually involve counting the
correct number of characters in a string. In the context of this book, it’s more likely you will
be looking to evolve a creature that is part of a physics system. Perhaps you are looking to
optimize the weights of steering behaviors so a creature can best escape a predator or
avoid an obstacle or make it through a maze. You have to ask yourself what you’re hoping
to evaluate.

Rewrite the fitness function to increase exponentially according to the number of
correct characters. Note that you will also have to normalize the fitness values to a
range between 0 and 1 so they can be added to the mating pool a reasonable
number of times.

Exercise 9.7Exercise 9.7
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Let’s consider a racing simulation in which a vehicle is evolving a design optimized for speed.

fitness = total number of frames required for vehicle to reach target

How about a cannon that is evolving the optimal way to shoot a target?

fitness = cannonball distance to target

The design of computer-controlled players in a game is also a common scenario. Let’s say you
are programming a soccer game in which the user is the goalie. The rest of the players are
controlled by your program and have a set of parameters that determine how they kick a ball
towards the goal. What would the fitness score for any given player be?

fitness = total goals scored

This, obviously, is a simplistic take on the game of soccer, but it illustrates the point. The more
goals a player scores, the higher its fitness, and the more likely its genetic information will
appear in the next game. Even with a fitness function as simple as the one described here,
this scenario is demonstrating something very powerful—the adaptability of a system. If the
players continue to evolve from game to game to game, when a new human user enters the
game with a completely different strategy, the system will quickly discover that the fitness
scores are going down and evolve a new optimal strategy. It will adapt. (Don’t worry, there is
very little danger in this resulting in sentient robots that will enslave all humans.)

In the end, if you do not have a fitness function that effectively evaluates the performance of
the individual elements of your population, you will not have any evolution. And the fitness
function from one example will likely not apply to a totally different project. So this is the part
where you get to shine. You have to design a function, sometimes from scratch, that works for
your particular project. And where do you do this? All you have to edit are those few lines of
code inside the function that computes the fitness variable.

void fitness() {
????????????
????????????
fitness = ??????????

}

Key #3: Genotype and PhenotypeKey #3: Genotype and Phenotype

The final key to designing your own genetic algorithm relates to how you choose to encode
the properties of your system. What are you trying to express, and how can you translate that
expression into a bunch of numbers? What is the genotype and phenotype?

When talking about the fitness function, we happily assumed we could create computer-
controlled kickers that each had a “set of parameters that determine how they kick a ball
towards the goal.” However, what those parameters are and how you choose to encode them
is up to you.
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We started with the Shakespeare example because of how easy it was to design both the
genotype (an array of characters) and its expression, the phenotype (the string drawn in the
window).

The good news is—and we hinted at this at the start of this chapter—you’ve really been
doing this all along. Anytime you write a class in Processing, you make a whole bunch of
variables.

All we need to do to evolve those parameters is to turn them into an array, so that the array
can be used with all of the functions—crossover(), mutate(), etc.—found in the DNA class.
One common solution is to use an array of floating point numbers between 0 and 1.

Notice how we’ve now put the genetic data (genotype) and its expression (phenotype) into
two separate classes. The DNA class is the genotype and the Vehicle class uses a DNA object
to drive its behaviors and express that data visually—it is the phenotype. The two can be
linked by creating a DNA instance inside the vehicle class itself.

class Vehicle {
float maxspeed;
float maxforce;
float size;
float separationWeight;
// etc.

class DNA {

An array of floatsfloat[] genes;

DNA(int num) {
genes = new float[num];
for (int i = 0; i < genes.length; i++) {

Always pick a number between 0 and 1.genes[i] = float(1);

}
}

class Vehicle {

A DNA object embedded into the Vehicle
class

DNA dna;

float maxspeed;
float maxforce;
float size;
float separationWeight;

Etc.

Vehicle() {
DNA = new DNA(4);
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Of course, you most likely don’t want all your variables to have a range between 0 and 1. But
rather than try to remember how to adjust those ranges in the DNA class itself, it’s easier to
pull the genetic information from the DNA object and use Processing’s map() function to
change the range. For example, if you want a size variable between 10 and 72, you would say:

In other cases, you will want to design a genotype that is an array of objects. Consider the
design of a rocket with a series of “thruster” engines. You could describe each thruster with a
PVector that outlines its direction and relative strength.

The phenotype would be a Rocket class that participates in a physics system.

What’s great about this technique of dividing the genotype and phenotype into separate
classes (DNA and Rocket for example) is that when it comes time to build all of the code, you’ll
notice that the DNA class we developed earlier remains intact. The only thing that changes is
the array’s data type (float, PVector, etc.) and the expression of that data in the phenotype
class.

In the next section, we’ll follow this idea a bit further and walk through the necessary steps for
an example that involves moving bodies and an array of PVectors as DNA.

Using the genes to set variablesmaxspeed = dna.genes[0];

maxforce = dna.genes[1];
size = dna.genes[2];
separationWeight = dna.genes[3];

Etc.}

size = map(dna.genes[2],0,1,10,72);

class DNA {

The genotype is an array of PVectors.PVector[] genes;

DNA(int num) {
genes = new float[num];
for (int i = 0; i < genes.length; i++) {

A PVector pointing in a random directiongenes[i] = PVector.random2D();

And scaled randomlygenes[i].mult(random(10));

}
}

class Rocket {
DNA dna;
// etc.
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9.10 Evolving Forces: Smart Rockets9.10 Evolving Forces: Smart Rockets
We picked the rocket idea for a specific reason. In 2009, Jer Thorp (http://blprnt.com)
released a genetic algorithms example on his blog entitled “Smart Rockets.” Jer points out
that NASA uses evolutionary computing techniques to solve all sorts of problems, from
satellite antenna design to rocket firing patterns. This inspired him to create a Flash
demonstration of evolving rockets. Here is a description of the scenario:

A population of rockets launches from the bottom of the screen with the goal of hitting a
target at the top of the screen (with obstacles blocking a straight line path).

Each rocket is equipped with five thrusters
of variable strength and direction. The
thrusters don’t fire all at once and
continuously; rather, they fire one at a time
in a custom sequence.

In this section, we’re going to evolve our
own simplified Smart Rockets, inspired by
Jer Thorp’s. When we get to the end of the
section, we’ll leave implementing some of
Jer’s additional advanced features as an
exercise.

Our rockets will have only one thruster, and this thruster will be able to fire in any direction
with any strength for every frame of animation. This isn’t particularly realistic, but it will
make building out the framework a little easier. (We can always make the rocket and its
thrusters more advanced and realistic later.)

Let’s start by taking our basic Mover class from Chapter 2 examples and renaming it Rocket.

Figure 9.10

Figure 9.11

class Rocket {
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Using the above framework, we can implement our smart rocket by saying that for every frame
of animation, we call applyForce() with a new force. The “thruster” applies a single force to
the rocket each time through draw().

Considering this example, let’s go through the three keys to programming our own custom
genetic algorithm example as outlined in the previous section.

Key #1: Population size and mutation rateKey #1: Population size and mutation rate

We can actually hold off on this first key for the moment. Our strategy will be to pick some
reasonable numbers (a population of 100 rockets, mutation rate of 1%) and build out the
system, playing with these numbers once we have our sketch up and running.

Key #2: The fitness functionKey #2: The fitness function

We stated the goal of a rocket reaching a target. In other words, the closer a rocket gets to
the target, the higher the fitness. Fitness is inversely proportional to distance: the smaller the
distance, the greater the fitness; the greater the distance, the smaller the fitness.

Let’s assume we have a PVector target.

This is perhaps the simplest fitness function we could write. By using one divided by distance,
large distances become small numbers and small distances become large.

A rocket has three vectors: location,
velocity, acceleration.

PVector location;
PVector velocity;
PVector acceleration;

Accumulating forces into acceleration
(Newton’s 2nd law)

void applyForce(PVector f) {
acceleration.add(f);

}

Our simple physics model (Euler integration)void update() {

Velocity changes according to acceleration.velocity.add(acceleration);

Location changes according to velocity.location.add(velocity);

acceleration.mult(0);
}

}

void fitness() {

How close did we get?float d = PVector.dist(location,target);

Fitness is inversely proportional to distance.fitness = 1/d;

}
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distancedistance 1 / distance1 / distance

300 1 / 300 = 0.0033

100 1 / 100 = 0.01

5 1 / 5 = 0.2

1 1 / 1 = 1.0

0.1 1 / 0.1 = 10

And if we wanted to use our exponential trick from the previous section, we could use one
divided by distance squared.

distancedistance 1 / distance1 / distance (1 / distance)(1 / distance)22

300 1 / 400 = 0.0025 0.00000625

100 1 / 100 = 0.01 0.0001

5 1 / 5 = 0.2 0.04

1 1 / 1 = 1.0 1.0

0.1 1 / 0.1 = 10 100

There are several additional improvements we’ll want to make to the fitness function, but
this simple one is a good start.

Key #3: Genotype and Phenotype

We stated that each rocket has a thruster that fires in a variable direction with a variable
magnitude in each frame. And so we need a PVector for each frame of animation. Our
genotype, the data required to encode the rocket’s behavior, is therefore an array of
PVectors.

void fitness() {
float d = PVector.dist(location,target);

Squaring 1 divided by distancefitness = pow(1/d,2);

}
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The happy news here is that we don’t really have to do anything else to the DNA class. All of
the functionality we developed for the typing monkey (crossover and mutation) applies here.
The one difference we do have to consider is how we initialize the array of genes. With the
typing monkey, we had an array of characters and picked a random character for each
element of the array. Here we’ll do exactly the same thing and initialize a DNA sequence as an
array of random PVectors. Now, your instinct in creating a random PVector might be as
follows:

This is perfectly fine and will likely do the
trick. However, if we were to draw every
single possible vector we might pick, the
result would fill a square (see Figure 9.12). In
this case, it probably doesn’t matter, but
there is a slight bias to diagonals here given
that a PVector from the center of a square
to a corner is longer than a purely vertical or
horizontal one.

What would be better here is to pick a
random angle and make a PVector of length
one from that angle, giving us a circle (see
Figure 9.13). This could be easily done with
a quick polar to Cartesian conversion (see
page 112), but a quicker path to the result is
just to use PVector's random2D().

A PVector of length one is actually going to be quite a large force. Remember, forces are
applied to acceleration, which accumulates into velocity thirty times per second. So, for this
example, we can also add one more variable to the DNA class: a maximum force that scales all
the PVectors. This will control the thruster power.

class DNA {
PVector[] genes;

PVector v = new PVector(random(-1,1),random(-1,1));

Figure 9.12

Figure 9.13

for (int i = 0; i < genes.length; i++) {

Making a PVector from a random anglegenes[i] = PVector.random2D();

}
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Notice also that we created an array of PVectors with length lifetime. We need a PVector
for each frame of the rocket’s life, and the above assumes the existence of a global variable
lifetime that stores the total number of frames in each generation’s life cycle.

The expression of this array of PVectors, the phenotype, is a Rocket class modeled on our
basic PVector and forces examples from Chapter 2. All we need to do is add an instance of
a DNA object to the class. The fitness variable will also live here. Only the Rocket object
knows how to compute its distance to the target, and therefore the fitness function will live
here in the phenotype as well.

What are we using the DNA for? We are marching through the array of PVectors and
applying them one at a time as a force to the rocket. To do this, we’ll also have to add an
integer that acts as a counter to walk through the array.

class DNA {

The genetic sequence is an array of
PVectors.

PVector[] genes;

How strong can the thrusters be?float maxforce = 0.1;

DNA() {

We need a PVector for every frame of the
rocket’s life.

genes = new PVector[lifetime];

for (int i = 0; i < genes.length; i++) {
genes[i] = PVector.random2D();

Scaling the PVectors randomly, but no
stronger than maximum force

genes[i].mult(random(0, maxforce));

}
}

class Rocket {

A Rocket has DNA.DNA dna;

A Rocket has fitness.float fitness;

PVector location;
PVector velocity;
PVector acceleration;

int geneCounter = 0;

void run() {

Apply a force from the genes array.applyForce(dna.genes[geneCounter]);

Go to the next force in the genes array.geneCounter++;
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Update the Rocket’s physics.update();

}

9.11 Smart Rockets: Putting It All Together9.11 Smart Rockets: Putting It All Together

We now have our DNA class (genotype) and our Rocket class (phenotype). The last piece of
the puzzle is a Population class, which manages an array of rockets and has the functionality
for selection and reproduction. Again, the happy news here is that we barely have to change
anything from the Shakespeare monkey example. The process for building a mating pool and
generating a new array of child rockets is exactly the same as what we did with our population
of strings.

There is one fairly significant change, however. With typing monkeys, a random phrase was
evaluated as soon as it was created. The string of characters had no lifespan; it existed purely
for the purpose of calculating its fitness and then we moved on. The rockets, however, need
to live for a period of time before they can be evaluated; they need to be given a chance to
make their attempt at reaching the target. Therefore, we need to add one more function to the
Population class that runs the physics simulation itself. This is identical to what we did in the
run() function of a particle system—update all the particle locations and draw them.

Finally, we’re ready for setup() and draw(). Here in the main tab, our primary responsibility is
to implement the steps of the genetic algorithm in the appropriate order by calling the
functions in the Population class.

class Population {

Population has variables to keep track of
mutation rate, current population array,
mating pool, and number of generations.

float mutationRate;

Rocket[] population;
ArrayList<Rocket> matingPool;
int generations;

These functions haven’t changed, so no
need to go through the code again.

void fitness() {}
void selection() {}
void reproduction() {}

void live () {
for (int i = 0; i < population.length; i++) {

The run function takes care of the forces,
updating the rocket’s location, and
displaying it.

population[i].run();

}
}
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However, unlike the Shakespeare example, we don’t want to do this every frame. Rather,
our steps work as follows:

1. Create a population of rockets

2. Let the rockets live for N frames

3. Evolve the next generation

◦ Selection

◦ Reproduction

4. Return to Step #2

Example 9.2: Simple Smart Rockets

population.fitness();
population.selection();
population.reproduction();

How many frames does a generation live
for?

int lifetime;

What frame are we on?int lifeCounter;

The populationPopulation population;

void setup() {
size(640, 480);
lifetime = 500;
lifeCounter = 0;

float mutationRate = 0.01;
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The above example works, but it isn’t particularly interesting. After all, the rockets simply
evolve to having DNA with a bunch of vectors that point straight upwards. In the next
example, we’re going to talk through two suggested improvements for the example and
provide code snippets that implement these improvements.

Improvement #1: Obstacles

Adding obstacles that the rockets must avoid will make the system more complex and
demonstrate the power of the evolutionary algorithm more effectively. We can make
rectangular, stationary obstacles fairly easily by creating a class that stores a location and
dimensions.

Step 1: Create the population. Here is where
we could play with the mutation rate and
population size.

population = new Population(mutationRate, 50);

}

void draw() {
background(255);

The revised genetic algorithmif (lifeCounter < lifetime) {

Step 2: The rockets live their life until
lifeCounter reaches lifetime.

population.live();

lifeCounter++;
} else {

When lifetime is reached, reset lifeCounter
and evolve the next generation (Steps 3 and
4, selection and reproduction).

lifeCounter = 0;

population.fitness();
population.selection();
population.reproduction();

}
}

The Nature of Code (v005)

427



Example 9.3: Smart Rockets

We can also write a contains() function that will return true or return false to
determine if a rocket has hit the obstacle.

Assuming we make an ArrayList of obstacles, we can then have each rocket check to see
if it has collided with an obstacle and set a boolean flag to be true if it does, adding a
function to the rocket class.

If the rocket hits an obstacle, we choose to stop it from updating its location.

And we also have an opportunity to adjust the rocket’s fitness. We consider it to be pretty
terrible if the rocket hits an obstacle, and so its fitness should be greatly reduced.

class Obstacle {

An obstacle is a location (top left corner of
rectangle) with a width and height.

PVector location;

float w,h;

boolean contains(PVector v) {
if (v.x > location.x && v.x < location.x + w && v.y > location.y && v.y <

location.y + h) {
return true;

} else {
return false;

}
}

This new function lives in the rocket class
and checks if a rocket has hit an obstacle.

void obstacles() {

for (Obstacle obs : obstacles) {
if (obs.contains(location)) {

stopped = true;
}

}
}

void run() {

Only run the rocket if it doesn’t hit an
obstacle.

if (!stopped) {

applyForce(dna.genes[geneCounter]);
geneCounter = (geneCounter + 1) % dna.genes.length;
update();
obstacles();

}
}
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Improvement #2: Evolve reaching the target faster

If you look closely at our first Smart Rockets example, you’ll notice that the rockets are not
rewarded for getting to the target faster. The only variable in their fitness calculation is the
distance to the target at the end of the generation’s life. In fact, in the event that the rockets
get very close to the target but overshoot it and fly past, they may actually be penalized for
getting to the target faster. Slow and steady wins the race in this case.

We could improve the algorithm to optimize for speed a number of ways. First, instead of
using the distance to the target at the end of the generation, we could use the distance that is
the closest to the target at any point during the rocket’s life. We would call this the rocket’s
“record” distance. (All of the code snippets in this section live inside the Rocket class.)

In addition, a rocket should be rewarded according to how quickly it reaches the target. The
faster it reaches the target, the higher the fitness. The slower, the lower. To accomplish this,
we can increment a counter every cycle of the rocket’s life until it reaches the target. At the
end of its life, the counter will equal the amount of time the rocket took to reach that target.

Fitness is also inversely proportional to finishTime, and so we can improve our fitness
function as follows:

void fitness() {
float d = dist(location.x, location.y, target.location.x, target.location.y);
fitness = pow(1/d, 2);
if (stopped) fitness *= 0.1;

}

void checkTarget() {
float d = dist(location.x, location.y, target.location.x, target.location.y);

Every frame, we check its distance and see
if it’s closer than the “record” distance. If it is,
we have a new record.

if (d < recordDist) recordDist = d;

If the object reaches the target, set a
boolean flag to true.

if (target.contains(location)) {

hitTarget = true;
} else if (!hitTarget) {

As long as we haven’t yet reached the
target, keep incrementing the counter.

finishTime++;

}
}

void fitness() {

Finish time and record distance!fitness = (1/(finishTime*recordDist));
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These improvements are both incorporated into the code for Example 9.3: Smart Rockets.

One of the more famous implementations of genetic algorithms in computer graphics is Karl
Sims’s “Evolved Virtual Creatures.” In Sims’s work, a population of digital creatures (in a
simulated physics environment) is evaluated for the creatures' ability to perform tasks, such
as swimming, running, jumping, following, and competing for a green cube.

Make it exponential.fitness = pow(fitness, 2);

Fitness goes way down if you hit an
obstacle.

if (stopped) fitness *= 0.1;

You are rewarded for reaching the target.if (hitTarget) fitness *= 2;

}

Create a more complex obstacle course. As you make it more difficult for the rockets
to reach the target, do you need to improve other aspects of the GA—for example,
the fitness function?

Exercise 9.8Exercise 9.8

Implement the rocket firing pattern of Jer Thorp’s Smart Rockets. Each rocket only
gets five thrusters (of any direction and strength) that follow a firing sequence (of
arbitrary length). Jer’s simulation (http://www.blprnt.com/smartrockets/) also gives the
rockets a finite amount of fuel.

Exercise 9.9Exercise 9.9

Visualize the rockets differently. Can you draw a line for the shortest path to the
target? Can you add particle systems that act as smoke in the direction of the rocket
thrusters?

Exercise 9.10Exercise 9.10

Another way to achieve a similar result is to evolve a flow field. Can you make the
genotype of a rocket a flow field of PVectors?

Exercise 9.11Exercise 9.11
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One of the innovations in Sims’s work is a node-based genotype. In other words, the
creature’s DNA is not a linear list of PVectors or numbers, but a map of nodes. (For an
example of this, take a look at Exercise 5.15 (see page 256), toxiclibs' Force Directed Graph.)
The phenotype is the creature’s design itself, a network of limbs connected with muscles.

Using toxiclibs or Box2D as the physics
model, can you create a simplified 2D
version of Sims’s creatures? For a
lengthier description of Sims’s
techniques, I suggest you watch the
video and read Sims’s paper Virtual
Creatures (http://www.karlsims.com/
evolved-virtual-creatures.html). In
addition, you can find a similar example
that uses Box2D to evolve a “car”:
BoxCar2D (http://boxcar2d.com/).

Exercise 9.12Exercise 9.12

9.12 Interactive Selection9.12 Interactive Selection
In addition to Evolved Virtual Creatures, Sims is also well known for his museum installation
Galapagos. Originally installed in the Intercommunication Center in Tokyo in 1997, the
installation consists of twelve monitors displaying computer-generated images. These images
evolve over time, following the genetic algorithm steps of selection and reproduction. The
innovation here is not the use of the genetic algorithm itself, but rather the strategy behind
the fitness function. In front of each monitor is a sensor on the floor that can detect the
presence of a user viewing the screen. The fitness of an image is tied to the length of time
that viewers look at the image. This is known as interactive selection, a genetic algorithm with
fitness values assigned by users.

Think of all the rating systems you’ve ever used. Could you evolve the perfect movie by
scoring all films according to your Netflix ratings? The perfect singer according to American
Idol voting?
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To illustrate this technique, we’re going to
build a population of simple faces. Each
face will have a set of properties: head
size, head color, eye location, eye size,
mouth color, mouth location, mouth width,
and mouth height.

The face’s DNA (genotype) is an array of
floating point numbers between 0 and 1,
with a single value for each property.

The phenotype is a Face class that includes an instance of a DNA object.

When it comes time to draw the face on screen, we can use Processing’s map() function to
convert any gene value to the appropriate range for pixel dimensions or color values. (In
this case, we are also using colorMode() to set the RGB ranges between 0 and 1.)

Figure 9.14

class DNA {

float[] genes;

We need 20 numbers to draw the face.int len = 20;

DNA() {
genes = new float[len];
for (int i = 0; i < genes.length; i++) {

Each gene is a random float between 0
and 1.

genes[i] = random(0,1);

}
}

class Face {

DNA dna;
float fitness;

void display() {

Using map() to convert the genes to a
range for drawing the face.

float r = map(dna.genes[0],0,1,0,70);

color c = color(dna.genes[1],dna.genes[2],dna.genes[3]);
float eye_y = map(dna.genes[4],0,1,0,5);
float eye_x = map(dna.genes[5],0,1,0,10);
float eye_size = map(dna.genes[5],0,1,0,10);
color eyecolor = color(dna.genes[4],dna.genes[5],dna.genes[6]);
color mouthColor = color(dna.genes[7],dna.genes[8],dna.genes[9]);
float mouth_y = map(dna.genes[5],0,1,0,25);
float mouth_x = map(dna.genes[5],0,1,-25,25);
float mouthw = map(dna.genes[5],0,1,0,50);
float mouthh = map(dna.genes[5],0,1,0,10);
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So far, we’re not really doing anything new. This is what we’ve done in every GA example so
far. What’s new is that we are not going to write a fitness() function in which the score is
computed based on a math formula. Instead, we are going to ask the user to assign the
fitness.

Now, how best to ask a user to assign fitness is really more of an interaction design problem,
and it isn’t really within the scope of this book. So we’re not going to launch into an elaborate
discussion of how to program sliders or build your own hardware dials or build a Web app for
users to submit online scores. How you choose to acquire fitness scores is really up to you
and the particular application you are developing.

For this simple demonstration, we’ll increase fitness whenever a user rolls the mouse over a
face. The next generation is created when the user presses a button with an “evolve next
generation” label.

Let’s look at how the steps of the genetic algorithm are applied in the main tab, noting how
fitness is assigned according to mouse interaction and the next generation is created on a
button press. The rest of the code for checking mouse locations, button interactions, etc. can
be found in the accompanying example code.

Example 9.4: Interactive selection

Population population;
Button button;

void setup() {
size(780,200);
float mutationRate = 0.05;
population = new Population(mutationRate,10);
button = new Button(15,150,160,20, "evolve new generation");

}

void draw() {

population.display();
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This example, it should be noted, is really just a demonstration of the idea of interactive
selection and does not achieve a particularly meaningful result. For one, we didn’t take
much care in the visual design of the faces; they are just a few simple shapes with sizes and
colors. Sims, for example, used more elaborate mathematical functions as his images’
genotype. You might also consider a vector-based approach, in which a design’s genotype
is a set of points and/or paths.

The more significant problem here, however, is one of time. In the natural world, evolution
occurs over millions of years. In the computer simulation world of our previous examples,
we were able to evolve behaviors relatively quickly because we were producing new
generations algorithmically. In the Shakespeare monkey example, a new generation was
born in each frame of animation (approximately sixty per second). Since the fitness values
were computed according to a math formula, we could also have had arbitrarily large
populations that increased the speed of evolution. In the case of interactive selection,
however, we have to sit and wait for a user to rate each and every member of the
population before we can get to the next generation. A large population would be
unreasonably tedious to deal with—not to mention, how many generations could you stand
to sit through?

There are certainly clever solutions around this. Sims’s Galapagos exhibit concealed the
rating process from the users, as it occurred through the normal behavior of looking at
artwork in a museum setting. Building a Web application that would allow many users to rate
a population in a distributed fashion is also a good strategy for achieving many ratings for
large populations quickly.

In the end, the key to a successful interactive selection system boils down to the same keys
we previously established. What is the genotype and phenotype? And how do you calculate
fitness, which in this case we can revise to say: “What is your strategy for assigning fitness
according to user interaction?”

The mouse location is passed to the
population, which will score each face
according to rollover time.

population.rollover(mouseX,mouseY);

button.display();
}

void mousePressed() {

When a button is pressed, the new
generation is created via selection and
reproduction.

if (button.clicked(mouseX,mouseY)) {

population.selection();
population.reproduction();

}
}
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Build your own interactive selection project. In addition to a visual design, consider
evolving sounds—for example, a short sequence of tones. Can you devise a strategy,
such as a Web application or physical sensor system, to acquire ratings from many
users over time?

Exercise 9.14Exercise 9.14

9.13 Ecosystem Simulation9.13 Ecosystem Simulation
You may have noticed something a bit odd about every single evolutionary system we’ve built
so far in this chapter. After all, in the real world, a population of babies isn’t born all at the
same time. Those babies don’t then grow up and all reproduce at exactly the same time, then
instantly die to leave the population size perfectly stable. That would be ridiculous. Not to
mention the fact that there is certainly no one running around the forest with a calculator
crunching numbers and assigning fitness values to all the creatures.

In the real world, we don’t really have “survival of the fittest”; we have “survival of the
survivors.” Things that happen to live longer, for whatever reason, have a greater chance of
reproducing. Babies are born, they live for a while, maybe they themselves have babies,
maybe they don’t, and then they die.

You won’t necessarily find simulations of “real-world” evolution in artificial intelligence
textbooks. Genetic algorithms are generally used in the more formal manner we outlined in
this chapter. However, since we are reading this book to develop simulations of natural
systems, it’s worth looking at some ways in which we might use a genetic algorithm to build
something that resembles a living “ecosystem”, much like the one we’ve described in the
exercises at the end of each chapter.

Let’s begin by developing a very simple scenario. We’ll create a creature called a "bloop," a
circle that moves about the screen according to Perlin noise. The creature will have a radius
and a maximum speed. The bigger it is, the slower it moves; the smaller, the faster.

class Bloop {

A locationPVector location;

Variables for size and speedfloat r;

float maxspeed;
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The above is missing a few details (such as initializing the variables in the constructor), but
you get the idea.

For this example, we’ll want to store the population of bloops in an ArrayList, rather than
an array, as we expect the population to grow and shrink according to how often bloops die
or are born. We can store this ArrayList in a class called World, which will manage all the
elements of the bloops’ world.

So far, what we have is just a rehashing of our particle system example from Chapter 5. We
have an entity (Bloop) that moves around the window and a class (World) that manages a
variable quantity of these entities. To turn this into a system that evolves, we need to add
two additional features to our world:

• Bloops die.Bloops die.

• Bloops are born.Bloops are born.

Some variables for Perlin noise
calculations

float xoff, yoff;

void update() {
float vx = map(noise(xoff),0,1,-maxspeed,maxspeed);
float vy = map(noise(yoff),0,1,-maxspeed,maxspeed);

A little Perlin noise algorithm to calculate a
velocity

PVector velocity = new PVector(vx,vy);

xoff += 0.01;
yoff += 0.01;

The bloop moves.location.add(velocity);

}

A bloop is a circle.void display() {

ellipse(location.x, location.y, r, r);
}

}

class World {

A list of bloopsArrayList<Bloop> bloops;

World(int num) {
bloops = new ArrayList<Bloop>();

for (int i = 0; i < num; i++) {

Making an initial population of bloopsbloops.add(new Bloop());

}
}
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Bloops dying is our replacement for a fitness function, the process of “selection.” If a bloop
dies, it cannot be selected to be a parent, because it simply no longer exists! One way we can
build a mechanism to ensure bloop deaths in our world is by adding a health variable to the
Bloop class.

In each frame of animation, a bloop loses some health.

If health drops below 0, the bloop dies.

This is a good first step, but we haven’t really achieved anything. After all, if all bloops start
with 100 health points and lose 1 point per frame, then all bloops will live for the exact same
amount of time and die together. If every single bloop lives the same amount of time, they all
have equal chances of reproducing and therefore nothing will evolve.

There are many ways we could achieve variable lifespans with a more sophisticated world. For
example, we could introduce predators that eat bloops. Perhaps the faster bloops would be
able to escape being eaten more easily, and therefore our world would evolve to have faster
and faster bloops. Another option would be to introduce food. When a bloop eats food, it
increases its health points, and therefore extends its life.

Let’s assume we have an ArrayList of PVector locations for food, named “food.” We could
test each bloop’s proximity to each food location. If the bloop is close enough, it eats the food
(which is then removed from the world) and increases its health.

class Bloop {

A bloop is born with 100 health points.float health = 100;

void update() {

All that other stuff for movement

Death is always looming!health -= 1;

}

We add a function to the Bloop class to test
if the bloop is alive or dead.

boolean dead() {
if (health < 0.0) {

return true;
} else {

return false;
}

}

void eat() {
for (int i = food.size()-1; i >= 0; i--) {

PVector foodLocation = food.get(i);
float d = PVector.dist(location, foodLocation);
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Now we have a scenario in which bloops that eat more food live longer and have a greater
likelihood of reproducing. Therefore, we expect that our system would evolve bloops with
an optimal ability to find and eat food.

Now that we have built our world, it’s time to add the components required for evolution.
First we should establish our genotype and phenotype.

Is the Bloop close to the food?if (d < r/2) {

If so, it gets 100 more health points.health += 100;

The food is no longer available for other
Bloops.

food.remove(i);

}
}

}

Genotype and PhenotypeGenotype and Phenotype

The ability for a bloop to find food is tied to two variables—size and speed. Bigger bloops
will find food more easily simply because their size will allow them to intersect with food
locations more often. And faster bloops will find more food because they can cover more
ground in a shorter period of time.

Since size and speed are inversely related
(large bloops are slow, small bloops are
fast), we only need a genotype with a
single number.

Figure 9.15

class DNA {

float[] genes;

DNA() {
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The phenotype then is the bloop itself, whose size and speed is assigned by adding an
instance of a DNA object to the Bloop class.

Notice that with maxspeed, the range is mapped to between 15 and 0, meaning a bloop with a
gene value of 0 moves at a speed of 15 and a bloop with a gene value of 1 doesn’t move at all
(speed of 0).

It may seem absurd to use an array when all
we have is a single value, but we stick with
an array in case we want to make more
sophisticated bloops later.

genes = new float[1];

for (int i = 0; i < genes.length; i++) {
genes[i] = random(0,1);

}
}

class Bloop {
PVector location;
float health;

A bloop now has DNA.DNA dna;

float r;
float maxspeed;

Bloop(DNA dna_) {
location = new PVector(width/2,height/2);
health = 200;
dna = dna_;

maxspeed and r (radius) are mapped to
values according to the DNA.

maxspeed = map(dna.genes[0], 0, 1, 15, 0);
r = map(dna.genes[0], 0, 1, 0, 50);

}

Selection and ReproductionSelection and Reproduction

Now that we have the genotype and phenotype, we need to move on to devising a means for
bloops to be selected as parents. We stated before that the longer a bloop lives, the more
chances it has to reproduce. The length of life is the bloop’s fitness.

One option would be to say that whenever two bloops come into contact with each other, they
make a new bloop. The longer a bloop lives, the more likely it is to come into contact with
another bloop. (This would also affect the evolutionary outcome given that, in addition to
eating food, their ability to find other bloops is a factor in the likelihood of having a baby.)

A simpler option would be to have “asexual” reproduction, meaning a bloop does not require
a partner. It can, at any moment, make a clone of itself, another bloop with the same genetic
makeup. If we state this selection algorithm as follows:

At any given moment, a bloop has a 1% chance of reproducing.At any given moment, a bloop has a 1% chance of reproducing.
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…then the longer a bloop lives, the more likely it will make at least one child. This is
equivalent to saying the more times you play the lottery, the greater the likelihood you’ll win
(though I’m sorry to say your chances of that are still essentially zero).

To implement this selection algorithm, we can write a function in the Bloop class that picks
a random number every frame. If the number is less than 0.01 (1%), a new bloop is born.

How does a bloop reproduce? In our previous examples, the reproduction process involved
calling the crossover() function in the DNA class and making a new object from the newly
made DNA. Here, since we are making a child from a single parent, we’ll call a function
called copy() instead.

Note also that we’ve reduced the probability of reproducing from 1% to 0.05%. This value
makes quite a difference; with a high probability of reproducing, the system will quickly tend
towards overpopulation. Too low a probability, and everything will likely quickly die out.

Writing the copy() function into the DNA class is easy since Processing includes a function
arraycopy() that copies the contents of one array into another.

This function will return a new bloop, the
child.

Bloop reproduce() {

A 1% chance of executing the code in this
conditional, i.e. a 1% chance of
reproducing

if (random(1) < 0.01) {

// Make the Bloop baby
}

}

Bloop reproduce() {
if (random(1) < 0.0005) {

Make a copy of the DNA.DNA childDNA = dna.copy();

1% mutation ratechildDNA.mutate(0.01);

Make a new bloop at the same location
with the new DNA.

return new Bloop(location, childDNA);

} else {

If the bloop does not reproduce, return null.return null;

}
}

class DNA {

This copy() function replaces crossover() in
this example.

DNA copy() {
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Now that we have all the pieces in place for selection and reproduction, we can finalize the
World class that manages the list of all Bloop objects (as well as a Food object, which itself is
a list of PVector locations for food).

Before you run the example, take a moment to guess what size and speed of bloops the
system will evolve towards. We’ll discuss following the code.

Example 9.5: Evolution ecosystem

Make a new array the same length and copy
its contents.

float[] newgenes = new float[genes.length];

arraycopy(genes,newgenes);
return new DNA(newgenes);

}
}

World world;

setup() and draw() do nothing more than
create and run a World object.

void setup() {
size(600,400);
world = new World(20);

}

void draw() {
background(255);
world.run();

}

class World {

The World object keeps track of the
population bloops as well as the food.

ArrayList<Bloop> bloops;

Food food;

World(int num) {
food = new Food(num);
bloops = new ArrayList<Bloop>();
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If you guessed medium-sized bloops with medium speed, you were right. With the design of
this system, bloops that are large are simply too slow to find food. And bloops that are fast
are too small to find food. The ones that are able to live the longest tend to be in the
middle, large enough and fast enough to find food (but not too large or too fast). There are
also some anomalies. For example, if it so happens that a bunch of large bloops end up in
the same location (and barely move because they are so large), they may all die out
suddenly, leaving a lot of food for one large bloop who happens to be there to eat and
allowing a mini-population of large bloops to sustain themselves for a period of time in one
location.

This example is rather simplistic given its single gene and asexual reproduction. Here are
some suggestions for how you might apply the bloop example in a more elaborate
ecosystem simulation.

Creating the populationfor (int i = 0; i < num; i++) {

PVector location = new PVector(random(width),random(height));
DNA dna = new DNA();
bloops.add(new Bloop(l,dna));

}
}

void run() {
food.run();

for (int i = bloops.size()-1; i >= 0; i--) {

The bloops live their life.Bloop b = bloops.get(i);

b.run();
b.eat(food);

If one dies, it is removed from the
population and food is added at its
location.

if (b.dead()) {
bloops.remove(i);
food.add(b.location);

}

Here is where each living bloop has a
chance to reproduce. As long as a child is
made (i.e. not null) it is added to the
population.

Bloop child = b.reproduce();
if (child != null) bloops.add(child);

}
}

}
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The Ecosystem ProjectThe Ecosystem Project

Step 9 Exercise:

Add evolution to your ecosystem, building from the examples in this chapter.

• Add a population of predators to your ecosystem. Biological evolution
between predators and prey (or parasites and hosts) is often referred to as
an “arms race,” in which the creatures continuously adapt and counter-
adapt to each other. Can you achieve this behavior in a system of multiple
creatures?

• How would you implement crossover and mutation between two parents in
an ecosystem modeled after the bloops? Try implementing an algorithm so
that two creatures meet and mate when within a certain proximity. Can
you make creatures with gender?

• Try using the weights of multiple steering forces as a creature’s DNA. Can
you create a scenario in which creatures evolve to cooperate with each
other?

• One of the greatest challenges in ecosystem simulations is achieving a
nice balance. You will likely find that most of your attempts result in either
mass overpopulation (followed by mass extinction) or simply mass
extinction straight away. What techniques can you employ to achieve
balance? Consider using the genetic algorithm itself to evolve optimal
parameters for an ecosystem.
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Chapter 10. NeuralChapter 10. Neural
NetworksNetworks
“You can’t process me with a normal brain.”

— Charlie Sheen

We’re at the end of our story. This is the last official chapter of this book (though I envision
additional supplemental material for the website and perhaps new chapters in the future).
We began with inanimate objects living in a world of forces and gave those objects desires,
autonomy, and the ability to take action according to a system of rules. Next, we allowed
those objects to live in a population and evolve over time. Now we ask: What is each
object’s decision-making process? How can it adjust its choices by learning over time? Can
a computational entity process its environment and generate a decision?

The human brain can be described as a biological neural network—an interconnected web
of neurons transmitting elaborate patterns of electrical signals. Dendrites receive input
signals and, based on those inputs, fire an output signal via an axon. Or something like that.
How the human brain actually works is an elaborate and complex mystery, one that we
certainly are not going to attempt to tackle in rigorous detail in this chapter.
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The good news is that developing engaging animated systems with code does not require
scientific rigor or accuracy, as we’ve learned throughout this book. We can simply be inspired
by the idea of brain function.

In this chapter, we’ll begin with a conceptual overview of the properties and features of neural
networks and build the simplest possible example of one (a network that consists of a single
neuron). Afterwards, we’ll examine strategies for creating a “Brain” object that can be inserted
into our Vehicle class and used to determine steering. Finally, we’ll also look at techniques
for visualizing and animating a network of neurons.

Figure 10.1

10.1 Artificial Neural Networks: Introduction and10.1 Artificial Neural Networks: Introduction and
ApplicationApplication
Computer scientists have long been inspired by the human brain. In 1943, Warren S.
McCulloch, a neuroscientist, and Walter Pitts, a logician, developed the first conceptual model
of an artificial neural network. In their paper, "A logical calculus of the ideas imminent in
nervous activity,” they describe the concept of a neuron, a single cell living in a network of
cells that receives inputs, processes those inputs, and generates an output.

Their work, and the work of many scientists and researchers that followed, was not meant to
accurately describe how the biological brain works. Rather, an artificial neural network (which
we will now simply refer to as a “neural network”) was designed as a computational model
based on the brain to solve certain kinds of problems.

It’s probably pretty obvious to you that there are problems that are incredibly simple for a
computer to solve, but difficult for you. Take the square root of 964,324, for example. A quick
line of code produces the value 982, a number Processing computed in less than a
millisecond. There are, on the other hand, problems that are incredibly simple for you or me to
solve, but not so easy for a computer. Show any toddler a picture of a kitten or puppy and
they’ll be able to tell you very quickly which one is which. Say hello and shake my hand one
morning and you should be able to pick me out of a crowd of people the next day. But need a
machine to perform one of these tasks? Scientists have already spent entire careers
researching and implementing complex solutions.
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The most common application of neural networks in computing today is to perform one of
these “easy-for-a-human, difficult-for-a-machine” tasks, often referred to as pattern
recognition. Applications range from optical character recognition (turning printed or
handwritten scans into digital text) to facial recognition. We don’t have the time or need to
use some of these more elaborate artificial intelligence algorithms here, but if you are
interested in researching neural networks, I’d recommend the books Artificial Intelligence: A
Modern Approach by Stuart J. Russell and Peter Norvig and AI for Game Developers by
David M. Bourg and Glenn Seemann.

A neural network is a “connectionist”
computational system. The computational
systems we write are procedural; a
program starts at the first line of code,
executes it, and goes on to the next,
following instructions in a linear fashion. A
true neural network does not follow a linear
path. Rather, information is processed
collectively, in parallel throughout a
network of nodes (the nodes, in this case,
being neurons).

Here we have yet another example of a
complex system, much like the ones we
examined in Chapters 6, 7, and 8. The
individual elements of the network, the neurons, are simple. They read an input, process it,
and generate an output. A network of many neurons, however, can exhibit incredibly rich
and intelligent behaviors.

One of the key elements of a neural network is its ability to learn. A neural network is not
just a complex system, but a complex adaptiveadaptive system, meaning it can change its internal
structure based on the information flowing through it. Typically, this is achieved through the
adjusting of weights. In the diagram above, each line represents a connection between two
neurons and indicates the pathway for the flow of information. Each connection has a
weightweight, a number that controls the signal between the two neurons. If the network
generates a “good” output (which we’ll define later), there is no need to adjust the weights.
However, if the network generates a “poor” output—an error, so to speak—then the system
adapts, altering the weights in order to improve subsequent results.

There are several strategies for learning, and we’ll examine two of them in this chapter.

• Supervised LearningSupervised Learning —Essentially, a strategy that involves a teacher that is
smarter than the network itself. For example, let’s take the facial recognition
example. The teacher shows the network a bunch of faces, and the teacher
already knows the name associated with each face. The network makes its
guesses, then the teacher provides the network with the answers. The network
can then compare its answers to the known “correct” ones and make adjustments

Figure 10.2
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according to its errors. Our first neural network in the next section will follow this
model.

• Unsupervised LearningUnsupervised Learning —Required when there isn’t an example data set with known
answers. Imagine searching for a hidden pattern in a data set. An application of this
is clustering, i.e. dividing a set of elements into groups according to some unknown
pattern. We won’t be looking at any examples of unsupervised learning in this
chapter, as this strategy is less relevant for our examples.

• Reinforcement LearningReinforcement Learning —A strategy built on observation. Think of a little mouse
running through a maze. If it turns left, it gets a piece of cheese; if it turns right, it
receives a little shock. (Don’t worry, this is just a pretend mouse.) Presumably, the
mouse will learn over time to turn left. Its neural network makes a decision with an
outcome (turn left or right) and observes its environment (yum or ouch). If the
observation is negative, the network can adjust its weights in order to make a
different decision the next time. Reinforcement learning is common in robotics. At
time t, the robot performs a task and observes the results. Did it crash into a wall or
fall off a table? Or is it unharmed? We’ll look at reinforcement learning in the context
of our simulated steering vehicles.

This ability of a neural network to learn, to make adjustments to its structure over time, is what
makes it so useful in the field of artificial intelligence. Here are some standard uses of neural
networks in software today.

• Pattern RecognitionPattern Recognition —We’ve mentioned this several times already and it’s probably
the most common application. Examples are facial recognition, optical character
recognition, etc.

• Time Series PredictionTime Series Prediction —Neural networks can be used to make predictions. Will the
stock rise or fall tomorrow? Will it rain or be sunny?

• Signal ProcessingSignal Processing —Cochlear implants and hearing aids need to filter out
unnecessary noise and amplify the important sounds. Neural networks can be
trained to process an audio signal and filter it appropriately.

• ControlControl —You may have read about recent research advances in self-driving cars.
Neural networks are often used to manage steering decisions of physical vehicles
(or simulated ones).

• Soft SensorsSoft Sensors —A soft sensor refers to the process of analyzing a collection of many
measurements. A thermometer can tell you the temperature of the air, but what if
you also knew the humidity, barometric pressure, dewpoint, air quality, air density,
etc.? Neural networks can be employed to process the input data from many
individual sensors and evaluate them as a whole.

• Anomaly DetectionAnomaly Detection —Because neural networks are so good at recognizing patterns,
they can also be trained to generate an output when something occurs that doesn’t
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fit the pattern. Think of a neural network monitoring your daily routine over a long
period of time. After learning the patterns of your behavior, it could alert you when
something is amiss.

This is by no means a comprehensive list of applications of neural networks. But hopefully it
gives you an overall sense of the features and possibilities. The thing is, neural networks
are complicated and difficult. They involve all sorts of fancy mathematics. While this is all
fascinating (and incredibly important to scientific research), a lot of the techniques are not
very practical in the world of building interactive, animated Processing sketches. Not to
mention that in order to cover all this material, we would need another book—or more likely,
a series of books.

So instead, we’ll begin our last hurrah in the nature of code with the simplest of all neural
networks, in an effort to understand how the overall concepts are applied in code. Then
we’ll look at some Processing sketches that generate visual results inspired by these
concepts.

10.2 The Perceptron10.2 The Perceptron
Invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory, a perceptron is
the simplest neural network possible: a computational model of a single neuron. A
perceptron consists of one or more inputs, a processor, and a single output.

A perceptron follows the “feed-forward” model, meaning inputs are sent into the neuron,
are processed, and result in an output. In the diagram above, this means the network (one
neuron) reads from left to right: inputs come in, output goes out.

Let’s follow each of these steps in more detail.

Step 1: Receive inputs.

Say we have a perceptron with two inputs—let’s call them x1 and x2.

Figure 10.3: The perceptron
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Input 0: x1 = 12
Input 1: x2 = 4

Step 2: Weight inputs.

Each input that is sent into the neuron must first be weighted, i.e. multiplied by some value
(often a number between -1 and 1). When creating a perceptron, we’ll typically begin by
assigning random weights. Here, let’s give the inputs the following weights:

Weight 0: 0.5
Weight 1: -1

We take each input and multiply it by its weight.

Input 0 * Weight 0 ⇒ 12 * 0.5 = 6

Input 1 * Weight 1 ⇒ 4 * -1 = -4

Step 3: Sum inputs.

The weighted inputs are then summed.

Sum = 6 + -4 = 2

Step 4: Generate output.

The output of a perceptron is generated by passing that sum through an activation function. In
the case of a simple binary output, the activation function is what tells the perceptron whether
to “fire” or not. You can envision an LED connected to the output signal: if it fires, the light
goes on; if not, it stays off.

Activation functions can get a little bit hairy. If you start reading one of those artificial
intelligence textbooks looking for more info about activation functions, you may soon find
yourself reaching for a calculus textbook. However, with our friend the simple perceptron,
we’re going to do something really easy. Let’s make the activation function the sign of the
sum. In other words, if the sum is a positive number, the output is 1; if it is negative, the output
is -1.

Output = sign(sum) ⇒ sign(2) ⇒ +1
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Let’s review and condense these steps so we can implement them with a code snippet.

The Perceptron Algorithm:The Perceptron Algorithm:

1. For every input, multiply that input by its weight.

2. Sum all of the weighted inputs.

3. Compute the output of the perceptron based on that sum passed through an
activation function (the sign of the sum).

Let’s assume we have two arrays of numbers, the inputs and the weights. For example:

“For every input” implies a loop that multiplies each input by its corresponding weight.
Since we need the sum, we can add up the results in that very loop.

Once we have the sum we can compute the output.

float[] inputs = {12 , 4};
float[] weights = {0.5,-1};

Steps 1 and 2: Add up all the weighted
inputs.

float sum = 0;
for (int i = 0; i < inputs.length; i++) {

sum += inputs[i]*weights[i];
}

Step 3: Passing the sum through an
activation function

float output = activate(sum);

The activation functionint activate(float sum) {

Return a 1 if positive, -1 if negative.if (sum > 0) return 1;
else return -1;

}

10.3 Simple Pattern Recognition Using a10.3 Simple Pattern Recognition Using a
PerceptronPerceptron
Now that we understand the computational process of a perceptron, we can look at an
example of one in action. We stated that neural networks are often used for pattern
recognition applications, such as facial recognition. Even simple perceptrons can
demonstrate the basics of classification, as in the following example.
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Consider a line in two-dimensional space.
Points in that space can be classified as
living on either one side of the line or the
other. While this is a somewhat silly example
(since there is clearly no need for a neural
network; we can determine on which side a
point lies with some simple algebra), it
shows how a perceptron can be trained to
recognize points on one side versus
another.

Let’s say a perceptron has 2 inputs (the x-
and y-coordinates of a point). Using a sign activation function, the output will either be -1 or
1—i.e., the input data is classified according to the sign of the output. In the above diagram,
we can see how each point is either below the line (-1) or above (+1).

The perceptron itself can be diagrammed as follows:

We can see how there are two inputs (x and y), a weight for each input (weightx and weighty),

as well as a processing neuron that generates the output.

There is a pretty significant problem here, however. Let’s consider the point (0,0). What if we
send this point into the perceptron as its input: x = 0 and y = 0? What will the sum of its
weighted inputs be? No matter what the weights are, the sum will always be 0! But this can’t
be right—after all, the point (0,0) could certainly be above or below various lines in our two-
dimensional world.

To avoid this dilemma, our perceptron will require a third input, typically referred to as a biasbias
input. A bias input always has the value of 1 and is also weighted. Here is our perceptron with
the addition of the bias:

Figure 10.4

Figure 10.5
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Let’s go back to the point (0,0). Here are our inputs:

0 * weight for x = 0
0 * weight for y = 0
1 * weight for bias = weight for bias

The output is the sum of the above three values, 0 plus 0 plus the bias’s weight. Therefore,
the bias, on its own, answers the question as to where (0,0) is in relation to the line. If the
bias’s weight is positive, (0,0) is above the line; negative, it is below. It “biases” the
perceptron’s understanding of the line’s position relative to (0,0).

Figure 10.6

10.4 Coding the Perceptron10.4 Coding the Perceptron

We’re now ready to assemble the code for a Perceptron class. The only data the
perceptron needs to track are the input weights, and we could use an array of floats to store
these.

The constructor could receive an argument indicating the number of inputs (in this case
three: x, y, and a bias) and size the array accordingly.

A perceptron needs to be able to receive inputs and generate an output. We can package
these requirements into a function called feedforward(). In this example, we’ll have the

class Perceptron {
float[] weights;

Perceptron(int n) {
weights = new float[n];
for (int i = 0; i < weights.length; i++) {

The weights are picked randomly to start.weights[i] = random(-1,1);

}
}
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perceptron receive its inputs as an array (which should be the same length as the array of
weights) and return the output as an integer.

Presumably, we could now create a Perceptron object and ask it to make a guess for any
given point.

Did the perceptron get it right? At this point, the perceptron has no better than a 50/50
chance of arriving at the right answer. Remember, when we created it, we gave each weight a
random value. A neural network isn’t magic. It’s not going to be able to guess anything
correctly unless we teach it how to!

To train a neural network to answer correctly, we’re going to employ the method of
supervised learning that we described in section 10.1 (see page 445).

With this method, the network is provided with inputs for which there is a known answer. This
way the network can find out if it has made a correct guess. If it’s incorrect, the network can
learn from its mistake and adjust its weights. The process is as follows:

1. Provide the perceptron with inputs for which there is a known answer.

int feedforward(float[] inputs) {
float sum = 0;
for (int i = 0; i < weights.length; i++) {

sum += inputs[i]*weights[i];
}

Result is the sign of the sum, -1 or +1. Here
the perceptron is making a guess. Is it on
one side of the line or the other?

return activate(sum);

}

Figure 10.7

Create the Perceptron.Perceptron p = new Perceptron(3);

The input is 3 values: x,y and bias.float[] point = {50,-12,1};

The answer!int result = p.feedforward(point);
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2. Ask the perceptron to guess an answer.

3. Compute the error. (Did it get the answer right or wrong?)

4. Adjust all the weights according to the error.

5. Return to Step 1 and repeat!

Steps 1 through 4 can be packaged into a function. Before we can write the entire function,
however, we need to examine Steps 3 and 4 in more detail. How do we define the
perceptron’s error? And how should we adjust the weights according to this error?

The perceptron’s error can be defined as the difference between the desired answer and its
guess.

ERROR = DESIRED OUTPUT - GUESS OUTPUT

The above formula may look familiar to you. In Chapter 6 (see page 263), we computed a
steering force as the difference between our desired velocity and our current velocity.

STEERING = DESIRED VELOCITY - CURRENT VELOCITY

This was also an error calculation. The current velocity acts as a guess and the error (the
steering force) tells us how to adjust the velocity in the right direction. In a moment, we’ll
see how adjusting the vehicle’s velocity to follow a target is just like adjusting the weights
of a neural network to arrive at the right answer.

In the case of the perceptron, the output has only two possible values: +1+1 or -1-1. This means
there are only three possible errors.

If the perceptron guesses the correct answer, then the guess equals the desired output and
the error is 0. If the correct answer is -1 and we’ve guessed +1, then the error is -2. If the
correct answer is +1 and we’ve guessed -1, then the error is +2.

DesiredDesired GuessGuess ErrorError

-1 -1 0

-1 +1 -2

+1 -1 +2

+1 +1 0
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The error is the determining factor in how the perceptron’s weights should be adjusted. For
any given weight, what we are looking to calculate is the change in weight, often called
Δweight (or “delta” weight, delta being the Greek letter Δ).

NEW WEIGHT = WEIGHT + ΔWEIGHT

Δweight is calculated as the error multiplied by the input.

ΔWEIGHT = ERROR * INPUT

Therefore:

NEW WEIGHT = WEIGHT + ERROR * INPUT

To understand why this works, we can again return to steering (see page 263). A steering
force is essentially an error in velocity. If we apply that force as our acceleration (Δvelocity),
then we adjust our velocity to move in the correct direction. This is what we want to do with
our neural network’s weights. We want to adjust them in the right direction, as defined by the
error.

With steering, however, we had an additional variable that controlled the vehicle’s ability to
steer: the maximum force. With a high maximum force, the vehicle was able to accelerate and
turn very quickly; with a lower force, the vehicle would take longer to adjust its velocity. The
neural network will employ a similar strategy with a variable called the “learning constant.”
We’ll add in the learning constant as follows:

NEW WEIGHT = WEIGHT + ERROR * INPUT * LEARNING CONSTANT

Notice that a high learning constant means the weight will change more drastically. This may
help us arrive at a solution more quickly, but with such large changes in weight it’s possible
we will overshoot the optimal weights. With a small learning constant, the weights will be
adjusted slowly, requiring more training time but allowing the network to make very small
adjustments that could improve the network’s overall accuracy.

Assuming the addition of a variable c for the learning constant, we can now write a training
function for the perceptron following the above steps.

A new variable is introduced to control the
learning rate.

float c = 0.01;

Step 1: Provide the inputs and known
answer. These are passed in as arguments
to train().

void train(float[] inputs, int desired) {

Step 2: Guess according to those inputs.int guess = feedforward(inputs);

Step 3: Compute the error (difference
between answer and guess).

float error = desired - guess;

The Nature of Code (v005)

455



We can now see the Perceptron class as a whole.

To train the perceptron, we need a set of inputs with a known answer. We could package
this up in a class like so:

Step 4: Adjust all the weights according to
the error and learning constant.

for (int i = 0; i < weights.length; i++) {
weights[i] += c * error * inputs[i];

}

}

class Perceptron {

The Perceptron stores its weights and
learning constants.

float[] weights;
float c = 0.01;

Perceptron(int n) {
weights = new float[n];

Weights start off random.for (int i = 0; i < weights.length; i++) {
weights[i] = random(-1,1);

}

}

Return an output based on inputs.int feedforward(float[] inputs) {
float sum = 0;
for (int i = 0; i < weights.length; i++) {

sum += inputs[i]*weights[i];
}
return activate(sum);

}

Output is a +1 or -1.int activate(float sum) {
if (sum > 0) return 1;
else return -1;

}

Train the network against known data.void train(float[] inputs, int desired) {
int guess = feedforward(inputs);
float error = desired - guess;
for (int i = 0; i < weights.length; i++) {

weights[i] += c * error * inputs[i];
}

}

}

class Trainer {
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Now the question becomes, how do we pick a point and know whether it is above or below a
line? Let’s start with the formula for a line, where y is calculated as a function of x:

y = f(x)

In generic terms, a line can be described as:

y = ax + b

Here’s a specific example:

y = 2*x + 1

We can then write a Processing function with this in mind.

So, if we make up a point:

How do we know if this point is above or below the line? The line function f(x) gives us the y
value on the line for that x position. Let’s call that yline.

If the y value we are examining is above the line, it will be less than yline.

A "Trainer" object stores the inputs and the
correct answer.

float[] inputs;

int answer;

Trainer(float x, float y, int a) {
inputs = new float[3];
inputs[0] = x;
inputs[1] = y;

Note that the Trainer has the bias input built
into its array.

inputs[2] = 1;

answer = a;
}

}

A function to calculate y based on x along a
line

float f(float x) {
return 2*x+1;

}

float x = random(width);
float y = random(height);

The y position on the linefloat yline = f(x);

The Nature of Code (v005)

457



We can then make a Trainer object with the inputs and the correct answer.

Assuming we had a Perceptron object ptron, we could then train it by sending the inputs
along with the known answer.

Now, it’s important to remember that this is just a demonstration. Remember our
Shakespeare-typing monkeys (see page 392)? We asked our genetic algorithm to solve for
“to be or not to be”—an answer we already knew. We did this to make sure our genetic
algorithm worked properly. The same reasoning applies to this example. We don’t need a
perceptron to tell us whether a point is above or below a line; we can do that with simple
math. We are using this scenario, one that we can easily solve without a perceptron, to
demonstrate the perceptron’s algorithm as well as easily confirm that it is working properly.

Let’s look at how the perceptron works with an array of many training points.

Figure 10.8

if (y < yline) {

The answer is -1 if y is above the line.answer = -1;

} else {
answer = 1;

}

Trainer t = new Trainer(x, y, answer);

ptron.train(t.inputs,t.answer);
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Example 10.1: The Perceptron

The PerceptronPerceptron ptron;

2,000 training pointsTrainer[] training = new Trainer[2000];

int count = 0;

The formula for a linefloat f(float x) {
return 2*x+1;

}

void setup() {
size(400, 400);

ptron = new Perceptron(3);

Make 2,000 training points.for (int i = 0; i < training.length; i++) {

float x = random(-width/2,width/2);
float y = random(-height/2,height/2);

Is the correct answer 1 or -1?int answer = 1;
if (y < f(x)) answer = -1;

training[i] = new Trainer(x, y, answer);
}

}

void draw() {
background(255);
translate(width/2,height/2);

ptron.train(training[count].inputs, training[count].answer);

For animation, we are training one point at a
time.

count = (count + 1) % training.length;

for (int i = 0; i < count; i++) {
stroke(0);
int guess = ptron.feedforward(training[i].inputs);
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Show the classification—no fill for -1,
black for +1.

if (guess > 0) noFill();
else fill(0);

ellipse(training[i].inputs[0], training[i].inputs[1], 8, 8);
}

}

Instead of using the supervised learning model above, can you train the neural
network to find the right weights by using a genetic algorithm?

Exercise 10.1Exercise 10.1

Visualize the perceptron itself. Draw the inputs, the processing node, and the output.

Exercise 10.2Exercise 10.2

10.5 A Steering Perceptron10.5 A Steering Perceptron
While classifying points according to their position above or below a line was a useful
demonstration of the perceptron in action, it doesn’t have much practical relevance to the
other examples throughout this book. In this section, we’ll take the concepts of a perceptron
(array of inputs, single output), apply it to steering behaviors, and demonstrate
reinforcement learning along the way.

We are now going to take significant creative license with the concept of a neural network.
This will allow us to stick with the basics and avoid some of the highly complex algorithms
associated with more sophisticated neural networks. Here we’re not so concerned with
following rules outlined in artificial intelligence textbooks—we’re just hoping to make
something interesting and brain-like.

Remember our good friend the Vehicle class? You know, that one for making objects with
a location, velocity, and acceleration? That could obey Newton’s laws with an
applyForce() function and move around the window according to a variety of steering
rules?

What if we added one more variable to our Vehicle class?

class Vehicle {
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Here’s our scenario. Let’s say we have a Processing sketch with an ArrayList of targets and
a single vehicle.

Let’s say that the vehicle seeks all of the targets. According to the principles of Chapter 6, we
would next write a function that calculates a steering force towards each target, applying each
force one at a time to the object’s acceleration. Assuming the targets are an ArrayList of
PVector objects, it would look something like:

In Chapter 6, we also examined how we could create more dynamic simulations by weighting
each steering force according to some rule. For example, we could say that the farther you
are from a target, the stronger the force.

Giving the vehicle a brain!Perceptron brain;

PVector location;
PVector velocity;
PVector acceleration;
//etc...

Figure 10.9

void seek(ArrayList<PVector> targets) {
for (PVector target : targets) {

For every target, apply a steering force
towards the target.

PVector force = seek(targets.get(i));

applyForce(force);
}

}

void seek(ArrayList<PVector> targets) {
for (PVector target : targets) {

PVector force = seek(targets.get(i));
float d = PVector.dist(target,location);
float weight = map(d,0,width,0,5);
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But what if instead we could ask our brain (i.e. perceptron) to take in all the forces as an
input, process them according to weights of the perceptron inputs, and generate an output
steering force? What if we could instead say:

In other words, instead of weighting and accumulating the forces inside our vehicle, we
simply pass an array of forces to the vehicle’s “brain” object and allow the brain to weight
and sum the forces for us. The output is then applied as a steering force. This opens up a
range of possibilities. A vehicle could make decisions as to how to steer on its own, learning
from its mistakes and responding to stimuli in its environment. Let’s see how this works.

We can use the line classification perceptron as a model, with one important difference—the
inputs are not single numbers, but vectors! Let’s look at how the feedforward() function
works in our vehicle’s perceptron, alongside the one from our previous example.

Vehicle PVector inputsVehicle PVector inputs Line float inputsLine float inputs

PVector feedforward(PVector[] forces) {
// Sum is a PVector.
PVector sum = new PVector();
for (int i = 0; i < weights.length; i++) {

// Vector addition and multiplication
forces[i].mult(weights[i]);
sum.add(forces[i]);

}
// No activation function
return sum;

}

int feedforward(float[] inputs) {
// Sum is a float.
float sum = 0;
for (int i = 0; i < weights.length; i++) {

// Scalar addition and multiplication
sum += inputs[i]*weights[i];

}
// Activation function
return activate(sum);

}

Weighting each steering force individuallyforce.mult(weight);

applyForce(force);
}

}

void seek(ArrayList<PVector> targets) {

Make an array of inputs for our brain.PVector[] forces = new
PVector[targets.size()];

for (int i = 0; i < forces.length; i++) {

Fill the array with a steering force for each
target.

forces[i] = seek(targets.get(i));

}

Ask our brain for a result and apply that as
the force!

PVector output = brain.process(forces);
applyForce(output);

}
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Note how these two functions implement nearly identical algorithms, with two differences:

1. Summing PVectors.Summing PVectors. Instead of a series of numbers added together, each input is a
PVector and must be multiplied by the weight and added to a sum according to the
mathematical PVector functions.

2. No activation function.No activation function. In this case, we’re taking the result and applying it directly
as a steering force for the vehicle, so we’re not asking for a simple boolean value
that classifies it in one of two categories. Rather, we’re asking for raw output itself,
the resulting overall force.

Once the resulting steering force has been applied, it’s time to give feedback to the brain, i.e.
reinforcement learning. Was the decision to steer in that particular direction a good one or a
bad one? Presumably if some of the targets were predators (resulting in being eaten) and
some of the targets were food (resulting in greater health), the network would adjust its
weights in order to steer away from the predators and towards the food.

Let’s take a simpler example, where the vehicle simply wants to stay close to the center of the
window. We’ll train the brain as follows:

Here we are passing the brain a copy of all
the inputs (which it will need for error
correction) as well as an observation about
its environment: a PVector that points from
its current location to where it desires to be.
This PVector essentially serves as the
error—the longer the PVector, the worse the vehicle is performing; the shorter, the better.

The brain can then apply this “error” vector (which has two error values, one for x and one for
y) as a means for adjusting the weights, just as we did in the line classification example.

Training the VehicleTraining the Vehicle Training the Line ClassifierTraining the Line Classifier

void train(PVector[] forces, PVector error) {

for (int i = 0; i < weights.length; i++) {
weights[i] += c*error.x*forces[i].x;
weights[i] += c*error.y*forces[i].y;

}
}

void train(float[] inputs, int desired) {

int guess = feedforward(inputs);
float error = desired - guess;

for (int i = 0; i < weights.length; i++) {
weights[i] += c * error * inputs[i];

}
}

PVector desired = new PVector(width/2,height/2);
PVector error = PVector.sub(desired, location);
brain.train(forces,error);

Figure 10.10
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Because the vehicle observes its own error, there is no need to calculate one; we can
simply receive the error as an argument. Notice how the change in weight is processed
twice, once for the error along the x-axis and once for the y-axis.

We can now look at the Vehicle class and see how the steer function uses a perceptron to
control the overall steering force. The new content from this chapter is highlighted.

Example 10.2: Perceptron steering

weights[i] += c*error.x*forces[i].x;
weights[i] += c*error.y*forces[i].y;

class Vehicle {

The Vehicle now has a brain.Perceptron brain;

Same old variables for physicsPVector location;
PVector velocity;
PVector acceleration;
float maxforce;
float maxspeed;

The Vehicle creates a perceptron with n
inputs and a learning constant.

Vehicle(int n, float x, float y) {

brain = new Perceptron(n,0.001);
acceleration = new PVector(0,0);
velocity = new PVector(0,0);
location = new PVector(x,y);
maxspeed = 4;
maxforce = 0.1;

}
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Same old update() functionvoid update() {
velocity.add(acceleration);
velocity.limit(maxspeed);
location.add(velocity);
acceleration.mult(0);

}

Same old applyForce() functionvoid applyForce(PVector force) {
acceleration.add(force);

}

void steer(ArrayList<PVector> targets) {
PVector[] forces = new PVector[targets.size()];

for (int i = 0; i < forces.length; i++) {
forces[i] = seek(targets.get(i));

}

All the steering forces are inputs.PVector result = brain.feedforward(forces);

The result is applied.applyForce(result);

PVector desired = new PVector(width/2,height/2);

PVector error = PVector.sub(desired, location);
brain.train(forces,error);

}

The brain is trained according to the
distance to the center.

Same old seek() functionPVector seek(PVector target) {
PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);
PVector steer = PVector.sub(desired,velocity);
steer.limit(maxforce);
return steer;

}

}
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Visualize the weights of the network. Try mapping each target’s corresponding
weight to its brightness.

Exercise 10.3Exercise 10.3

Try different rules for reinforcement learning. What if some targets are desirable and
some are undesirable?

Exercise 10.4Exercise 10.4

10.6 It’s a “Network,” Remember?10.6 It’s a “Network,” Remember?
Yes, a perceptron can have multiple inputs, but it is still a lonely neuron. The power of
neural networks comes in the networking itself. Perceptrons are, sadly, incredibly limited in
their abilities. If you read an AI textbook, it will say that a perceptron can only solve linearlylinearly
separableseparable problems. What’s a linearly separable problem? Let’s take a look at our first
example, which determined whether points were on one side of a line or the other.

On the left of Figure 10.11, we have classic linearly separable data. Graph all of the
possibilities; if you can classify the data with a straight line, then it is linearly separable. On
the right, however, is non-linearly separable data. You can’t draw a straight line to separate
the black dots from the gray ones.

One of the simplest examples of a non-linearly separable problem is XOR, or “exclusive or.”
We’re all familiar with AND. For A AND B to be true, both A and B must be true. With OR,
either A or B can be true for A OR B to evaluate as true. These are both linearly separable
problems. Let’s look at the solution space, a “truth table.”

Figure 10.11
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See how you can draw a line to separate the true outputs from the false ones?

XOR is the equivalent of OR and NOT AND. In other words, A XOR B only evaluates to true if
one of them is true. If both are false or both are true, then we get false. Take a look at the
following truth table.

This is not linearly separable. Try to draw a straight line to separate the true outputs from the
false ones—you can’t!

So perceptrons can’t even solve something as simple as XOR. But what if we made a network
out of two perceptrons? If one perceptron can solve OR and one perceptron can solve NOT
AND, then two perceptrons combined can solve XOR.

Figure 10.12

Figure 10.13
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The above diagram is known as a multi-layered perceptron, a network of many neurons.
Some are input neurons and receive the inputs, some are part of what’s called a “hidden”
layer (as they are connected to neither the inputs nor the outputs of the network directly),
and then there are the output neurons, from which we read the results.

Training these networks is much more complicated. With the simple perceptron, we could
easily evaluate how to change the weights according to the error. But here there are so
many different connections, each in a different layer of the network. How does one know
how much each neuron or connection contributed to the overall error of the network?

The solution to optimizing weights of a multi-layered network is known as backpropagationbackpropagation.
The output of the network is generated in the same manner as a perceptron. The inputs
multiplied by the weights are summed and fed forward through the network. The difference
here is that they pass through additional layers of neurons before reaching the output.
Training the network (i.e. adjusting the weights) also involves taking the error (desired result
- guess). The error, however, must be fed backwards through the network. The final error
ultimately adjusts the weights of all the connections.

Backpropagation is a bit beyond the scope of this book and involves a fancier activation
function (called the sigmoid function) as well as some basic calculus. If you are interested in
how backpropagation works, check the book website (and GitHub repository) for an
example that solves XOR using a multi-layered feed forward network with backpropagation.

Instead, here we’ll focus on a code framework for building the visual architecture of a
network. We’ll make Neuron objects and Connection objects from which a Network object
can be created and animated to show the feed forward process. This will closely resemble
some of the force-directed graph examples we examined in Chapter 5 (toxiclibs).

Figure 10.14

10.7 Neural Network Diagram10.7 Neural Network Diagram
Our goal will be to create the following simple network diagram:
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The primary building block for this diagram is a neuron. For the purpose of this example, the
Neuron class describes an entity with an (x,y) location.

The Network class can then manage an ArrayList of neurons, as well as have its own
location (so that each neuron is drawn relative to the network’s center). This is particle
systems 101. We have a single element (a neuron) and a network (a “system” of many
neurons).

Figure 10.15

An incredibly simple Neuron class stores
and displays the location of a single neuron.

class Neuron {

PVector location;

Neuron(float x, float y) {
location = new PVector(x, y);

}

void display() {
stroke(0);
fill(0);
ellipse(location.x, location.y, 16, 16);

}
}

A Network is a list of neurons.class Network {
ArrayList<Neuron> neurons;

PVector location;

Network(float x, float y) {
location = new PVector(x,y);
neurons = new ArrayList<Neuron>();

}

We can add an neuron to the network.void addNeuron(Neuron n) {
neurons.add(n);

}
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Now we can pretty easily make the diagram above.

The above yields:

We can draw the entire network.void display() {
pushMatrix();
translate(location.x, location.y);
for (Neuron n : neurons) {

n.display();
}
popMatrix();

}

}

Network network;

void setup() {
size(640, 360);

Make a Network.network = new Network(width/2,height/2);

Make the Neurons.Neuron a = new Neuron(-200,0);
Neuron b = new Neuron(0,100);
Neuron c = new Neuron(0,-100);
Neuron d = new Neuron(200,0);

Add the Neurons to the network.network.addNeuron(a);
network.addNeuron(b);
network.addNeuron(c);
network.addNeuron(d);

}

void draw() {
background(255);

Show the network.network.display();

}
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What’s missing, of course, is the connection. We can consider a Connection object to be
made up of three elements, two neurons (from Neuron a to Neuron b) and a weight.

Once we have the idea of a Connection object, we can write a function (let’s put it inside the
Network class) that connects two neurons together—the goal being that in addition to making
the neurons in setup(), we can also connect them.

The Network class therefore needs a new function called connect(), which makes a
Connection object between the two specified neurons.

class Connection {

A connection is between two neurons.Neuron a;
Neuron b;

A connection has a weight.float weight;

Connection(Neuron from, Neuron to,float w) {
weight = w;
a = from;
b = to;

}

A connection is drawn as a line.void display() {

stroke(0);
strokeWeight(weight*4);
line(a.location.x, a.location.y, b.location.x, b.location.y);

}
}

void setup() {
size(640, 360);
network = new Network(width/2,height/2);

Neuron a = new Neuron(-200,0);
Neuron b = new Neuron(0,100);
Neuron c = new Neuron(0,-100);
Neuron d = new Neuron(200,0);

Making connections between the neuronsnetwork.connect(a,b);

network.connect(a,c);
network.connect(b,d);
network.connect(c,d);

network.addNeuron(a);
network.addNeuron(b);
network.addNeuron(c);
network.addNeuron(d);

}
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Presumably, we might think that the Network should store an ArrayList of connections,
just like it stores an ArrayList of neurons. While useful, in this case such an ArrayList is
not necessary and is missing an important feature that we need. Ultimately we plan to “feed
forward" the neurons through the network, so the Neuron objects themselves must know to
which neurons they are connected in the “forward” direction. In other words, each neuron
should have its own list of Connection objects. When a connects to b, we want a to store a
reference of that connection so that it can pass its output to b when the time comes.

In some cases, we also might want Neuron b to know about this connection, but in this
particular example we are only going to pass information in one direction.

For this to work, we have to add an ArrayList of connections to the Neuron class. Then we
implement the addConnection() function that stores the connection in that ArrayList.

The neuron’s display() function can draw the connections as well. And finally, we have
our network diagram.

void connect(Neuron a, Neuron b) {

Connection has a random weight.Connection c = new Connection(a, b,
random(1));

// But what do we do with the Connection object?
}

void connect(Neuron a, Neuron b) {
Connection c = new Connection(a, b, random(1));
a.addConnection(c);

}

class Neuron {
PVector location;

The neuron stores its connections.ArrayList<Connection> connections;

Neuron(float x, float y) {
location = new PVector(x, y);
connections = new ArrayList<Connection>();

}

Adding a connection to this neuronvoid addConnection(Connection c) {
connections.add(c);

}
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Example 10.3: Neural network diagram

void display() {
stroke(0);
strokeWeight(1);
fill(0);
ellipse(location.x, location.y, 16, 16);

Drawing all the connectionsfor (Connection c : connections) {
c.display();

}

}
}

10.8 Animating Feed Forward10.8 Animating Feed Forward
An interesting problem to consider is how to visualize the flow of information as it travels
throughout a neural network. Our network is built on the feed forward model, meaning that an
input arrives at the first neuron (drawn on the lefthand side of the window) and the output of
that neuron flows across the connections to the right until it exits as output from the network
itself.

Our first step is to add a function to the network to receive this input, which we’ll make a
random number between 0 and 1.

void setup() {

All our old network set up code

A new function to send in an inputnetwork.feedforward(random(1));

}

The Nature of Code (v005)

473



The network, which manages all the neurons, can choose to which neurons it should apply
that input. In this case, we’ll do something simple and just feed a single input into the first
neuron in the ArrayList, which happens to be the left-most one.

What did we do? Well, we made it necessary to add a function called feedforward() in the
Neuron class that will receive the input and process it.

If you recall from working with our perceptron, the standard task that the processing unit
performs is to sum up all of its inputs. So if our Neuron class adds a variable called sum, it
can simply accumulate the inputs as they are received.

The neuron can then decide whether it should “fire,” or pass an output through any of its
connections to the next layer in the network. Here we can create a really simple activation
function: if the sum is greater than 1, fire!

class Network {

A new function to feed an input into the
neuron

void feedforward(float input) {
Neuron start = neurons.get(0);
start.feedforward(input);

}

class Neuron

void feedforward(float input) {

What do we do with the input?

}

class Neuron

int sum = 0;

void feedforward(float input) {

Accumulate the sums.sum += input;

}

void feedforward(float input) {
sum += input;

Activate the neuron and fire the outputs?if (sum > 1) {

fire();

If we’ve fired off our output, we can reset
our sum to 0.

sum = 0;

}
}
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Now, what do we do in the fire() function? If you recall, each neuron keeps track of its
connections to other neurons. So all we need to do is loop through those connections and
feedforward() the neuron’s output. For this simple example, we’ll just take the neuron’s sum
variable and make it the output.

Here’s where things get a little tricky. After all, our job here is not to actually make a
functioning neural network, but to animate a simulation of one. If the neural network were just
continuing its work, it would instantly pass those inputs (multiplied by the connection’s weight)
along to the connected neurons. We’d say something like:

But this is not what we want. What we want to do is draw something that we can see traveling
along the connection from Neuron a to Neuron b.

Let’s first think about how we might do that. We know the location of Neuron a; it’s the
PVector a.location. Neuron b is located at b.location. We need to start something moving
from Neuron a by creating another PVector that will store the path of our traveling data.

Once we have a copy of that location, we can use any of the motion algorithms that we’ve
studied throughout this book to move along this path. Here—let’s pick something very simple
and just interpolate from a to b.

Along with the connection’s line, we can then draw a circle at that location:

This resembles the following:

void fire() {
for (Connection c : connections) {

The Neuron sends the sum out through all
of its connections

c.feedforward(sum);

}
}

class Connection {

void feedforward(float val) {
b.feedforward(val*weight);

}

PVector sender = a.location.get();

sender.x = lerp(sender.x, b.location.x, 0.1);
sender.y = lerp(sender.y, b.location.y, 0.1);

stroke(0);
line(a.location.x, a.location.y, b.location.x, b.location.y);
fill(0);
ellipse(sender.x, sender.y, 8, 8);
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OK, so that’s how we might move something along the connection. But how do we know
when to do so? We start this process the moment the Connection object receives the
“feedforward” signal. We can keep track of this process by employing a simple boolean to
know whether the connection is sending or not. Before, we had:

Now, instead of sending the value on straight away, we’ll trigger an animation:

Notice how our Connection class now needs three new variables. We need a boolean
“sending” that starts as false and that will track whether or not the connection is actively
sending (i.e. animating). We need a PVector “sender” for the location where we’ll draw the
traveling dot. And since we aren’t passing the output along this instant, we’ll need to store it
in a variable that will do the job later.

The feedforward() function is called the moment the connection becomes active. Once it’s
active, we’ll need to call another function continuously (each time through draw()), one that
will update the location of the traveling data.

Figure 10.16

void feedforward(float val) {
b.feedforward(val*weight);

}

class Connection {

boolean sending = false;
PVector sender;
float output;

void feedforward(float val) {

Sending is now true.sending = true;

Start the animation at the location of
Neuron A.

sender = a.location.get();

Store the output for when it is actually time
to feed it forward.

output = val*weight;

}

void update() {
if (sending) {

As long as we’re sending, interpolate our
points.

sender.x = lerp(sender.x, b.location.x,
0.1);

sender.y = lerp(sender.y, b.location.y, 0.1);

}
}
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We’re missing a key element, however. We need to check if the sender has arrived at location
b, and if it has, feed forward that output to the next neuron.

Let’s look at the Connection class all together, as well as our new draw() function.

Example 10.4: Animating neural network diagram

void update() {
if (sending) {

sender.x = lerp(sender.x, b.location.x, 0.1);
sender.y = lerp(sender.y, b.location.y, 0.1);

How far are we from neuron b?float d = PVector.dist(sender, b.location);

If we’re close enough (within one pixel) pass
on the output. Turn off sending.

if (d < 1) {

b.feedforward(output);
sending = false;

}
}

}

void draw() {
background(255);

The Network now has a new update()
method that updates all of the Connection
objects.

network.update();

network.display();

if (frameCount % 30 == 0) {

We are choosing to send in an input every
30 frames.

network.feedforward(random(1));

}
}

class Connection {

The Nature of Code (v005)

477



The Connection’s datafloat weight;

Neuron a;
Neuron b;

Variables to track the animationboolean sending = false;

PVector sender;
float output = 0;

Connection(Neuron from, Neuron to, float w) {
weight = w;
a = from;
b = to;

}

The Connection is active with data
traveling from a to b.

void feedforward(float val) {

output = val*weight;
sender = a.location.get();
sending = true;

}

Update the animation if it is sending.void update() {

if (sending) {
sender.x = lerp(sender.x, b.location.x, 0.1);
sender.y = lerp(sender.y, b.location.y, 0.1);
float d = PVector.dist(sender, b.location);
if (d < 1) {

b.feedforward(output);
sending = false;

}
}

}

Draw the connection as a line and traveling
circle.

void display() {

stroke(0);
strokeWeight(1+weight*4);
line(a.location.x, a.location.y, b.location.x, b.location.y);

if (sending) {
fill(0);
strokeWeight(1);
ellipse(sender.x, sender.y, 16, 16);

}
}

}
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The network in the above example was manually configured by setting the location of
each neuron and its connections with hard-coded values. Rewrite this example to
generate the network’s layout via an algorithm. Can you make a circular network
diagram? A random one? An example of a multi-layered network is below.

Exercise 10.5Exercise 10.5

Rewrite the example so that each neuron keeps track of its forward and backward
connections. Can you feed inputs through the network in any direction?

Exercise 10.6Exercise 10.6

Instead of lerp(), use moving bodies with steering forces to visualize the flow of
information in the network.

Exercise 10.7Exercise 10.7
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The Ecosystem ProjectThe Ecosystem Project

Step 10 Exercise:

Try incorporating the concept of a “brain” into your creatures.

• Use reinforcement learning in the creatures’ decision-making process.
• Create a creature that features a visualization of its brain as part of its

design (even if the brain itself is not functional).
• Can the ecosystem as a whole emulate the brain? Can elements of the

environment be neurons and the creatures act as inputs and outputs?

The endThe end

If you’re still reading, thank you! You’ve reached the end of the book. But for as much
material as this book contains, we’ve barely scratched the surface of the world we inhabit
and of techniques for simulating it. It’s my intention for this book to live as an ongoing
project, and I hope to continue adding new tutorials and examples to the book’s website
(http://natureofcode.com) as well as expand and update the printed material. Your feedback
is truly appreciated, so please get in touch via email at (daniel@shiffman.net) or by
contributing to the GitHub repository (http://github.com/shiffman/The-Nature-of-Code/), in
keeping with the open-source spirit of the project. Share your work. Keep in touch. Let’s be
two with nature.
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competition/cooperation component 300

connectionist computational system 446

feedback component 300

group behavior 300

key principles of 299

non-linearity component 299

superorganisms 299

Complexity class (Wolfram classification) 341

Computational Beauty of Nature (Flake) 314

connected systems 249 , 253

force-directed graphs 253

strings 249

connectionist computational system 446

constrain() function (Processing) 280

constructor 3 , 47 , 75

arguments, adding to 75

Contact objects (PBox2D) 236

ContactListener class (JBox2D) 234

continuous (cellular automata) 352

contract() function (Processing) 149

control (of physical objects) 447

Conway's Game of Life (Klise) 345

Conway, John 342

coordinate systems 112 , 196

Box2D vs. Processing 196

Cartesian 112

Processing and 112

polar 112

coordPixelsToWorld() function (PBox2D) 197

coordWorldToPixels() function (PBox2D) 198

Cornell Aeronautical Laboratory 448

cos() function (Processing) 113

cosine lookup tables 318
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Crayon Physics 190

createBody() function (PBox2D) 200

createFixture() function (PBox2D) 202

cross() function (PVector class) 37

crossover (natural selection algorithms) 400 , 408

implementing 408

D
damping 131

dampingRatio setting (Box2D joint element) 223

Darwinian natural selection 394

degrees 101 , 103

radians, converting to 103

delta weight 454

density 67

derivatives 238

Descartes, René 112

desired velocity 264 , 274

destroyBody() function (PBox2D) 208

differentiation 238

dissipative force 80

dist() function (PVector class) 37

distance joints 222

DistanceJointDef (Box2D joint type) 223

distributions, custom 14

distributions, non-uniform 7 , 8 , 14 , 15 , 16 , 17

Monte Carlo method 16

Perlin noise 17

creating with arrays 8

custom 14

probability and 7

qualifying random values 15

distributions, normal 11

div() function (PVector class) 41

dot product (PVector) 282 , 283 , 284

defined 283

theta 284

dot syntax 35

dot() function (PVector class) 37

drag force 83

dynamic (body type) 199

E
ecosystem simulation genetic algorithms 392 , 435 ,
437 , 438 , 439

genotype 438

lifespans, varying 437

phenotype 438

reproduction 439

selection 439

efficiency 315 , 316 , 317 , 318 , 319

Big O Notation 315

Big O Notation N-Squared 315

bin-lattice spatial subdivision 316

magSq() function (PVector class). 318

sine/cosine lookup tables 318

temporary objects and 319

elementary cellular automata 325 , 330 , 332 , 333
, 336

drawing 336

edge cases and 332

generations, maintaining integrity of 333

implementing 330

emitter 146

endContact() function (PBox2D) 235

endShape() function (Processing) 217

equilibrium 64

Euclid 27 , 355

Euclidean geometry 355 , 358

fractals and 358

Euclidean vector 27

Euler integration 239 , 240

symplectic Euler (Box2D) 240

Euler, Leonhard 239

evolution 390 , 391 , 394

Darwinian natural selection 394

genetic algorithms 391

modeling 390

evolutionary computing 392

Evolved Virtual Creatures (Sims) 430

exclusive or (XOR) 466

exit conditions for recursion 361

expand() function (Processing) 149
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Exploring Emergence (Resnick/Silverman) 345

extends keyword (Processing) 164

F
factorial 359

feed-forward model (neural networks) 448 , 473

animating 473

Fisica 192

fitness functions (natural selection algorithms) 397 ,
414 , 416 , 417 , 427 , 429 , 436

avoidance of obstacles and 427

design your own 416

ecosystem simulations and 436

evolving for specific attributes 429

exponential vs. linear 414

robotic enslavement of humanity and 417

fixture (Box2D element) 194 , 201 , 202

attaching to body element 202

creating 201

Flake, Gary 314

flocking 308 , 309 , 315 , 316

bin-lattice spatial subdivision 316

performance and 315

rules of 309

Flocks, Herds, and Schools: A Distributed Behavioral
Model (Reynolds)
308

flow field following 276 , 277

resolution and 277

fluid resistance, modeling 83

for loops 150

ArrayList objects and 150

enhanced 150

force accumulation 69

force-directed graphs 253

forces 63 , 64 , 68 , 71 , 73 , 77 , 78 , 80 , 83 ,
89 , 127 , 131 , 134 , 173 , 178 , 232 , 260 , 263

Hooke's law 134

Newton's laws of motion 63

accumulation of 68

applyForce() function 232

applying to objects 71

applying to single objects in a system 178

autonomous agents and 260

creating 73

damping 131

defined 63

equilibrium 64

fluid resistance 83

friction, modeling 80

gravity, modeling 77

models of, building 78

particle systems with 173

springs 134

steering 263

terminal velocity 64

trigonometry and 127

universal gravitational constant 89

forces, modeling 77

real forces 77

formulae, evaluating in code 79

Fractal Geometry of Nature, The (Mandelbrot) 356

fractals 355 , 356 , 357 , 358 , 366 , 374 , 375 ,
382

Koch curve 366

L-systems and 382

defined 356

fine structure of 358

recursion 358

self-replicating behavior of 357

stochastic 358

transformation matrix (Processing) 375

trees and 374

frequency (of oscillations) 119

frequencyHz setting (Box2D joint element) 223

friction 79 , 80 , 81 , 83 , 84 , 131

applying to an object 84

coefficient of friction 80

damping 131

determining direction/magnitude of 80

formula for 79

modeling with formulae 80

mu (μ) 80

normal force 81
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rho (ρ) 83

functionality 3

functions 54

static vs. non-static 54

G
Galileo 77

Game of Life 324 , 342 , 343 , 344

drawing 344

rules of 343

Gardner, Martin 342

Gauss, Carl Friedrich 11

Gaussian distribution 11

genetic algorithms 391 , 392 , 394 , 395 , 397 ,
409 , 413 , 414 , 420 , 435

Darwinian natural selection 394

Smart Rockets (Thorp) 420

building 409

defined 391

ecosystem simulation 392 , 435

fitness algorithms, modifying 414

interactive selection 391

modifying 413

mutation rate, varying 413

population maximum, varying 413

populations, creating 395

purpose of 392

selection, implementing 397

traditional 391

genotype (natural selection algorithms) 395 , 417 ,
438

ecosystem simulation 438

modifying 417

geometric vector 27

getAngle() function (PBox2D) 207

getBodyList() function (World class) 203

getBodyPixelCoord() function (PBox2D) 207

getGroundBody() function (Box2D joint element) 229

gravity 88 , 89 , 94 , 128 , 244

GravityBehavior (toxiclibs) 244

implementing model of 89

modeling 88

modeling reality vs. arbitrary values 128

modeling with trigonometry 128

placing limits on model of 94

universal gravitational constant 89

GravityBehavior class (toxiclibs) 244

grid (cellular automata) 324

group behavior 300 , 301 , 306 , 308

collisions, avoiding 301

combinations 306

flocking 308

H
heading2D() function (PVector class) 37 , 112

heredity (natural selection) 394 , 399 , 400 , 401

crossover 400

implementing 399

mutation 401

historical (cellular automata) 353

Hodgin, Robert 186

Holland, John 392

Hooke's law 134 , 135

formula for expressing 135

Hooke, Robert 134

I
image processing (cellular automata) 352

image textures 183 , 184 , 186

PImage objects (Processing) 184

PNG format and 184

blend modes 186

infinite monkey theorem 392

inheritance 144 , 160 , 163 , 164 , 165 , 166

adding functionality to superclass objects 165

extends keyword (Processing) 164

implementing 166

overriding superclass functions 165

subclass 163

super() function (Processing) 164
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superclasses 163

syntax for 163

integration 238 , 239 , 240

Euler integration 239

Runge-Kutta method 240

Interaction with Groups of Autonomous Characters
(Reynolds)
316

interactive selection genetic algorithms 391 , 431 ,
433 , 434

time lag and 434

user interaction and 433

interfaces 234

iterating 152 , 153

Iterator class (Java) 153

removing elements in for loops 152

Iterator class (Java) 153

iTunes visualizer 186

J
Java 192

JBox2D 192 , 195 , 234

ContactListener class 234

full documentation for 195

joint (Box2D element) 194 , 222 , 225 , 228

distance 222

mouse type 228

revolute type 225

K
kinematic (body type) 199 , 231

MouseJoints and 231

Klise, Steven 345

Koch curve 366 , 369

implementing 369

Kutta, M. W. 240

L

L-systems 382 , 383 , 386

components of 383

translating into code 386

Laplace, Pierre-Simon 11

Laplacian distribution 11

learning constant 455

Learning Processing (Shiffman) 160

lerp() function (PVector class) 37

limit() function (PVector class) 37 , 51

Lindenmayer systems 382

Lindenmayer, Aristid 382 , 389

linearly separable problems 466

locations 31

as vectors 31

lock() function (toxiclibs) 247

locomotion 263

Los Alamos National Laboratory 324

Lucasfilm Ltd. 143

Lévy flight 14 , 15

implementing with arrays 15

implementing with qualifying random values 15

M
m_p variable (Vec2 class) 220

mag() function (PVector class) 43 , 318

magSq() function vs. 318

Magnetosphere 186

magnitude (of vectors) 42 , 51

limiting 51

magSq() function (PVector class). 318

Mandelbrot, Benoit 356

map() function (Processing) 20 , 117

oscillation and 117

Marxer, Ricard 192

mass 67 , 70

modeling 70

units of measurement, defining 70

weight vs. 67

mating pools (natural selection) 397 , 405

creating 397

Index

490



implementing 405

McCulloch, Warren S. 445

mean 11

methods, static vs. non-static 54

millis() function (Processing) 117

Monster curve 367

Monte Carlo method 16

motion 45 , 104 , 112

angular 104

heading2D() function (PVector class) 112

mouse joint (Box2D joint type) 228

setTransform() function 228

mouse joint (Box2D Joint type) 228

moving cells (cellular automata) 353

mu (μ) 11 , 80

mult() function (PVector class) 40

implementation 40

mutation (natural selection algorithms) 401 , 409

implementing 409

rate of 401

N
natural fractals 374

natural phenomena 2 , 7 , 17 , 67 , 70 , 73 , 77 ,
78 , 80 , 83 , 88 , 89 , 127 , 128 , 185 , 260 , 299 ,
300 , 308 , 324 , 355 , 374 , 382 , 383 , 390 , 391
, 394 , 435

Darwinian natural selection 394

L-systems and 382

Newton's second law, modeling 67

Perlin noise and 17

ants, modeling 299

autonomous agents 260

cellular automata 324

ecosystems, modeling 435

evolution 390

flocking 308

fluid resistance, modeling 83

forces, modeling 73 , 77

fractals 355

friction 80

genetic algorithms 391

gravity 77 , 88 , 89

group behavior 300

mass, modeling 70

modeling reality vs. arbitrary values 128

modeling with random walks 2

modeling with the random() function 7

physics (real world), modeling 78

pivots, modeling 127

plant growth, modeling 383

smoke, modeling with particle systems 185

trees and 374

natural selection algorithms 394 , 395 , 397 , 398 ,
399

fitness functions 397

mating pools, creating 397

populations, creating 395

probability 398

reproduction 399

naturally ordered sequence of numbers 17

neighborhood (cellular automata) 325

nesting (cellular automata) 353

neural networks 444 , 445 , 446 , 447 , 448 , 449 ,
467 , 468 , 473 , 475

activation functions of 449

animating 473

backpropagation 468

connectionist computational system 446

diagramming 468

learning and 446

networks of perceptrons 467

pattern recognition 445

perceptron 448

real vs. simulated 475

reinforcement learning 447

supervised learning 446

unsupervised learning 447

uses of 447

New Kind of Science, A (Wolfram) 325

new operator (objects) 4

Newton's first law 64 , 65

PVector class and 65

Newton's second law 67
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Newton's third law 65 , 66

PVector class and 66

Newton, Isaac 63

nextGaussian() function (Random class) 13

default mean/standard deviation settings of 13

noise() function (Processing) 18

arguments for 18

noiseDetail() function (Processing) 18

non-linearly separable problems 466

non-rectangular grids (cellular automata) 351

non-uniform distributions 7 , 8 , 14 , 15 , 16 , 17

Monte Carlo method 16

Perlin noise 17

creating with arrays 8

custom 14

probability and 7

qualifying random values 15

normal distribution 11

normal force 81

normal points 291 , 295

series of, for path following 295

normalization 43 , 398

mating pools, creating with 398

normalize() function (PVector class) 44

Norvig, Peter 445

O
object 2 , 4 , 92 , 349

cells in cellular automata as 349

defined 2

interaction between 92

new operator 4

object-oriented programming 2 , 35 , 72 , 137 ,
144 , 155 , 160 , 168 , 176 , 349 , 419

cellular automata and 349

class 2

classes of user-defined objects, creating 155

dot syntax 35

genotype/phenotype objects and 419

inheritance 144 , 160

instances of subclasses, creating 168

maintaining encapsulation 176

object 2

polymorphism 144 , 160 , 168

references to vs. copies of objects 72

review of 2

structures, chosing between 137

optimization 318 , 319

magSq() function (PVector class). 318

sine/cosine lookup tables 318

temporary objects and 319

oscillation 116 , 117 , 119 , 120 , 122 , 124

amplitude 117

angular velocity and 119

frequency of 119

on two axes 120

period 117

simple harmonic motion 117

simulating with sine curves 116

varying 124

waves 122

oversampling 14

P
particle systems 143 , 144 , 145 , 146 , 149 , 155 ,
156 , 157 , 170 , 173 , 178 , 185 , 240 , 246

ArrayList, using 149

Verlet integration and 240

addParticle() function (toxiclibs) 246

applying force to single particles in 178

class for, creating 155

dead particles, checking for 146

emitter 146

forces and 173

lifespan of particles 146

multiple systems, organizing 157

origin point (of particles) 156

particles in 145

polymorphism, using 170

purpose of 144

smoke, modeling 185
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particles 145 , 146 , 147 , 178 , 244 , 245

VerletParticle2D object (toxiclibs) 245

applying force to single particles in 178

death, checking for 146

lifespan of 146

testing 147

toxiclibs implementation of 244

path 286

path following 286 , 288 , 291 , 292 , 294

current distance from path, finding 288

multiple segments 294

normal points 291

pathfinding vs. 286

target, determining 292

pathfinding 286

pattern recognition 445 , 450

perceptron and 450

PBox2D helper class 192 , 196 , 197 , 207

coordinate systems, converting between 197

createWorld() function 196

getBodyPixelCoord() function (PBox2D) 207

perceptron 448 , 450 , 455 , 456 , 460 , 466 ,
467

bias input 450

error calculations and 450

implementing 448

learning constant 455

linearly separable problems and 466

networks of 467

pattern recognition with 450

steering and 460

training 456

performance 315 , 316 , 317 , 318 , 319

Big O Notation 315

Big O Notation N-Squared 315

bin-lattice spatial subdivision 316

magSq() function (PVector class). 318

sine/cosine lookup tables 318

temporary objects and 319

period 117 , 122

defined in pixels rather than frames 122

Perlin noise 17 , 18 , 20 , 22 , 279

flow field following and 279

map() function 20

natural phenomena, modeling with 17

noise() function (Processing) 18

two-dimensional 22

phenotype (natural selection algorithms) 395 , 417 ,
438

ecosystem simulation 438

physics 78 , 189 , 190

collisions 190

modeling 78

open-source libraries for 189

physics libraries 189 , 190

Box2D 190

pi (π) 103

PI variable (Processing) 103

PImage objects (Processing) 184

Pitts, Walter 445

pivots, modeling 127

plant growth, modeling 383

PNG graphic file format 184

polar coordinates 112 , 113

Cartesian coordinates, converting to 113

PolygonShape class 215

as list of vectors 215

polymorphism 144 , 160 , 168 , 170

creating object instances with 170

popMatrix() function (Processing) 375

populations (genetic algorithms) 395 , 402 , 435

creating 395

ecosystem simulations and 435

elements of 395

implementing 402

postSolve() function (PBox2D) 235

preSolve() function (PBox2D) 235

probabilistic (cellular automata) 352

probability 7 , 8 , 11 , 352 , 392 , 398

cellular automata based on 352

infinite monkey theorem 392

mean 11

natural selection algorithms and 398

non-uniform distributions and 7
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normal distributions 11

standard deviation 11

probability of the fittest 7

Processing 2 , 12 , 18 , 30 , 46 , 54 , 102 , 103 ,
110 , 111 , 112 , 117 , 163 , 183 , 184 , 192 , 196 ,
203 , 205 , 241

Box2D and 192

Box2D objects, adding to projects 205

JBox2D 192

OOP online tutorial 46

PImage objects 184

Random class 12

angles, measuring in 102

atan() function 110

atan2() function 111

body lists, maintaining 203

class inheritance, syntax for 163

coordinate systems and 112

coordinate systems vs. Box2D 196

incorporating images into projects 183

measuring time in 117

noise() function 18

noiseDetail() function 18

radians() function 103

review of object-oriented programming with 2

rotation tutorial 103

static vs. non-static methods 54

toxiclibs and 241

vectors and 30

Prusinkiewicz, Przemysław 389

pseudo-random numbers 7 , 17

Perlin noise and 17

pushMatrix() function (Processing) 375

PVector class (Processing) 30 , 37 , 38 , 40 , 41 ,
43 , 44 , 51 , 65 , 66 , 112 , 194

Box2D vs. 194

Newton's first law and 65

Newton's third law and 66

div() function 41

function list for 37

heading2D() function 112

limit() function 51

mag() function 43

mathematical functions for 37

mult() function 40

normalize() function 44

sub() function 38

Pythagoras 42

Pythagorean theorem 42

Q
qualifying random values 15 , 16

Monte Carlo method 16

R
radians 102 , 103

converting from degrees 103

radians() function (Processing) 103

Random class (Processing) 12 , 13

nextGaussian() function 13

Random class (Wolfram classification) 341

random number generators 3 , 6 , 7 , 14

custom distributions, creating 14

non-uniform distributions, creating 7

pseudo-random numbers 7

random() function 3

uniform number distributions and 6

random walks 1 , 14

Gaussian 14

Lévy flight 14

oversampling 14

random() function 3 , 7 , 8

natural phenomena, modeling with 7

non-uniform distributions, creating with 8

random2D() function (PVector class) 37

random3D() function (PVector class) 37

real forces 77

recursion 358 , 359 , 361 , 366

ArrayList objects and 366

exit conditions 361

factorial 359
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implementing 359

Reeves, William T. 143

reinforcement learning (neural networks) 447

reinforcement learning(neural networks) 463

remove() function (ArrayList class) 151

Repetition class (Wolfram classification) 340

reproduction (natural selection algorithms) 399 , 407
, 439

ecosystem simulation 439

implementing 407

repulsion 302

group behavior and 302

Resnick, Mitchel 262 , 345

resolution, flow field following and 277

rest length (Box2D joint element) 223

revolute joint type (Box2D) 225 , 226

properties, configuring 226

RevoluteJointDef object (Box2D joint element) 226

Reynolds, Craig 261 , 286

path following algorithm 286

rho (ρ) 83

Rosenblatt, Frank 448

rotate() function (PBox2D) 207

rotate() function (PVector class) 37

rotation 104 , 109

pointing towards movement 109

roulette wheel probability method 398

rules (L-system component) 383

rulesets for cellular automata 334

Runge, C. 240

Runge-Kutta method 240

Russell, Stuart J. 445

S
scalar notation, vs. vector notation 33

scalar projection 291

scalarPixelsToWorld() function (PBox2D) 198

scalarWorldToPixels() function (PBox2D) 198

Schmidt, Karsten 241

Seemann, Glenn 445

selection (natural selection algorithms) 394 , 397 ,
404 , 439

ecosystem simulation 439

implementing 397 , 404

self-replicating cells 324

self-similarity of fractals 357

separation (flocking) 309 , 310

implementing 310

setGravity() function (World class) 196

setTransform() function (Box2D) 228

Shape (Box2D element) 200 , 201 , 220

defining 201

friction attribute 200

local position for 220

restitution attribute 200

shape (Box2D element) 194

shapes 104 , 112 , 113

displaying 112

moving with polar coordinates 113

rotating 104

short range relationships 299 , 310

complex systems 299

flocking behavior and 310

Sierpiński triangle 328

Sierpiński, Wacław 328

sigma (σ) 11

signal processing 447

Silverman, Brian 345

simple harmonic motion 117

Sims, Karl 430

sin() function (Processing) 113

sine lookup tables 318

size() function (ArrayList class) 152

Smart Rockets (Thorp) 420

soft sensors 447

sohcahtoa 108

splice() function (Processing) 149

springs 134 , 135 , 136 , 246 , 247

Hooke's law 134

VerletConstrainedSpring class (toxiclibs) 246

VerletMinDistanceSpring class (toxiclibs) 246

VerletSpring class (toxiclibs) 246
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direction of force, determining 136

lock() function (toxiclibs) 247

magnitude of force, determining 135

rest length 136

toxiclibs and 246

standard deviation 11 , 12

calculating 12

variance 12

Star Trek II: The Wrath of Khan (1982) 143

state (cellular automata) 324

static (body type) 199 , 209

static functions 55

steering behaviors 274 , 276 , 302 , 460

flow field following 276

group behavior and 302

perceptron for 460

wandering 274

Steering Behaviors for Autonomous Characters
(Reynolds)
262

steering force 262 , 264 , 266 , 273

arriving behavior and 273

desired velocity 264

magnitude of 266

steering perceptron 460 , 463

reinforcement learning(neural networks) 463

step() function (Box2D) 205

stochastic fractals 358 , 374

trees as 374

StringBuffer class 385

strings 251 , 385

StringBuffer class vs. 385

hanging from fixed points 251

sub() function (PVector class) 38

subclass 163 , 165

adding functionality to superclass objects 165

subset() function (Processing) 149

super() function(Processing) 164

superclasses 163 , 165 , 169 , 170

adding functionality within subclasses 165

overriding functions from 165 , 170

polymorphism and 169

superorganisms 299

supervised learning (neural networks) 446

symplectic Euler (Box2D) 240

T
tangent 110 , 111 , 112

atan() function (arctangent) 110

atan2() function 111

heading2D() function (PVector class) 112

terminal velocity 64

theta 284

dot product and 284

theta (θ) 112

Thorp, Jer 420

time 117 , 326

cellular automata and 326

millis() function, measuring with 117

time series prediction 447

toxiclibs 241 , 242 , 244 , 246 , 249 , 253 , 256

AttractionBehavior class 256

Box2D vs. 241

VerletPhysics class 244

VerletPhysics2D class 244

attraction/repulsion behaviors and 256

connected systems 249

downloading 242

force-directed graphs 253

particles, implementing in 244

springs 246

world, building 244

traditional genetic algorithms 391

transformation matrix (Processing) 375

Transformations tutorial (Processing) 375

translate() function (PBox2D) 207

trees 374

trigonometry 108 , 110 , 113 , 127

atan() function 110

cos() function (Processing) 113

forces and 127

sin() function (Processing) 113

sohcahtoa 108
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tangent 110

Tron (1982) 17

Turtle graphics 386

Turtles, Termites, and Traffic Jams (Resnick) 262

two-dimensional cellular automata 342 , 345

implementing 345

U
Ulam, Stanisław 324

uniform number distributions 6

Uniformity class (Wolfram classification) 340

unit vectors 43

universal gravitational constant 89

unsupervised learning (neural networks) 447

update() function (toxiclibs) 244

V
variance 12

variation (natural selection) 394

Vec2 (Box2D element) 194 , 195

adding vectors with 195

manitude, finding 195

multiplying vectors with 195

normalizing vectors 195

scaling vectors with 195

Vec2D (toxiclibs type) 243 , 246

VerletParticle2D class and 246

math functions for 243

Vec3D (toxiclibs type) 243

vector notation, vs. scalar notation 33

vectors 27 , 28 , 30 , 31 , 33 , 39 , 40 , 42 , 43 ,
45 , 49 , 109 , 110 , 194 , 278 , 282

Processing and 30

Vec2 (Box2D element) 194

acceleration 49

adding 33

as right triangles 109

associative/distributive rules for multiplication/
division of
42

bouncing ball sketch 28

commutative/associative rules of addition/
subtraction with
39

defined 27

dot product 282

flow fields, computing for 278

locations and 31

magnitude 42

motion, implementing with 33

multiplying 40

normalization 43

notation 27

scaling 40

tangent 110

unit vectors 43

velocity and 31 , 45

Vehicles: Experiments in Synthetic Psychology
(Braitenberg)
262

velocity 31 , 45 , 49 , 51 , 274

acceleration 49

as vector 31

desired, for autonomous agents 274

limiting 51

Verlet integration 240 , 241

toxiclibs 241

VerletConstrainedSpring class (toxiclibs) 246

VerletMinDistanceSpring class (toxiclibs) 246

VerletParticle2D object (toxiclibs) 245

VerletPhysics class (toxiclibs) 242 , 244

core elements of 242

VerletPhysics2D class (toxiclibs) 244

VerletSpring class (toxiclibs) 246

viscous force 83

von Neumann, John 324

W
wandering behavior (Reynolds) 274

waves 122 , 124

angular velocity, defining with 122

varying 124
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weight 67 , 446

mass vs. 67

neural networks and 446

wheel of fortune probability method 398

Wolfram classification 340 , 341

Complexity class 341

Random class 341

Repetition class 340

Uniformity class 340

Wolfram, Stephen 325 , 340

Wolfram classification 340

elementary cellular automata algorithm 325

World class (Box2D) 194 , 196 , 203

createWorld() function (PBox2D) 196

getBodyList() function 203

X
XOR (exclusive or) 466
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