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Abstract
Humans can perform many tasks with ease that remain dif-
ficult or impossible for computers. Crowdsourcing platforms 
like Amazon Mechanical Turk make it possible to harness 
human-based computational power at an unprecedented 
scale, but their utility as a general-purpose computational 
platform remains limited. The lack of complete automa-
tion makes it difficult to orchestrate complex or interrelated 
tasks. Recruiting more human workers to reduce latency 
costs real money, and jobs must be monitored and resched-
uled when workers fail to complete their tasks. Furthermore, 
it is often difficult to predict the length of time and payment 
that should be budgeted for a given task. Finally, the results of 
human-based computations are not necessarily reliable, both 
because human skills and accuracy vary widely, and because 
workers have a financial incentive to minimize their effort.

We introduce AutoMan, the first fully automatic crowd-
programming system. AutoMan integrates human-based com-
putations into a standard programming language as ordinary 
function calls that can be intermixed freely with traditional 
functions. This abstraction lets AutoMan programmers 
focus on their programming logic. An AutoMan program 
specifies a confidence level for the overall computation and 
a budget. The AutoMan runtime system then transparently 
manages all details necessary for scheduling, pricing, and 
quality control. AutoMan automatically schedules human 
tasks for each computation until it achieves the desired con-
fidence level; monitors, reprices, and restarts human tasks as 
necessary; and maximizes parallelism across human workers 
while staying under budget.

1. INTRODUCTION
Humans perform many tasks with ease that remain difficult or 
impossible for computers. For example, humans are far better 
than computers at performing tasks like vision, motion plan-
ning, and natural language understanding.16, 18 Many research-
ers expect these “AI-complete” tasks to remain beyond the reach 
of computers for the foreseeable future.19 Harnessing human-
based computation in general and at scale faces the following 
challenges:

Determination of pay and time for tasks. Employers must 
decide the payment and time allotted before posting tasks. It is 
both difficult and important to choose these correctly since work-
ers will not accept tasks with too-short deadlines or too little pay.

Scheduling complexities. Employers must manage the 
tradeoff between latency (humans are relatively slow) and 

cost (more workers means more money). Because workers 
may fail to complete their tasks in the allotted time, jobs 
need to be tracked and reposted as necessary.

Low quality responses. Human-based computations 
always need to be checked: worker skills and accuracy vary 
widely, and they have a financial incentive to minimize their 
effort. Manual checking does not scale, and majority voting 
is neither necessary nor sufficient. In some cases, majority 
vote is too conservative, and in other cases, it is likely that 
workers will agree by chance.

Contributions
We introduce AutoMan, a programming system that inte-
grates human-based and digital computation. AutoMan 
addresses the challenges of harnessing human-based com-
putation at scale:

Transparent integration. AutoMan abstracts human-based 
computation as ordinary function calls, freeing the program-
mer from scheduling, budgeting, and quality control concerns 
(Section 3).

Automatic scheduling and budgeting. The AutoMan run-
time system schedules tasks to maximize parallelism across 
human workers while staying under budget. AutoMan tracks 
job progress, reschedules, and reprices failed tasks as neces-
sary (Section 4).

Automatic quality control. The AutoMan runtime system 
manages quality control automatically. AutoMan creates 
enough human tasks for each computation to achieve the 
confidence level specified by the programmer (Section 5).

2. BACKGROUND
Since crowdsourcing is a novel application domain for pro-
gramming language research, we summarize the necessary 
background on crowdsourcing platforms. We focus on 
Amazon Mechanical Turka (MTurk), but other crowdsourc-
ing platforms are similar. MTurk acts as an intermediary 
between requesters and workers for short-term tasks.

Human intelligence task. In MTurk parlance, tasks are 
known as human intelligence tasks (HITs). Each HIT is 
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represented as a question form, composed of any number 
of questions and associated metadata such as a title, descrip-
tion, and search keywords. Questions can be either free-
text questions, where workers provide a free-form textual 
response, or multiple-choice questions, where workers make 
one or more selections from a set of options. Most HITs on 
MTurk are for relatively simple tasks, such as “does this 
image match this product?” Compensation is generally low 
(usually a few cents) since employers expect that work to be 
completed quickly (on the order of seconds).

Requesting work. Requesters can create HITs using 
either MTurk’s website or programmatically, using an API. 
Specifying a number of assignments greater than one allows 
multiple unique workers to complete the same task, paral-
lelizing HITs. Distinct HITs with similar qualities can also 
be grouped to make it easy for workers to find similar work.

Performing work. Workers may choose any available task, 
subject to qualification requirements (see below). When a 
worker selects a HIT, she is granted a time-limited reservation 
for that particular piece of work such that no other worker 
can accept it.

HIT expiration. HITs have two timeout parameters: the 
amount of time that a HIT remains visible on MTurk, known 
as the lifetime of a HIT, and the amount of time that a worker 
has to complete an assignment once it is granted, known as the 
duration of an assignment. If a worker exceeds the assignment’s 
duration without submitting completed work, the reservation is 
cancelled, and the HIT becomes available to other workers. If a 
HIT reaches the end of its lifetime without its assignments hav-
ing been completed, the HIT expires and is made unavailable.

Requesters: Accepting or rejecting work. Once a worker 
submits a completed assignment, the requester may then 
accept or reject the completed work. Acceptance indicates 
that the completed work is satisfactory, at which point the 
worker is paid. Rejection withholds payment. The requester 
may provide a textual justification for the rejection.

Worker quality. The key challenge in automating work 
in MTurk is attracting good workers and discouraging bad 
workers from participating. MTurk provides no mecha-
nism for requesters to seek out specific workers (aside from 
emails). Instead, MTurk provides a qualification mechanism 
that limits which workers may participate. A common quali-
fication is that workers must have an overall assignment-
acceptance rate of 90%.

Given the wide variation in tasks on MTurk, overall 
worker accuracy is of limited utility. For example, a worker 
may be skilled at audio transcription tasks and thus have 
a high accuracy rating, but it would be a mistake to assume 
on the basis of their rating that the same worker could also 
perform Chinese-to-English translation tasks. Worse, work-
ers who cherry-pick easy tasks and thus have high accuracy 
ratings may be less qualified than workers who routinely 
perform difficult tasks that are occasionally rejected.

3. OVERVIEW
AutoMan is a domain-specific language embedded in Scala. 
AutoMan’s goal is to abstract away the details of crowdsourc-
ing so that human computation can be as easy to invoke as a 
conventional programming language function.

3.1. Using AutoMan
Figure 1 presents a real AutoMan program that recog-
nizes automobile license plate texts from images. Note that 
the programmer need not specify details about the cho-
sen crowdsourcing backend (Mechanical Turk) other than 
the appropriate backend adapter and account credentials. 
Crucially, all details of crowdsourcing are hidden from the 
AutoMan programmer. The AutoMan runtime abstracts 
away platform-specific interoperability code, schedules and 
determines budgets (both cost and time), and automatically 
ensures that outcomes meet a minimum confidence level.

Initializing AutoMan. After importing the AutoMan and 
MTurk adapter libraries, the first thing an AutoMan pro-
grammer does is to declare a configuration for the desired 
crowdsourcing platform. The configuration is then bound 
to an AutoMan runtime object that instantiates any plat-
form-specific objects.

Specifying AutoMan functions. AutoMan functions declara-
tively describe questions that workers must answer. They must 
include the question type and may also include text or images.

Confidence level. An AutoMan programmer can option-
ally specify the degree of confidence they want to have in their 
computation, on a per-function basis. AutoMan’s default con-
fidence is 95%, but this can be overridden as needed. The mean-
ing and derivation of confidence is discussed in Section 5.

Metadata and question text. Each question declaration 
requires a title and description, used by the crowdsourcing 

Figure 1. A license plate recognition program written using AutoMan. 
getURLsFromDisk() is omitted for clarity. The AutoMan programmer 
specifies only credentials for Mechanical Turk, an overall budget, 
and the question itself; the AutoMan runtime manages all other 
details of execution (scheduling, budgeting, and quality control).

import edu.umass.cs.automan.adapters.MTurk._

object ALPR extends App {
val a = MTurkAdapter { mt =>
mt.access_key_id = "XXXX"
mt.secret_access_key = "XXXX"

}

def plateTxt(url:String) = a.FreeTextQuestion { q =>
q.budget = 5.00
q.text = "What does this license plate say?"
q.image_url = url
q.allow_empty_pattern = true
q.pattern = "XXXXXYYY"

}

automan(a) {
// get plate texts from image URLs
val urls = getURLsFromDisk()
val plate_texts = urls.map { url =>
(url, plateTxt(url))

}

// print out results
plate_texts.foreach { (url,outcome) =>
outcome.answer match { 
case Answer(ans,_,_) =>
println(url + ": "+ ans)

case _ => ()
}

}
}

}
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platform’s user interface. These fields map to MTurk’s fields 
of the same name. A declaration also includes the question 
text itself, together with a map between symbolic constants 
and strings for possible answers.

Question variants. AutoMan supports multiple-
choice questions, including questions where only one 
answer is correct (“radio-button” questions), where any 
number of answers may be correct (“checkbox” questions), 
and a restricted form of free-text entry. Section 5 describes 
how AutoMan’s quality control algorithm handles each 
question type.

Invoking a function. A programmer can invoke an AutoMan 
function as if it were any ordinary (digital) function. In 
Figure 1, the programmer calls the plateTxt function with 
a URL pointing to an image as a parameter. The function 
returns an Outcome object representing a Future [Answer] 
that can then be passed as data to other functions. AutoMan 
functions execute eagerly, in a background thread, as soon as 
they are invoked. The program does not block until it needs 
to read an Outcome.answer field, and only then if the 
human computation is not yet finished.

4. SCHEDULING ALGORITHM
AutoMan’s scheduler controls task marshaling, budgeting 
of time and cost, and quality. This section describes how 
AutoMan automatically determines these parameters.

4.1. Calculating timeout and reward
AutoMan’s overriding goal is to recruit workers quickly and 
at low cost in order to keep the cost of a computation within 
the programmer’s budget. AutoMan posts tasks in rounds that 
have a fixed timeout during which tasks must be completed. 
When AutoMan fails to recruit workers in a round, there are 
two possible causes: workers were not willing to complete the 
task for the given reward, or the time allotted was not sufficient. 
AutoMan does not distinguish between these cases. Instead, 
the reward for a task and the time allotted are both increased by 
a constant factor g every time a task goes unanswered. g must 
be chosen carefully to ensure the following two properties:

1.  The reward for a task should quickly reach a worker’s 
minimum acceptable compensation.

2.  The reward should not grow so quickly that it incentiv-
izes workers to wait for a larger reward.

Section 4.4 presents an analysis of reward growth rates. 
We also discuss the feasibility of our assumptions and possible 
attack scenarios in Section 5.4.

4.2. Scheduling the right number of tasks
AutoMan’s default policy for spawning tasks is optimistic: it cre-
ates the smallest number of tasks required to reach the desired 
confidence level when workers agree unanimously. If workers do 
agree unanimously, AutoMan returns their answer. Otherwise, 
AutoMan computes and then schedules the minimum num-
ber of additional votes required to reach confidence.

When the user-specified budget is insufficient, AutoMan 
suspends the computation before posting additional tasks. 
The computation can either be resumed with an increased 

budget or accepted as-is, with a confidence value lower than 
the one requested. The latter case is considered exceptional, 
and must be explicitly handled by the programmer.

4.3. Trading off latency and money
AutoMan allows programmers to provide a time-value param-
eter that counterbalances the default optimistic assump-
tion that all workers will agree. The parameter instructs the 
system to post more than the minimum number of tasks in 
order to minimize the latency incurred when jobs are serial-
ized across multiple rounds. The number of tasks posted is 
a function of the value of the programmer’s time:

As a cost savings, when AutoMan receives enough 
answers to reach the specified confidence, it cancels all 
unaccepted tasks. In the worst case, all posted tasks will 
be answered before AutoMan can cancel them, which will 
cost no more than time_value ⋅ task_timeout. While this 
strategy runs the risk of paying substantially more for a 
computation, it can yield dramatic reductions in latency. 
We re-ran the example program described in Section 7.1 
with a time-value set to $50. In two separate runs, the com-
putation completed in 68 and 168 seconds; by contrast, the 
default time-value (minimum wage) took between 1 and 3 
hours to complete.

4.4. Maximum reward growth rate
When workers encounter a task with an initial reward of 
R they may choose to accept the task or wait for the reward 
to grow. If R is below Rmin, the smallest reward acceptable to 
workers, then tasks will not be completed. Let g be the 
reward growth rate and let i be the number of discrete time 
steps, or rounds, that elapse from an initial time i = 0, such 
that a task’s reward after i rounds is gi R. We want a g large 
enough to reach Rmin quickly, but not so large that workers 
have an incentive to wait. We balance the probability that a 
task remains available against the reward’s growth rate so 
workers should not expect to profit by waiting.

Let pa be the probability that a task remains available 
from one round to the next, assuming this probability 
is constant across rounds. Suppose a worker’s strat-
egy is to wait i rounds and then complete the task for 
a larger reward. The expected reward for this worker’s 
strategy is

E [rewardi] = (pa g)i R.

when g ≤ 1/pa, the expected reward is maximized at i = 0; 
workers have no incentive to wait, even if they are aware 
of AutoMan’s pricing strategy. A growth rate of exactly 
1/pa will reach Rmin as fast as possible without incentivizing 
waiting. This pricing strategy remains sound even when pa 
is not constant, provided the desirability of a task does not 
decrease with a larger reward.

The true value of pa is unknown, but it can be estimated by 
modeling the acceptance or rejection of each task as an inde-
pendent Bernoulli trial. The maximum likelihood estimator
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that as few as two workers are required to rule out random 
behavior. To avoid accidental agreement caused when 
low-effort workers simply submit a form without changing 
any of the checkboxes, AutoMan randomly pre-selects 
checkboxes.
Free-text Input|   Restricted “Free-text” input is mathe-
matically equivalent to a set of radio-buttons where each 
option corresponds to a valid input string. Nonetheless, even 
a small set of valid strings represented as radio buttons 
would be burdensome for workers. Instead, workers are 
provided with a text entry field and the programmer sup-
plies a pattern representing valid inputs so that AutoMan 
can perform its probability analysis.

AutoMan’s pattern specification syntax resembles 
COBOL’s picture clauses. A matches an alphabetic charac-
ter, B matches an optional alphabetic character, X matches 
an alphanumeric character, Y matches an optional alphanu-
meric character, 9 matches a numeric character, and 0 
matches an optional numeric character. For example, a tele-
phone number recognition application might use the pattern 
09999999999.

For example, given a 7-character numeric pattern with no 
optional characters, k = 107. Again, k is often large, so a small 
number of HITs suffice to achieve high confidence in the result. 
As with checkbox questions, AutoMan treats free-text 
questions specially to cope with low-effort workers who 
might simply submit an empty string. To avoid this problem, 
AutoMan only accepts the empty string if it is explicitly 
entered with the special string NA.

5.1. Definitions
Formally, AutoMan’s quality control algorithm depends 
on two functions, t and v, and associated parameters b 
and p*. t computes the minimum threshold (the number 
of votes) needed to establish that an option is unlikely 
to be due to random chance with probability b (the pro-
grammer’s confidence threshold). t depends on the 
random variable X, which models when n respondents 
choose one of k options uniformly at random. If no option 
crosses the threshold, v computes the additional num-
ber of votes needed. v depends on the random variable 
Y , which models a worker choosing the correct option 
with the observed probability p* and all other options uni-
formly at random.

Let X and Y be multinomial distributions with parame-
ters (n, 1/k, . . . , 1/k) and (n, p, q, . . . , q), respectively, where 
q = (1 − p)/(k − 1). We define two functions E1 and E2 that have 
the following properties2:

Lemma 5.1.

where

is a reasonable estimate for pa, where n is the number of 
times a task has been offered and t is the number of times 
the task was not accepted before timing out. To be conser-
vative, p̃a can be over-approximated, driving g downward. 
The difficulty of choosing a reward a priori is a strong case 
for automatic budgeting.

5. QUALITY CONTROL
AutoMan’s quality control algorithm is based on collect-
ing enough consensus for a given question to rule out the 
possibility, for a specified level of confidence, that the 
results are due to random chance. AutoMan’s algorithm 
is adaptive, taking both the programmer’s confidence 
threshold and the likelihood of random agreement into 
account. By contrast, majority rule, a commonly used tech-
nique for achieving higher-quality results, is neither nec-
essary nor sufficient to rule out outcomes due to random 
chance (see Figure 2). A simple two-option question (e.g., 
“Heads or tails?”) with three random respondents demon-
strates the problem: a majority is not just likely, it is guar-
anteed. Section 5.4 justifies this approach.

Initially, AutoMan spawns enough tasks to meet the 
desired confidence level if all workers who complete the 
tasks agree unanimously. Computing the confidence of 
an outcome in this scenario is straightforward. Let k be 
the number of options, and n be the number of tasks. The 
confidence is then 1  − k(1/k)n. AutoMan computes the 
smallest n such that the probability of random agreement 
is less than or equal to one minus the specified confi-
dence threshold.

Humans are capable of answering a rich variety of question 
types. Each of these question types requires its own probabil-
ity analysis.
○ Radio  • Buttons  For multiple-choice “radio-button” ques-
tions where only one choice is possible, k is exactly the number 
of possible options.

 Check   Boxes  For “checkbox” questions with c boxes, 
k is much larger: k = 2c. In practice, k is often large enough 
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Figure 2. The fraction of workers that must agree to reach 0.95 
confidence for a given number of tasks. For a three-option question 
and 5 workers, 100% of the workers must agree. For a six-option 
question and 15 or more workers, only a plurality is required to 
reach confidence. Notice that majority vote is neither necessary nor 
sufficient to rule out random respondents.
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and

where coeffλ, n( f (λ)) is the coefficient of λn in the polynomial f.
Note that E1(n, n) = 1 − 1/kn−1 and define

Thus, when when n voters each choose randomly, the prob-
ability that any option meets or exceeds the threshold t(n, β) 
is at most α = 1 − β.

Finally, we define v, the number of extra votes needed, as

If workers have a bias of at least p* toward a “popular” option 
(the remaining options being equiprobable), then when we 
ask υ(p*, β ) voters, the number of votes cast for the popular 
option passes the threshold (and all other options are below 
threshold) with probability at least β.

5.2. Quality control algorithm
AutoMan’s quality control algorithm, which gathers 
responses until it can choose the most popular answer not 
likely to be the product of random chance, proceeds as 
follows:

1.  Set b = min {m | t (m, β) ≠ ∞}. Set n = 0.
2.  Ask b workers to vote on a question with k options. Set 

n = b + n.
3.  If any option has more than t(n, β) votes, return the 

most frequent option as the answer.
4.  Let b = v(p*, β ) and repeat from step 2.

Figure 2 uses t to compute the smallest fraction of 
workers that need to agree for β = 0.95. As the number of 
tasks and the number of options increase, the proportion 
of workers needed to agree decreases. For example, for 
a 4-option question with 25 worker responses, only 48% 
(12 of 25) of workers must agree to meet the confidence 
threshold. This figure clearly demonstrates that quality 
control based on majority vote is neither necessary nor 
sufficient to limit outcomes based on random chance.

5.3. Multiple comparisons problem
Note that AutoMan must correct for a subtle bias that is 
introduced as the number of rounds—and correspond-
ingly, the number of statistical tests—increases. This bias 
is called the multiple comparisons problem. As the num-
ber of hypotheses grows with respect to a fixed sample 
size, the probability that at least one true hypothesis will 
be incorrectly falsified by chance increases. Without the 
correction, AutoMan is susceptible to accepting low-
confidence answers when the proportion of good work-
ers is low. AutoMan applies a Bonferroni correction to 
its statistical threshold, which ensures that the familywise 
error rate remains at or below the 1 − β threshold set by the 

programmer.10 We empirically evaluate the cost and time 
overhead for this correction in Section 7.4.

5.4. Quality control discussion
For AutoMan’s quality control algorithm to work, two 
assumptions must hold: (1) workers must be indepen-
dent, and (2) random choice is the worst-case behavior for 
workers; that is, they will not deliberately pick the wrong 
answer. Workers may break the assumption of indepen-
dence by masquerading as multiple workers, performing 
multiple tasks, or by colluding on tasks. We address each 
scenario below.

Scenario 1: Sybil Attack. A single user who creates multiple 
electronic identities for the purpose of thwarting identity-
based security policy is known in the literature as a “Sybil 
attack.”6 The practicality of a Sybil attack depends directly on 
the feasibility of generating multiple identities.

Carrying out a Sybil attack on MTurk would be burden-
some. Since MTurk provides a payment mechanism for 
workers, Amazon requires that workers provide uniquely 
identifying financial information, typically a credit card or 
bank account. These credentials are difficult to forge.

Scenario 2: One Worker, Multiple Responses. In 
order increase the pay or allotted time for a task, MTurk 
requires requesters to post a new HIT. This means that 
a single AutoMan task can span multiple MTurk HITs. 
MTurk provides a mechanism to ensure worker uniqueness 
for a single HIT that has multiple assignments, but it lacks 
the functionality to ensure that worker uniqueness is main-
tained across multiple HITs. For AutoMan’s quality control 
algorithm to be effective, AutoMan must be certain that 
workers who previously supplied responses cannot supply 
new responses for the same task.

Our workaround for this shortcoming is to use MTurk’s 
“qualification” feature inversely: once a worker completes 
a HIT, AutoMan grants the worker a special “disqualifica-
tion” that precludes them from supplying future responses.

Scenario 3: Worker Collusion. While it is appealing to 
lower the risk of worker collusion by ensuring that workers 
are geographically separate (e.g., by using IP geolocation), 
eliminating this scenario entirely is not practical. Workers 
can collude via external channels (e-mail, phone, word-of-
mouth) to thwart our assumption of independence. Instead, 
we opt to make the effort of thwarting defenses undesirable 
given the payout.

By spawning large numbers of tasks, AutoMan makes it 
difficult for any group of workers to monopolize them. Since 
MTurk hides the true number of assignments for a HIT, 
workers cannot know how many wrong answers are needed 
to defeat AutoMan’s quality control algorithm. This makes 
collusion infeasible. The bigger threat comes from workers 
who do as little work as possible to get compensated: previ-
ous research on MTurk suggests that random-answer spam-
mers are the primary threat.20

Random as worst case AutoMan’s quality control algo-
rithm is based on excluding random responses. AutoMan 
gathers consensus not just until a popular answer is revealed, 
but also until its popularity is unlikely to be the product 
of random chance. As long as there is a crowd bias toward 
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7.1. Which item does not belong?
Our first sample application asks users to identify which 
object does not belong in a collection of items. This kind of 
task requires both image- and semantic-classification capa-
bility, and is a component in clustering and automated 
construction of ontologies. Because tuning of AutoMan’s 
parameters is unnecessary, relatively little code is required 
to implement this program (27 lines in total).

We gathered 93 responses from workers during our sam-
pling runs. Runtimes for this program were on the order of 
minutes, but there is substantial variation in runtime given 
the time of the day. Demographic studies of MTurk have 
shown that the majority of workers on MTurk are located in 
the United States and in India.11 These findings largely agree 
with our experience, as we found that this program (and 
variants) took upward of several hours during the late eve-
ning hours in the United States.

7.2. How many items are in this picture?
Counting the number of items in an image also remains diffi-
cult for state-of-the-art machine learning algorithms. Machine-
learning algorithms must integrate a variety of feature detection 
and contextual reasoning algorithms in order to achieve a frac-
tion of the accuracy of human classifiers.18 Moreover, vision 
algorithms that work well for all objects remain elusive.

Counting tasks are trivial with AutoMan. We created an 
image processing pipeline that takes a search string as input, 
downloads images using Google Image Search, resizes the 
images, uploads the images to Amazon S3, obscures the URLs 
using TinyURL, and then posts the question “How many 
$items are in this image?”

We ran this task eight times, spawning 71 question 
instances at the same time of the day (10 a.m. EST), and 
employing 861 workers. AutoMan ensured that for each 
of the 71 questions asked, no worker was could participate 
more than once. Overall, the typical task latency was short. 
We found that the mean runtime was 8 min, 20 s and that the 
median runtime was 2 min, 35 s.

The mean is skewed upward by the presence of one long-
running task that asked “How many spoiled apples are in this 
image?” The difference of opinion caused by the ambiguity of 
the word “spoiled” caused worker answers to be nearly evenly 
distributed between two answers. This ambiguity forced 
AutoMan to collect a large number of responses in order to 
meet the desired confidence level. AutoMan handled this 
unexpected behavior correctly, running until statistical confi-
dence was reached.

7.3. Automatic license plate recognition
Our last application is the motivating example shown in 
Figure 1, a program that performs automatic license plate rec-
ognition (ALPR). Although ALPR is now widely deployed using 
distributed networks of traffic cameras, it is still considered a 
difficult research problem,8 and academic literature on this 
subject spans nearly three decades.5 While state-of-the-art sys-
tems can achieve accuracy near 90% under ideal conditions, 

the correct answer, AutoMan’s algorithm will eventually 
choose it. Nevertheless, it is possible that workers could act 
maliciously and deliberately choose incorrect answers.

Random choice is a more realistic worst-case scenario: 
participants have an economic incentive not to deliberately 
choose incorrect answers. First, a correct response to a 
given task yields an immediate monetary reward. If workers 
know the correct answer, it is against their own economic 
self-interest to choose otherwise. Second, supposing that a 
participant chooses to forego immediate economic reward 
by deliberately responding incorrectly (e.g., out of mal-
ice), there are long-term consequences. MTurk maintains 
an overall ratio of accepted responses to total responses 
submitted (a “reputation” score), and many requesters 
only assign work to workers with high ratios (typically 
around 90%). Since workers cannot easily discard their 
identities for new ones, incorrect answers have a lasting 
negative impact on workers. We found that many MTurk 
workers scrupulously maintain their reputations, sending 
us e-mails justifying their answers or apologizing for having 
misunderstood the question.

6. SYSTEM ARCHITECTURE
AutoMan is implemented in tiers in order to cleanly sepa-
rate three concerns: delivering reliable data to the end-
user, interfacing with an arbitrary crowdsourcing system, 
and specifying validation strategies in a crowdsourcing 
system-agnostic manner. The programmer’s interface to 
AutoMan is a domain-specific language embedded in 
the Scala programming language. The choice of Scala is 
to maintain full interoperablity with existing Java Virtual 
Machine code. The DSL abstracts questions at a high level 
as question functions.

Upon executing a question function, AutoMan computes 
the number of tasks to schedule, the reward, and the time-
out; marshals the question to the appropriate backend; 
and returns immediately, encapsulating work in a Scala 
Future. The runtime memoizes all responses in case the 
user’s program crashes. Once quality control goals are satis-
fied, AutoMan selects and returns an answer.

Each tier in AutoMan is abstract and extensible. 
The default quality control strategy implements the 
algorithm described in Section 5.2. Programmers 
can replace the default strategy by implementing the 
ValidationStrategy interface. The default backend is 
MTurk, but this backend can be replaced with few changes 
to client code by supplying an AutomanAdapter for a dif-
ferent crowdsourcing platform.

7. EVALUATION
We implemented three sample applications using AutoMan: 
a semantic image-classification task using checkboxes (Section 
7.1), an image-counting task using radio buttons (Section 7.2), 
and an optical character recognition (OCR) pipeline using text 
entry (Section 7.3). These applications were chosen to be rep-
resentative of the kinds of problems that remain difficult even 
for state-of-the-art algorithms. We also performed a simulation 
using real and synthetic traces to explore AutoMan’s perfor-
mance as confidence and worker quality is varied (Section 7.4).

b  The MediaLab LPR database is available at http://www.medialab.ntua.gr/
research/LPRdatabase.html.
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these systems require substantial engineering in practice.4 
False positives have dramatic negative consequences in 
unsupervised ALPR systems as tickets are issued to motorists 
automatically. A natural consequence is that even good unsu-
pervised image-recognition algorithms may need humans in 
the loop to audit results and to limit false positives.

Using AutoMan to engage humans to perform this 
task required only a few hours of programming time and 
AutoMan’s quality control ensures that it delivers results 
that match or exceed the state-of-the-art on even the most 
difficult cases. We evaluated the ALPR application using 
the MediaLab LPRb database. Figure 3 shows a sample trace 
for a real execution.

The benchmark was run twice on 72 of the “extremely dif-
ficult” images, for a total of 144 license plate identifications. 
Overall accuracy was 91.6% for the “extremely difficult” sub-
set. Each task cost an average of 12.08 cents, with a median 
latency of less than 2 min per image. AutoMan runs all 
identification tasks in parallel: one complete run took less 
than 3 h, while the other took less than 1 h. These translate 
to throughputs of 24 and 69 plates/h. While the AutoMan 
application is slower than computer vision approaches, it is 
simple to implement, and it could be used for only the most 
difficult images to increase accuracy at low cost.

7.4. Simulation
We simulate AutoMan’s ability to meet specified confi-
dence thresholds by varying two parameters, the minimum 
confidence threshold β, where 0 < β < 1 (we used 50 levels of β), 
and the probability that a random worker chooses the cor-
rect answer pr ∈ {0.75, 0.50, 0.33}. We also simulate worker 
responses drawn from trace data (“trace”) for the “Which 
item does not belong?” task (Section 7.1). For each setting of 
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Figure 3. A sample trace from the ALPR application shown in Figure 1.  
AutoMan correctly selects the answer 767JKF, spending a total of 
$0.18. Incorrect, timed-out, and cancelled tasks are not paid for, 
saving programmers money.

Figure 4. These plots show the effect of worker accuracy on (a) overall accuracy and (b) the number of responses required on a five-option 
question. “Trace” is a simulation based on real response data while the other simulations model worker accuracies of 33%, 50%, and 75%. 
Each round of responses ends with a hypothesis test to decide whether to gather more responses, and AutoMan must schedule more rounds 
to reach the confidence threshold when worker accuracy is low. Naively performing multiple tests creates a risk of accepting a wrong 
answer, but the Bonferroni correction eliminates this risk by increasing the confidence threshold with each test. Using the correction, 
AutoMan (c) meets quality control guarantees and (d) requires few additional responses for real workers.
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β and pr we run 10,000 simulations and observe AutoMan’s 
response. We classify responses as either correct or incorrect 
given the ground truth. Accuracy is the mean proportion of 
correct responses for a given confidence threshold. Responses 
required is the mean number of workers needed to satisfy a 
given confidence threshold.

Figure 4a and 4b shows accuracy and the number of required 
responses as a function of β and pr, respectively. Since the 
risk of choosing a wrong answer increases as the number of 
hypothesis tests increases (the “multiple comparisons” 
problem), we also include figures that show the result of cor-
recting for this effect. Figure 4c shows the accuracy and Figure 
4d shows the increase in the number of responses when we 
apply the Bonferroni bias correction.10

These results show that AutoMan’s quality control 
algorithm is effective even under pessimistic assumptions 
about worker quality. AutoMan is able to maintain high 
accuracy in all cases. Applying bias correction ensures that 
answers meet the programmer’s quality threshold even 
when worker quality is low. This correction can signifi-
cantly increase the number of additional worker responses 
required when bad workers dominate. However, worker 
accuracy tends to be closer to 60%,20 so the real cost of this 
correction is low.

8. RELATED WORK
Programming the Crowd. While there has been substan-
tial ad hoc use of crowdsourcing platforms, there have been 
few efforts to manage workers programmatically beyond 
MTurk’s low-level API.

TurKit Script extends JavaScript with a templating fea-
ture for common MTurk tasks and adds checkpointing to 
avoid re-submitting tasks if a script fails.15 CrowdForge and 
JabberWocky wrap a MapReduce-like abstraction on MTurk 
tasks.1, 13 Unlike AutoMan, neither TurKit nor CrowdForge 
automatically manage scheduling, pricing, or quality control; 
Jabberwocky uses fixed pricing along with a majority-vote 
based quality-control scheme.

CrowdDB models crowdsourcing as an extension to SQL 
for crowdsourcing database cleansing tasks.9 The query plan-
ner tries to minimize the expense of human operations. 
CrowdDB is not general-purpose and relies on majority vot-
ing as its sole quality control mechanism.

Turkomatic crowdsources an entire computation, includ-
ing the “programming” of the task itself.14 Turkomatic can 
be used to construct arbitrarily complex computations, but 
Turkomatic does not automatically handle budgeting or qual-
ity control, and programs cannot be integrated with a con-
ventional programming language.

Quality Control. CrowdFlower is a commercial web ser-
vice.17 To enhance quality, CrowdFlower seeds questions 
with known answers into the task pipeline. CrowdFlower 
incorporates methods to programmatically generate these 
“gold” questions to ease the burden on the requester. This 
approach focuses on establishing trust in particular work-
ers.12 By contrast, AutoMan does not try to estimate worker 
quality, instead focusing on worker agreement.

Shepherd provides a feedback loop between task request-
ers and task workers in an effort to increase quality; the idea is 
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to train workers to do a particular job well.7 AutoMan requires 
no feedback between requester and workers.

Soylent crowdsources finding errors, fixing errors, and veri-
fying the fixes.3 Soylent can handle open-ended questions that 
AutoMan currently does not support. Nonetheless, unlike 
AutoMan, Soylent’s approach does not provide any quantita-
tive quality guarantees.

9. CONCLUSION
Humans can perform many tasks with ease that remain dif-
ficult or impossible for computers. We present AutoMan, the 
first crowdprogramming system. Crowdprogramming inte-
grates human-based and digital computation. By automati-
cally managing quality control, scheduling, and budgeting, 
AutoMan allows programmers to easily harness human-
based computation for their applications.

AutoMan is available at www.automan-lang.org.
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