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Preface

What Is This Book About?
Today’s Web is the product of over a billion hands and minds. Around the clock and
around the globe, people are pumping out contributions small and large: full-length
features on Vimeo, video shorts on YouTube, comments on Blogger, discussions on
Yahoo! Groups, and tagged-and-titled Del.icio.us bookmarks. User-generated content
and robust crowd participation have become the hallmarks of Web 2.0.

But the booming popularity of social media has brought with it a whole new set of
challenges for those who create websites and online communities, as well as for the
users who consume those sites:

• Problems of scale (how to manage—and present—an overwhelming inflow of user
contributions)

• Problems of quality (how to tell the good stuff from the bad)

• Problems of engagement (how to reward contributors in a way that keeps them
coming back)

• Problems of moderation (how to “stamp out” the worst stuff quickly and
efficiently)

Reputation systems can provide an effective solution to all of these problems.

Reputation and Karma: Two Simple Definitions
Reputation

Information used to make a value judgment about an object or person

Karma
The reputation(s) for a user
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What is reputation in an online community? In its broadest sense, reputation is infor-
mation used to make a value judgment about an object or a person. There are potentially
many components to reputation. For example, karma is a reputation score for a user
in a community, and it may be an aggregation of answers to the following:

• How long has this person been a member of the community?

• What types of activities has she engaged in?

• How well has she performed at them?

• What do other people think about this person?

Having access to a person’s reputation might help you make better-informed judg-
ments. Judgments like:

• Can I trust this person?

• Should I transact with him?

• Is it worth my time to listen to him?

The same principles of reputation can also be applied to that person’s individual
contributions—the video, photo, or textual content that he’s authored. Content rep-
utation can answer questions such as:

• What’s the best video in this category?

• What are the most interesting photos submitted today?

• Should I bother reading this blog entry?

• Which comments in a thread are truly worth my time?

For the site operator, reputation is at its most powerful when karma (people reputation)
is used in concert with content reputation to increase your understanding of your online
community and the relative value of its participants and contents. For the community
itself, reputation is relevance. To the site, reputation represents value and return on
investment.

So what does a reputation system do? It powers the whole process: it monitors the
community, makes note of the actions that community members take, assesses the
community’s response to those actions, and keeps a running tally of the history of it
all. (Optionally, the system may then show the results of these calculations back to users,
enabling them to make judgments about the people and things they encounter.)

Reputation systems are the underlying mechanisms behind some of the best-known
consumer websites, including Amazon, eBay, Digg, Slashdot, Facebook, and especially
media and gaming sites like iTunes and Xbox Live.

But, of course, developing a successful reputation system is not easy. Our experience
is that reputation is one part each of engineering, social science, psychology, and eco-
nomics. Social media architects and designers must pay careful attention to multiple
factors: the context in which the community is situated, the incentives they’d like to
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provide contributors (which often demand a nuanced understanding of the actions they
want to encourage and discourage), and the effects that decisions made early in the
design process may have on the community spirit downstream.

Building Web Reputation Systems provides a complete, soup-to-nuts process for de-
signing and developing your own community’s reputation program. In a guided fash-
ion, you will start with the hard questions:

• How can reputation enhance my business? The community?

• What are the right types of behaviors to encourage?

• What are the right objects (people, things?) to accrue reputation?

• What types of actions should count toward a reputation?

and then you’ll learn how to build reputation models to accurately reflect all of these
inputs. To do so, you’ll need a reputation grammar, which we’ve developed and applied
to many successful reputation systems used across the Web.

We also provide well-diagrammed reputation patterns for common web needs (“Digg-
style” voting systems, ratings and reviews, simple karma) and some extended reputa-
tion system reviews and a case study based on actual reputation deployments at
industry-leading social sites, including Yahoo!, Flickr, and eBay.

Why Write a Book About Reputation?
We wrote this book because we saw how critical reputation has become to the survival
and growth of the Web. Though there are many academic research papers on specific
generational algorithms and social effects of reputation systems, we couldn’t find a
single book that put it all in context—describing it as a separate domain of knowledge,
complete with a grammar, emerging best-use patterns, and recurring antipatterns. Until
now.

Our extensive experience creating and deploying several reputation systems across a
wide range of social media at Yahoo! provided much of our base of knowledge for this
book. We add a comprehensive review of other existing applications to venture forth
into unexplained territory and offer a working definition of web reputation systems: a
survivor’s guide for those who would follow. We hope this book will improve the
quality of conversation about reputation systems, and help improve the quality of
products that are using them.
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Who Should Read This Book
This book and the supporting blog and wiki (http://buildingreputation.com) are targeted
at several audiences:

Primary audience
Anyone who is building, operating, or participating in a website or online applica-
tion that leverages user-generated content: social networking, ratings, votes, re-
views, comments, posts, uploads, games, etc. You’ll need to understand reputation
systems in order to maximize your user experience and search engine performance,
and streamline your operational expenses.

A must-have reference for
System architects, product managers, community support staff, or user interface
designers tasked with designing a reputation system for an online community. (Or
any variant thereof: a social collaboration tool, voting mechanism, or a ratings-
and-reviews experience.)

Also useful to
Game designers who deal with reward and incentive systems for social games or
any technologist in a role that requires some familiarity with reputation systems
who’d like to become conversant in their design and operations.

Successful social media design is hard. Many companies and organizations understand
that. Rewarding points for user participation may generate activity and build audience,
but site owners should be wary of possible negative impact on content quality. They
need this book to help them choose the right reputation model for their site and help
them evaluate the health of their deployed social collaboration system.

This book assumes that you have a rudimentary understanding of application logic,
can read basic flowcharts, create content for the Web, and have direct experience in-
teracting with users on socially active websites. No programming or web engineering
experience is required, though you’ll be aided through some of the more technical
aspects of this book by some passing familiarity with programmatic thinking.

Organization of This Book
This book is broken into three main parts: Reputation Defined and Illustrated, Exten-
ded Elements and Applied Examples, and Building Web Reputation Systems. It was
written to be consumed sequentially, but if you are already experienced in developing
websites heavy with user-generated content, you may be able to move more quickly
through Part I.
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Part I: Reputation Defined and Illustrated
Chapter 1 briefly introduces basic concepts and terminology of reputation and sets
reputation systems in their proper historical context. With this context in mind, Chap-
ter 2 goes on to define a complete grammar for thinking about reputation and provides
a graphical language to clearly describe reputation systems for analysis and
development.

Part II: Extended Elements and Applied Examples
In Chapter 3, the primitive reputation grammar elements described in Part I are
combined into higher-level building blocks that can be used as-is for simple reputation
systems or combined to create more complex ones. In Chapter 4, we show how the
grammar and blocks we’ve described can be used to elucidate many of the reputation
systems currently deployed across the Web, including Digg, eBay, and Flickr. In this
part, practitioners’ tips become a regular feature of most chapters; the lessons we’ve
learned are not to be missed—even by the casual reader.

Part III: Building Web Reputation Systems
The last section, comprising more than half the book, goes beyond cookie-cutter rep-
utation needs to offer detailed advice on designing, building, deploying, and operating
a custom reputation system. The project begins not by drawing a model or screen mock-
ups, but by answering the three big questions posed in Chapter 5 that define and limit
your reputation choices. With those answers, Chapter 6 helps to identify your appli-
cation’s objects, methods, and inputs that power your reputation. With all of this in
mind, you can start drawing the reputation model.

Chapter 7 helps you decide how to display reputation, and Chapter 8 describes other
common uses for reputation, such as providing search relevance. At this point, the
reputation model is designed, and the screen mocks are ready. Next up is implemen-
tation, testing, and deployment, for which strategies and tips are covered in Chap-
ter 9. We wrap it all up with a case study in Chapter 10. This chapter ties the entire
book together, revisiting each of the steps outlined in detail with a single concrete
example. It is a successful reputation model that provides inspiration, many insights,
and several notes of caution.

Appendix A is intended for technical readers, such as system architects and platform
engineers. It describes the reputation framework—an execution environment for mul-
tiple reputation models. The Yahoo! Reputation Platform is described in detail as an
example of a framework that can scale to tens of thousands of transactions per second
but had to make some functional trade-offs that are quite illustrative.

Appendix B contains references for related materials for further reading, most of which
are available on the Web.
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Role-Based Reading (for Those in a Hurry)
Here are a few alternate chapter reading list recommendations, based on your profes-
sional role:

[Product | UX | game] designers and application product managers
We wrote this book primarily for you; Chapters 1 through 10 are all important. If
you must skim, be sure to read all of the practitioners tips, warnings, notes, and
sidebars to make sure you aren’t missing something important. User experience
folks should pay extra attention to the pros and cons in Chapters 7 and 8.

System architects, software engineers, platform engineers
Assuming you’re reading this book as part of a plan to deploy a reputation system,
read Chapters 1 and 2 completely—the definitions are important to later sections.
Skim Chapter 3, but read all the practitioners tips, and pay close attention to the
last half of Chapter 4. In Chapter 5, familiarize yourself with the Content Control
Patterns and the limiting effects they have on reputation systems. Chapters 6, 9,
and 10 are all worth your full attention. Also look at Appendix A and consider
whether you need a reputation framework.

Community support staff, [program | project] managers, operations staff
If you’re involved in a support role with reputation systems, read Chapter 1 and
review the definitions in Chapter 2. In Chapter 3, be sure to read the practitioners
tips, and likewise the advice about why reputation sometimes fails at the end of
Chapter 4. Chapters 7 and 8 provide patterns for how reputation faces the users
and the company and explain when (and when not) to use them. You’re probably
in a role that is detailed in Chapter 9; if so, read it. Chapter 10 may be the most
important chapter in the book for you—nothing like a practical example to get
oriented.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.
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This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596159795

The authors also have a site for this book at:

http://buildingreputation.com
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To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com
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PART I

Reputation Defined
and Illustrated





CHAPTER 1

Reputation Systems Are Everywhere

Reputation systems impact your life every day, even when you don’t realize it. You need
reputation to get through life efficiently, because reputation helps you make sound
judgments in the absence of any better information. Reputation is even more important
on the Web, which has trillions of pages to sort through—each one competing for your
attention. Without reputation systems for things like search rankings, ratings and re-
views, and spam filters, the Web would have become unusable years ago.

This book will clarify the concepts and terminology of reputation systems and define
their mechanisms. With these tools, you can analyze existing models, or even design,
deploy, and operate your own online reputation systems.

But, before all that, let us start at the beginning….

An Opinionated Conversation
Imagine the following conversation—maybe you’ve had one like it yourself. Robert is
out to dinner with a client, Bill, and proudly shares some personal news.

He says, “My daughter Wendy is going to Harvard in the fall.”

“Really! I’m curious—how did you pick Harvard?” asks Bill.

“Why, it has the best reputation. Especially for law, and Wendy wants to be a lawyer.”

“Did she consider Yale? My boss is a Yale man—swears by the law school.”

“Heh. Yes, depending on who you ask, their programs are quite competitive. In the
end, we really liked Harvard’s proximity. We won’t be more than an hour away.”

“Won’t it be expensive?”

“It’s certainly not cheap…but it is prestigious. We’ll make trade-offs elsewhere if we
have to—it’s worth it for my little girl!”
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It’s an unremarkable story in the details (OK, maybe most us haven’t been accepted to
Harvard), but this simple exchange demonstrates the power of reputation in our
everyday lives. Reputation is pervasive and inescapable. It’s a critical tool that enables
us to make decisions, both large (like Harvard versus Yale) and small (what restaurant
would impress my client for dinner tonight?). Robert and Bill’s conversation also yields
other insights into the nature of reputation.

People Have Reputations, but So Do Things
We often think of reputation in terms of people (perhaps because we’re each so con-
scious of our own reputation), but of course a reputation can also be acquired by many
types of things. In this story, Harvard, a college, obviously has a reputation, but so may
a host of other things: the restaurant in which Bill and Robert are sharing a conversation,
the dishes that they’ve ordered, and perhaps the wine that accompanies their meal.

It’s probably no coincidence that Bill and Robert have made the specific set of choices
that brought them to this moment: reputation has almost certainly played a part in
each choice. This book describes a formal, codified system for assessing and evaluating
the reputations of both people and things.

Reputation Takes Place Within a Context
Bill praises Harvard for its generally excellent reputation, but that is not what’s led his
family to choose the school: it was Harvard’s reputation as a law school in particular.
Reputation is earned within a context. Sometimes its value extends outside that context
(for example, Harvard is well regarded for academic standards in general). And repu-
tations earned in one context certainly influence reputations in other contexts.

Things can have reputations in multiple contexts simultaneously. In our example,
domains of academic excellence are important contexts. But geography can define a
context as well, and it can sway a final decision. Furthermore, all of an item’s reputa-
tions need not agree across contexts. In fact, it’s highly unlikely that they will. It’s
entirely possible to have an excellent reputation in one context, an abysmal one in
another, and no reputation at all in a third. No one excels at everything, after all.

For example, a dining establishment may have a five-star chef and the best seafood in
town, but woefully inadequate parking. Such a situation can lead to seemingly oxy-
moronic statements such as Yogi Berra’s famous line: “No one goes there anymore—
it’s too crowded.”
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We Use Reputation to Make Better Decisions
A large part of this book is dedicated to defining reputation in a formal, systematized
fashion. But for now, put simply (and somewhat incompletely), reputation is informa-
tion used to make a value judgment about a person or a thing. It’s worth examining this
assertion in a little more detail.

Reputation is information used to make a value judgment about an object or a person.

Where does this information come from? It depends—some of it may be information
that you, the evaluator, already possess (perhaps through direct experience, longstand-
ing familiarity, or the like). But a significant component of reputation has to do with
assimilating information that is externally produced, meaning that it does not originate
with the person who is evaluating it. We tend to rely more heavily on reputation in
circumstances where we don’t have firsthand knowledge of the object being evaluated,
and the experiences of others can be an invaluable aid in our decision. This is even more
true as we move our critical personal and professional decisions online.

What kinds of value judgments are we talking about? All kinds. Value judgments can
be decisive, continuous, and expressive. Sometimes a judgment is as simple as declaring
that something is noteworthy (thumbs up  or a favorite). Other times you want to know
the relative rank or a numeric scale value of something in order to decide how much
of your precious resources—attention, time, or money—to dedicate to it. Still other
judgments, such as movie reviews or personal testimonials, are less about calculation
and more about freeform analysis and opinion. Finally, some judgments, such as “all
my friends liked it,” make sense only in a small social context.

What about the people and things that we’re evaluating? We’ll refer to them as reputable
entities (that is, people or things capable of accruing reputation) throughout this book.
Some entities are better candidates for accruing reputation than others, and we’ll give
guidance on the best strategies for identifying them.

Finally, what kind of information do we mean? Well, almost anything. In a broad sense,
if information can be used to judge someone or something, then it informs—in some
part—the reputation of that person or thing. In approaching reputation in a formal,
systematized way, it’s beneficial to think of information in small, discrete units;
throughout this book, we’ll show that the reputation statement is the building block of
any reputation system.
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The Reputation Statement

Explicit: Talk the Talk
So what are Robert and Bill doing? They’re exchanging a series of statements about an
entity, Harvard. Some of these statements are obvious: “Harvard is expensive,” says
Bill. Others are less direct: “Their programs are quite competitive” implies that Robert
has in fact compared Harvard to Yale and chosen Harvard. Robert might have said
more directly, “For law, Harvard is better than Yale.” These direct and indirect asser-
tions feed into the shared model of Harvard’s reputation that Robert and Bill are jointly
constructing. We will call an asserted claim like this an explicit reputation statement.

Implicit: Walk the Walk
Other reputation statements in this story are even less obvious. Consider for a moment
Wendy, Robert’s daughter—her big news started the whole conversation. While her
decision was itself influenced by Harvard’s many reputations—as being a fine school,
as offering a great law program, as an excellent choice in the Boston area—her ac-
tions themselves are a form of reputation statement, too. Wendy applied to Harvard in
the first place. And, when accepted, she chose to attend over her other options. This is
a very powerful claim type that we call an implicit reputation statement: action taken in
relation to an entity. The field of economics calls the idea “revealed preference”; a
person’s actions speak louder than her words.

The Minimum Reputation Statement
Any of the following types of information might be considered viable reputation
statements:

• Assertions made about something by a third party. (Bill, for instance, posits that
Harvard “will be expensive.”)

• Factual statistics about something.

• Prizes or awards that someone or something has earned in the past.

• Actions that a person might take toward something (for example, Wendy’s appli-
cation to Harvard).

All of these reputation statements—and many more—can be generalized in this way:
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As it turns out, this model may be a little too generalized; some critical elements are left
out. For example, as we’ve already pointed out, these statements are always made in a
context. But we’ll explore other enhancements in Chapter 2. For now, the general
concepts to get familiar with are source, target, and claim. Here’s an example of a rep-
utation statement broken down into its constituent parts. This one happens to be an
explicit reputation statement by Bill:

Here’s another example, an action, which makes an implicit reputation statement about
the quality of Harvard:

You may be wrestling a bit with the terminology here, particularly the term claim.
(“Why, Wendy’s not claiming anything,” you might be thinking. “That’s simply what
she did.”) It may help to think of it like this: we are going to make the claim—by virtue
of watching Wendy’s actions—that she believes Harvard is a better choice for her than
Yale. We are drawing an implicit assumption of quality from her actions. There is
another possible reputation statement hiding in here, one with a claim of did-not-
choose and a target of Yale.

These are obviously two fairly simple examples. And, as we said earlier, our simplified
illustration of a reputation statement is omitting some critical elements. Later, we’ll
revise that illustration and add a little rigor.

Reputation Systems Bring Structure to Chaos
By what process do these random and disparate reputation statements cohere and be-
come a reputation? In “real life,” it’s sometimes hard to say: boundaries and contexts
overlap, and impressions get muddied. Often, real-world reputations are no more ad-
vanced than irregular, misshapen lumps of collected statements, coalescing to form a
haphazard whole. Ask someone, for example, “What do you think about Indiana?” Or
“George W. Bush?” You’re liable to get 10 different answers from eight different people.
It’s up to you to keep those claims straight and form a cohesive thought from them.

Systems for monitoring reputation help to formalize and delineate this process. A
(sometimes, but not always) welcome side effect is that reputation systems also end up
defining positive reputations, and suggesting exactly how to tell them from negative
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ones. (See the sidebar “Negative and Positive Reputation” on page 17.) Next, we’ll
discuss some real-world reputation systems that govern all of our lives.

Then, the remainder of this book proposes a system that accomplishes that very thing
for the social web. For the multitude of applications, communities, sites, and social
games that might benefit from a reputation-enriched approach, we’ll take you—the
site designer, developer, or architect—through the following process:

• Defining the targets (or the best reputable entities) in your system

• Identifying likely sources of opinion

• Codifying the various claims that those sources may make

Reputation Systems Deeply Affect Our Lives
We all use reputation every day to make better decisions about anything, from the
mundane to choices critical for survival. But the flip side is just as important and
pervasive—a multitude of reputation systems currently evaluate you, your perform-
ance, and your creations. This effect is also true for the groups that you are a member
of: work, professional, social, or congregational. They all have aggregated reputations
that you are a part of, and their reputation reflects on you as well. These reputations
are often difficult to perceive and sometimes even harder to change.

Local Reputation: It Takes a Village
Many of your personal and group reputations are limited in scope: your latest per-
formance evaluation at work is between you, your boss, and the human resources de-
partment; the family living on the corner is known for never cutting their grass; the
hardware store on Main Street gives a 10% discount to regular customers. These are
local reputations that represent much of the fabric that allows neighbors, coworkers,
and other small groups to make quick, efficient decisions about where to go, whom to
see, and what to do.

Local reputation can be highly valuable to those outside of the original context. If the
context can be clearly understood and valued by a larger audience, then “surfacing” a
local reputation more broadly can create significant real-world value for an entity. For
example, assuming a fairly standard definition of a good sushi restaurant, displaying a
restaurant’s local reputation to visitors can increase the restaurant’s business and local
tax revenue. This is exactly what the Zagat’s guide does—it uses local reputation state-
ments to produce a widely available and profitable reputation system.

Note that—even in this example—a reputation system has to create a plethora of cat-
egories (or contexts) in order to overcome challenges of aggregating local reputation on
the basis of personal taste. In Manhattan, Zagat’s lists three types of American cuisine
alone: new, regional, and traditional. We will discuss reputation contexts and scope
further in Chapter 6.
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On the other hand, a corporate performance review would not benefit from broader
publication. On the contrary, it is inappropriate, even illegal in some places, to share
that type of local reputation in other contexts.

Generally, local reputation has the narrowest context, is the easiest to interpret, and is
the most malleable. Sources are so few that it is often possible—or even required—to
change or rebuild collective local perception. A retailer displaying a banner that reads
“Under New Management” is probably attempting to reset his business’s reputation
with local customers. Likewise, when you change jobs and get a new boss, you usually
have to (or get to, depending on how you look at it) start over and rebuild your good
worker reputation.

Global Reputation: Collective Intelligence
When strangers who do not have access to your local reputation contexts need to make
decisions about you, your stuff, or your communities, they often turn to reputations
aggregated in much broader contexts. These global reputations are maintained by ex-
ternal formal entities—often for-profit corporations that typically are constrained by
government regulation.

Global reputations differ from local ones in one significant way; the sources of the
reputation statements do not know the personal circumstances of the target. That is,
strangers generate reputation claims for other strangers.

You may think, “Why would I listen to strangers’ opinions about things I don’t yet
know how to value?” The answer is simply that a collective opinion is better than
ignorance, especially if you are judging the value of the target reputable entity against
something precious—such as your time, your health, or your money.

Here are some global reputations you may be familiar with:

• The FICO credit score represents your ability to make payments on credit accounts,
among many other things.

• Television advertising revenues are closely tied to Nielsen ratings. They measure
which demographic groups watch which programming.

• For the first 10 years after the Web came into widespread use, page views were the
primary metric for the success of a site.

• Before plunking down their $10 or more per seat, over 60% of U.S. moviegoers
report consulting online movie reviews and ratings created by strangers.

• Statistics such as the Dow Jones Industrial Average, the trade deficit, the prime
interest rate, the consumer confidence index, the unemployment rate, and the spot
price of crude oil are all used as proxies for indicating America’s economic health.

Again, these examples are aggregated from both explicit (what people say) and implicit
(what people do) claims. Global reputations exist on such a large scale that they are
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very powerful tools in otherwise information-poor contexts. In all the previous exam-
ples, reputation affects the movement of billions of dollars every day.

Even seemingly trivial scores such as online movie ratings have so much influence that
movie studios have hired professional review writers to pose as regular moviegoers,
posting positive ratings early in an attempt to inflate opening weekend attendance fig-
ures. This is known in the industry as buzz marketing, and it’s but one small example
of the pervasive and powerful role that formal reputation systems have assumed in our
lives.

FICO: A Study in Global Reputation and Its Challenges
Credit scores affect every modern person’s life at one time or another. A credit score is
the global reputation that has the single greatest impact on the economic transactions
in your life. Several credit scoring systems and agencies exist in the United States, but
the prevalent reputation tool in the world of creditworthiness is the FICO credit score
devised by the company Fair Isaac. We’ll touch on how the FICO score is determined,
how it is used and misused, and how difficult it is to change.

The lessons we learn from the FICO score apply nearly verbatim to reputation systems
on the Web.

The FICO score is based on the following factors (all numbers are approximate; see
Figure 1-1):

• Start with 850 points—the theoretical maximum score. Everything is downhill
from here.

• The largest share, up to 175 points, is deducted for late payments.

• The next most important share, up to 150 points, penalizes you for outstanding
balances close to or over available credit limits (capacity).

• Up to 75 points are deducted if your credit history is short. (This effect is reduced
if your scores for other factors are high.)

• Another 50 points may be deducted if you have too many new accounts.

• Up to 50 points are reserved for other factors.

Like all reputation scores, the FICO score is aggregated from many separate reputation
statements. In this case, the reputation statements are assertions such as “Randy was
15 days late with his Discover payment last month,” all made by various individual
creditors. So, for the score to be correct, the system must be able to identify the target
(Randy) consistently and be updated in a timely and accurate way.

When new sources (creditors) appear, they must comply with the claim structure
and be approved by the scoring agency; a bogus source or bad data can seriously taint
the resulting scores. Given these constraints and a carefully tuned formulation, the
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FICO score may well be a reasonable representation of something we can call
creditworthiness.

For most of its history of more than 50 years, the FICO score was shrouded in mystery
and nearly inaccessible to consumers, except when they were opening major credit lines
(such as when purchasing a home). At the time, this obscurity was considered a bene-
fit. A benefit, that is, to lenders and the scoring agencies—that, in operating a high-fee-
per-transaction business, were happy to be talking only with one another. But this lack
of transparency meant that an error on your FICO score could go undetected
for months—or even years—with potentially deleterious effects on your cash flow:
increased interest rates, decreased credit limits, and higher lending fees.

However, as it has in most other businesses, the Internet has brought about a reform
of sorts in credit scoring. Nowadays you can quickly get a complete credit report or
take advantage of a host of features related to it: flags to alert you when others are
looking at your credit data, or alarms whenever your score dips or an anomalous rep-
utation statement appears in your file.

[In the United States] an employer is generally permitted to [perform a credit check],
primarily because there is no federal discrimination law that specifically prohibits em-
ployment discrimination on the basis of a bad credit report.

—EmployeeIssues.com

As access to credit reports has increased, the credit bureaus have kept pace with the
trend and have steadily marketed the reports for a growing number of purposes. More
and more transaction-based businesses have started using them (primarily the FICO
score) for less and less relevant evaluations. In addition to their original purpose—
establishing the terms of a credit account—credit reports are now used by landlords

Figure 1-1. Your credit score is a formalized reputation model made up of numerous inputs.
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for the less common but somewhat relevant purpose of risk mitigation when renting a
house or apartment and by some businesses to run background checks on prospective
employees—a legal but unreasonably invasive requirement.

Global reputation scores are so powerful and easily accessible that the temptation to
apply them outside of their original context is almost irresistible. The rise and spread
of the FICO score illustrates what can happen when a reputation that is powerful and
ubiquitous in one specific context is used in other, barely related contexts: it transforms
the reputation beyond recognition. In this ironic case, your ability to get a job (to make
money that will allow you to pay your credit card bills) can be seriously hampered by
the fact that your potential boss can determine that you are over your credit limit.

Web FICO?
Several startup companies have attempted to codify a global user reputation to be em-
ployed across websites, and some try to leverage a user’s preexisting eBay seller’s Feed-
back score as a primary value in their rating. They are trying to create some sort of “real
person” or “good citizen” reputation system for use across all contexts. As with the
FICO score, it is a bad idea to co-opt a reputation system for another purpose, and it
dilutes the actual meaning of the score in its original context. The eBay Feedback score
reflects only the transaction-worthiness of a specific account, and it does so only for
particular products bought or sold on eBay. The user behind that identity may in fact
steal candy from babies, cheat at online poker, and fail to pay his credit card bills. Even
eBay displays multiple types of reputation ratings within its singular limited context.
There is no web FICO because there is no kind of reputation statement that can be
legitimately applied to all contexts.

Reputation on the Web
Over the centuries, as human societies became increasingly mobile, people started
bumping into one another. Increasingly, we began to interact with complete strangers
and our locally acquired knowledge became inadequate for evaluating the trustwor-
thiness of new trading partners and goods. The emergence of various formal and in-
formal reputation systems was necessary and inevitable. These same problems of trust
and evaluation are with us today, on the Web. Only…more so. The Web has no cen-
tralized history of reputable transactions and no universal identity model. So we can’t
simply mimic real-world reputation techniques, where once you find someone (or some
group) that you trust in one context, you can transfer that trust to another. On the
Web, no one knows who you are, or what you’ve done in the past. There is no multi-
context “reputation at large” for users of the Web, at least for the vast majority of users.

Consider what people today are doing online. Popular social media sites are the product
of millions of hands and minds. Around the clock and around the globe, the world is
pumping out contributions small and large: full-length features on Vimeo, video shorts
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on YouTube, entries on Blogger, discussions on Yahoo! Groups, and tagged-and-titled
Del.icio.us bookmarks. User-generated content and robust crowd participation have
become the hallmarks of Web 2.0.

But the booming popularity of social media has created a whole new set of challenges
for those who create websites and online communities (not to mention the challenges
faced by the users of those sites and communities). Here are just a few of them.

Attention Doesn’t Scale
Attention Economics: An approach to the management

of information that treats human attention
as a scarce commodity…

—Wikipedia

If there ever was any question that we live in an attention economy, YouTube has put
a definitive end to it. According to YouTube’s own data, “every minute, 10 hours of
video is uploaded to YouTube.” That’s over 14,000 hours of video each and every day.
If you started watching just today’s YouTube contributions nonstop, end to end, you’d
be watching for the next 40 years. That’s a lot of sneezing pandas!

Clearly, no one has the time to personally sift through the massive amount of material
uploaded to YouTube. This situation is a problem for all concerned.

• If I’m a visitor to YouTube, it’s a problem of time management. How can I make
sure that I’m finding the best and most relevant stuff in the time I have available?

• If I’m a video publisher on YouTube, I have the opposite problem: how can I make
sure that my video gets noticed? I think it’s good content, but it risks being lost in
a sea of competitors.

• And, of course, YouTube itself must manage an overwhelming inflow of user con-
tributions, with the attendant costs (storage, bandwidth, and the like). It’s in You-
Tube’s best interest to quickly identify abusive content to be removed, and popular
content to promote to their users. This decision-making process also has significant
cost implications—the most viewed videos can be cached for the best performance,
while rarely viewed items can be moved to slower, cheaper storage.

There’s a Whole Lotta Crap Out There
Sturgeon’s Law: Ninety percent of everything is crud.

—Theodore Sturgeon, author, March 1958

Even in contexts where attention is abundant and the sheer volume of user-generated
content is not an issue, there is the simple fact that much of what’s contributed just
may not be that good. Filtering and sorting the best and most relevant content is what
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web search engines such as Google are all about. Sorting the wheat from the chaff is a
multibillion-dollar industry.

The great content typically is identified by reputation systems, local site editors, or a
combination of the two, and it is often featured, promoted, highlighted, or rewarded
(see Figure 1-2).

Figure 1-2. Content at the higher end of the scale should be rewarded, trumpeted, and showcased;
stuff on the lower registers will be ignored, hidden, or reported to the authorities.

The primary goal of a social media site should be to make user-generated content of
good quality constitute the bulk of what users interact with regularly. To reach that
goal, user incentive reputation systems are often combined with content quality eval-
uation schemes.

Like an off-color joke delivered in mixed company, seemingly inappropriate content
may become high-quality content when it’s presented in another context. The quality
of such content may be OK, but moving or improving the content will move it up the
quality scale. On an ideal social media site, community members would regularly only
encounter content that is OK or better.

Unfortunately, when a site has the minimum possible social media features—such as
blog comments turned on without oversight or moderation—the result is usually a very
high ratio of poor content. As user-generated content grows, content moderation of
some sort is always required: typically, either employees scan every submission or the
site’s operators deploy a reputation system to identify bad content. Simply removing
the bad content usually isn’t good enough—most sites depend on search engine traffic,
advertising revenue, or both. To get search traffic, external sites must link to the con-
tent, and that means the quality of the content has to be high enough to earn those links.

Then there are submissions that violate the terms of service (TOS) of a social website.
Such content needs to be removed in a timely manner to avoid dragging down the
average quality of content, degrading the overall value of the site.
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Finally, if illegal content is posted on a site, not only must it be removed, but the site’s
operators may be required to report the content to local government officials. Such
content obviously must be detected and dealt with as quickly and efficiently as possible.

For sites large and small, the worst content can be quickly identified and removed by
a combination of reputation systems and content moderators. But that’s not all repu-
tations can do. They also provide a way to identify, highlight, and reward the contrib-
utors of the highest quality content, motivating them to produce their very best stuff.

People Are Good. Basically.
Of course, content on your site does not just appear, fully formed, like Athena from
the forehead of Zeus. No, we call it user-generated content for a reason. And any good
reputation system must consider this critical element—the people who power it—
before almost anything else.

Visitors to your site will come for a variety of reasons, and each will arrive prearmed
with her own motivations, goals, and prejudices. On a truly successful social media
site, it may be impossible to generalize about those factors. But it does help to consider
the following guidelines, regardless of your particular community and context.

Know thy user

Again, individual motivations can be tricky—in a community of millions like the Web,
you’ll have as many motivating factors as users (if not more; people are a conflicted
lot). But be prepared, at least, to anticipate your contributors’ motivations and desires.
Will people come to your site and post great content because…

• They crave attention?

• It’s intrinsically rewarding to them in some way?

• They expect some monetary reward?

• They’re acting altruistically?

In reality, members of your community will act (and act out) for all of these reasons
and more. And the better you can understand why they do what they do, the better
you can fine-tune your reputation system to reflect the real desires of the people that it
represents. We’ll talk more about your community members and their individual mo-
tivations in Chapter 5, but we’ll generalize about them a bit here.

Honor creators, synthesizers, and consumers

Not everyone in your community will be a top contributor. This is perfectly natural,
expected, and—yes—even desired. Bradley Horowitz (vice president of product man-
agement at Google) makes a distinction among creators, synthesizers, and consumers
(see Figure 1-3) and speculates on the relative percentages of each that you’ll find in a
given community:
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Creators
1% of the user population might start a group (or a thread within a group).

Synthesizers
10% of the user population might participate actively and actually submit content,
whether starting a thread or responding to one.

Consumers
100% of the user population benefits from the activities of these two groups.

Figure 1-3. In any community, you’ll likely find a similar distribution of folks who actively administer
the site, those who contribute, and those who engage with it in a more passive fashion.

Again, understanding the roles that members of a community naturally fall into will
help you formulate a reputation system that enhances this community dynamic (rather
than fights against it). A thoughtful reputation system can help you reward users at
all levels of participation and encourage them to move continually toward higher levels
of participation, without ever discouraging those who are comfortable simply being
site consumers.

Throw the bums out

And then there are the bad guys. Not every actor in your community has noble inten-
tions. Attention is a big motivator for some community participants. Unfortunately,
for some participants—known as trolls—that crassest of motivations is the only one
that really matters. Trolls are after your attention, plain and simple, and unfortunately
will stoop to any behavioral ploy to get it. But, luckily, they can be deterred (often with
only a modicum of effort, when that effort is directed in the right way).

A (by far) more persistent and methodical group of problem users will have a financial
motive: if your application is successful, spammers will want to reach your audience
and will create robots that abuse your content creation tools to do it. But when given
too much prominence, almost any motivation can lead to bad behavior that transgresses
the values of the larger community.
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The Reputation Virtuous Circle

Negative and Positive Reputation
Positive reputations

Represent the relative value of an entity or user. Sometimes known as relevance,
popularity, or even quality, positive reputation is used to feature the best content
and its creators.

Negative reputations
Identify undesirable content and users for further action. This includes illegal con-
tent, TOS violations, and especially spam.

Negative reputation systems are important for saving costs and keeping virtual neigh-
borhoods garbage-free, but their chief value is generally seen as cost reduction. For
example, a virtual army of robots keeps watch over controversial Wikipedia pages and
automatically reverts obvious abuse, such as “blanking”—removing all article content
nearly instantaneously—a task that would cost millions of dollars a year if paid human
moderators had to perform it. Like a town’s police force, negative reputation systems
are often necessary, but they don’t actually make things more attractive to visitors.

Where reputation systems really add value to a site’s bottom line is by focusing on
identifying the very best user-generated content and offering incentives to users for
creating it. Surfacing the best content creates a virtuous circle (Figure 1-4): consumers
of content visit a site and link to it because it has the best content, and the creators of
that content share their best stuff on that site because all the consumers go there.

Figure 1-4. Quality contributions attract more attention, which begets more reward, which inspires
more quality contributions….
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Who’s Using Reputation Systems?
Reputation systems are the underlying mechanisms behind some of the best-known
consumer websites. For example:

• Amazon’s product reviews are probably the most well-known example of object
reputation, complete with a built-in meta-moderation model: “Was this review
helpful?” Its Top Reviewers program tracks reputable reviews and trusted review-
ers to provide context for potential product buyers when evaluating the reviewer’s
potential biases.

• eBay’s feedback score is based on the number of transactions that a seller or buyer
has completed. It is aggregated from hundreds or thousands of individual purchase
transaction ratings.

• Built on a deep per-post user rating and classification system, Slashdot’s karma is
an often-referenced program used to surface good content and silence trolls and
spammers.

• Xbox Live’s (very successful) Achievements reward users for beating minor goals
within games and cumulatively add to community members’ gamerscores.

Table 1-1 illustrates that all of the top 25 websites listed on Alexa.com use at least one
reputation system as a critical part of their business, many use several, and quite a few
would fail without them. (Note that multiple Google and Yahoo! sites are collapsed in
this table.)

Table 1-1. Use of reputation systems on top websites

Website Vote to
promote

Content rat-
ing and
ranking

Content re-
views and
comments

Incentive
karma
(points)

Quality
karma

Competi-
tive
karma

Abuse
scoring

yahoo.* ††a ††† ††† † † †† †††

google.* †† ††† † - † - †††

youtube.com †††b †† ††† - † † ††

live.com †† ††† †† ††† † - †††

facebook.com †c ††† †† †† † † †††

msn.com † ††† ††† - † †† ††

wikipedia.org † - †† - † - †††

blogger.com † † ††† - † - †††

baidu.com † ††† † † ††† - ††

rapid-
share.com

- d - - ††† - - ††

microsoft.com - - † - - - †††

hi5.com † † † † † † ††
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Website Vote to
promote

Content rat-
ing and
ranking

Content re-
views and
comments

Incentive
karma
(points)

Quality
karma

Competi-
tive
karma

Abuse
scoring

sina.com.cn † † † † † † †

ebay.com † † - † ††† - †††

mail.ru † † † - - - †††

fc2.com - † - - - - ††

vkontakte.ru † ††† †† †† † † †††
a Multiple types
b Extensively
c Yes
d Unknown

Challenges in Building Reputation Systems
User-generated sites and online games of all shapes and sizes face common challenges.
Even fairly intimate community sites struggle with the same issues as large sites. Re-
gardless of the media types on a site or the audience for which a site is intended, once
a reputation system hits a certain threshold of community engagement and contribu-
tion, the following problems are likely to affect it:

Problems of scale
How to manage and present an overwhelming inflow of user contributions

Problems of quality
How to tell the good stuff from the bad

Problems of engagement
How to reward contributors in a way that keeps them coming back

Problems of moderation
How to stamp out the worst stuff quickly and efficiently

Fortunately, a well-considered strategy for employing reputation systems on your site
can help you make headway on all of these problems. A reputation system compensates
for an individual’s scarcest resource—his attention—by substituting a community’s
greatest asset: collective energy.

Sites with applications that skillfully manage reputations (both of the site’s contributors
and of their contributions) will prosper. Sites on which the reputation of users and
content is ignored or addressed in only the crudest or most reactive way do so at their
own peril. Those sites will see the quality of their content sag and participation levels
falter, and will themselves earn a reputation as places to avoid.

This book will help you understand, in detail, how reputation systems work and give
you the tools you need to apply that knowledge to your site, game, or application. It
will help you see how to create your own virtuous circle, producing real value to you
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and your community. It will also help you design and develop systems to reduce the
costs of moderating abuse, especially by putting much of the power back into the hands
of your most ardent users.

Related Subjects
We have limited our examination of reputation systems to context-aggregated reputa-
tions, and therefore we will only lightly touch on reputation-related subjects. Each of
these subjects is covered in detail in other reference works or academic papers (see
Appendix B for references to these works):

Search relevance
Algorithms such as search rank and page rank are massively complex and require
teams of people with doctorates to understand, build, and operate them. If you
need a good search engine, license one or use a web service.

Recommender systems
These are information filters for identifying information items of interest on the
basis of similarities of attributes or personal tastes.

Social network filters
Though this book will help you understand the mechanics of most social network
filters, it does not cover in depth the engineering challenges required to generate
unique reputation scores for every viewing user.

We will not be addressing personal or corporate identity reputation management serv-
ices, such as search engine optimization (SEO), WebPR, or trademark-monitoring.
These are techniques to track and manipulate the very online reputation systems de-
scribed in this book.

Conceptualizing Reputation Systems
We’ve demonstrated that reputation is everywhere and that it brings structure to chaos
by allowing us to proxy trust when making day-to-day decisions. Therefore reputation
is critical for capturing value on the Web, where everything and everybody is reduced
to a set of digital identifiers and database records. We demonstrated that all reputation
exists in a context. There is no overall web trust reputation—nor should there be. The
abuses of the FICO credit score serve well as examples of the dangers therein.

Now that we’ve named this domain and limited its scope, we next seek to understand
the nature of the currently existing examples—successes and failures—to help create
both derivative and original reputation systems for new and existing applications. In
order to talk consistently about these systems, we started to define a formal grammar,
starting with The Reputation Statement as its core element. The remainder of this book
builds on this premise, starting with Chapter 2, which provides the formal definition
of our graphical reputation system grammar. This foundation is used throughout the
remainder of the book, and is recommended for all readers.
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CHAPTER 2

A (Graphical) Grammar for Reputation

The phrase reputation system describes a wide array of practices, technologies, and user-
interface elements. In this chapter, we’ll build a visual “grammar” to describe the at-
tributes, processes, and presentation of reputation systems. We’ll use this grammar
throughout subsequent chapters to describe existing reputation systems and define new
ones. Furthermore, you should be able to use this grammar as well—both to understand
and diagram common reputation systems, and to design systems of your own.

Meta-modeling: A formalized specification of domain-specific notations…following a
strict rule set.

—http://en.wikipedia.org/wiki/Metamodeling

Much reputation-related terminology is inconsistent, confusing, and even contradic-
tory, depending on what site you visit or which expert opinion you read. Over the last
30 years, we’ve evaluated and developed scores of online and offline reputation systems
and identified many concepts and attributes common to them all; enough similarity
that we propose a common lexicon and a “graphical grammar”—the common con-
cepts, attributes, and methods involved—to build a foundation for a shared under-
standing of reputation systems.

Why propose a graphical grammar? Reputation is an abstract concept, and deploying
it usually requires the participation of many people. In practice, we’ve consistently seen
that having a two-dimensional drawing of the reputation model facilitates the design
and implementation phases of the project. Capturing the relationships between the
inputs, messages, processes, and outputs in a compact, simple, and accessible format
is indispensable. Think of it like a screen mock, but for a critical, normally invisible
part of the application.

In describing this grammar, we’ll borrow a metaphor from basic chemistry: atoms
(reputation statements) and their constituent particles (sources, claims, and targets)
are bound with forces (messages and processes) to make up molecules (reputation
models), which constitute the core useful substances in the universe. Sometimes dif-
ferent molecules are mixed in solutions (reputation systems) to catalyze the creation of
stronger, lighter, or otherwise more useful compounds.
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The graphical grammar of reputation systems is continually evolving as
the result of changing markets and technologies. Visit this book’s com-
panion wiki at http://buildingreputation.com for up-to-date information
and to participate in this grammar’s evolution.

The Reputation Statement and Its Components
As we proceed with our grammar, you’ll notice that reputation systems compute many
different reputation values that turn out to possess a single common element: the rep-
utation statement. In practice, most input to a reputation model is either already in the
form of reputation statements or is quickly transformed into them for easy
processing.

Just as matter is made up of atoms, reputation is made up of reputation statements.

Like atoms, reputation statements always have the same basic components, but they
vary in specific details. Some are about people, and some are about products. Some are
numeric, some are votes, some are comments. Many are created directly by users, but
a surprising number is created by software.

Any single atom always has certain particles (protons, neutrons, and electrons). The
configurations and numbers of those particles determine the specific properties of an
element when it occurs en masse in nature. For example, an element may be stable or
volatile, gaseous or solid, and radioactive or inert, but every object with mass is made
up of atoms.

The reputation statement is like an atom in that it too has constituent particles: a
source, a claim, and a target (see Figure 2-1). The exact characteristics (type and value)
of each particle determine what type of element it is and its use in your application.

Figure 2-1. Much like in archery, anyone can fire a claim at anything. It doesn’t necessarily mean the
claim is accurate. Throughout this book, claims will be represented by this stylized arrow shape.

22 | Chapter 2: A (Graphical) Grammar for Reputation



Reputation Sources: Who or What Is Making a Claim?
Every reputation statement is made by someone or something. A claim whose author
is unknown is impossible to evaluate: the statement “Some people say product X is
great” is meaningless. Who are “some people”? Are they like me? Do they work for the
company that makes product X? Without knowing something about who or what made
a claim, you can make little use of it.

We start building our grammar from the ground up, and so we need a few primitive
objects:

Entity
An entity is any object that can be the source or target of reputation claims. It must
always have a unique identifier and is often a database key from an external data-
base. Everything is for or about entities.

Source
A source is an entity that has made a reputation claim. Though sources are often
users, there are several other common sources: input from other reputation models,
customer care agents, log crawlers, antispam filters, page scrapers, third-party
feeds, recommendation engines, and other reputation roll-ups (see the description
of roll-ups in the section “Messages and Processes” on page 26).

User [as Source]
Users are probably the most well-known source of reputation statements. A user
represents a single person’s interaction with a reputation system. Users are always
formal entities, and they may have reputations for which they are the source or of
which they are the target.

Aggregate Source
Reputation systems are all about collecting and combining or aggregating multiple
reputation statements. The reputation statements that hold these collected claims
are known as roll-ups and always use a special identifier: the aggregate source.

This sounds like a special exception, but it isn’t. This is the very nature of reputation
systems, even in life: claims that a movie is number one at the box office don’t
include a detailed list of everyone who bought a ticket, nor should they. That claim
always comes with the name of an aggregation source, such as “according to Bill-
board Magazine.”
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Reputation Claims: What Is the Target’s Value to the Source?
On What Scale?
The claim is the value that the source assigned to the target in the reputation statement.
Each claim is of a particular claim type and has a claim value. Figure 2-1 shows a claim
with a 5-star rating claim type, and this particular reputation statement has a claim
value of 4 (stars).

Claim type
What type of evaluation is this claim? Is it quantitative (numeric) or qualitative
(structured)? How should it be interpreted? What processes will be used to nor-
malize, evaluate, store, and display this score? Figure 2-2 shows reputation state-
ments with several different common claim types.

Quantitative or numeric claims
Numeric or quantitative scores are what most people think of as reputation, even
if they are displayed in a stylized format such as letter grades, thumbs, stars, or
percentage bars. Since computers handle numbers easily, most of the complexity
of reputation systems has to do with managing these score classes. Examples of
common numerical score classes are accumulators, votes, segmented enumera-
tions (that is, stars), and roll-ups such as averages and rankings.

Qualitative claims
Any reputation information that can’t be readily parsed by software is called qual-
itative, but such information plays a critical role in helping people determine
the value of the target. On a typical ratings-and-reviews site, the text comment and
the demographics of the review’s author set important context for understanding
the accompanying 5-star rating. Qualitative scores commonly appear as blocks of
text, videos, URLs, photos, and author attributes.

Figure 2-2. A number of common claim types, targeted at a variety of reputable entities.
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Raw score
The score is stored in raw form—as the source created it. Keeping the original value
is desirable because normalization of the score may cause some loss of precision.

Normalized score
Numeric scores should be converted to a normalized scale, such as 0.0 to 1.0, to
make them easier to compare to each other. Normalized scores are also easier to
transform into a claim type other than the one associated with input.

A normalized score is often easier to read than trying to guess what 3 stars means,
since we’re trained to understand the 0–100 scale early in life and the transforma-
tion of a normalized number to 0–100 is trivial to do in one’s head. For example,
if the community indicated that it was 0.9841 (normalized) in support of your
product, you instantly know this is a very good thing.

Reputation Targets: What (or Who) Is the Focus of a Claim?
A reputation statement is always focused on some unique identifiable entity—the
target of the claim. Reputations are assigned to targets, for example, a new eatery. Later,
the application queries the reputation database supplying the same eatery’s entity
identifier to retrieve its reputation for display: “Yahoo! users rated Chipotle Restaurant
4 out of 5 stars for service.” The target is left unspecified (or only partially specified) in
database requests based on claims or sources: “What is the best Mexican restaurant
near here?” or “What are the ratings that Lara gave for restaurants?”

Target, aka reputable entity
Any entity that is the target of reputation claims. Examples of reputable entities
are users, movies, products, blog posts, videos, tags, guilds, companies, and IP
addresses. Even other reputation statements can be reputable entities if users make
reputation claims about them—movie reviews, for example.

User as target, aka karma
When a user is the reputable entity target of a claim, we call that karma. Karma
has many uses. Most uses are simple and limited to corporate networks, but some
of the more well-known uses, such as points incentive models and eBay feedback
scores, are complex and public (see the section “Karma” on page 176 for a detailed
discussion).

Reputation statement as target
Reputation statements themselves are commonly the targets of other reputation
statements that refer to them explicitly. See “Complex Behavior: Containers and
Reputation Statements As Targets” on page 30 for a full discussion.
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Molecules: Constructing Reputation Models Using Messages
and Processes
Just as molecules are often made up of many different atoms in various combinations
to produce materials with unique and valuable qualities, what makes reputation models
so powerful is that they aggregate reputation statements from many sources and often
statements of different types. Instead of concerning ourselves with valence and Van der
Waals forces, in reputation models we bind the atomic units—the reputation
statements—together with messages and processes.

In the simple reputation model presented in Figure 2-3, messages are represented by
arrows and flow in the direction indicated. The boxes are the processes and contain
descriptions of the processes that interpret the activating message to update a reputa-
tion statement and/or send one or more messages onto other processes. As in
chemistry, the entire process is simultaneous; messages may come in at any time, and
multiple messages may take different paths through a complex reputation model at the
same time.

People often become confused about the limited scope of reputation, and where to
draw the lines between multiple reputations, so we need a couple of definitions:

Reputation model
A reputation model describes all of the reputation statements, events, and pro-
cesses for a particular context. Usually a model focuses on a single type of reputable
entity.

Yahoo! Local, Travel, Movies, TV, etc. are all examples of ratings-and-reviews
reputation models. eBay’s Seller Feedback model, in which users’ ratings of trans-
actions are reflected in sellers’ profiles, is a karma reputation model. The example
in Figure 2-3 is one of the simplest possible models and was inspired by the Digg
it vote-to-promote reputation model (see Chapter 6) made popular by Digg.com.

Reputation Context
A reputation context is the relevant category for a specific reputation. By definition,
the reputation’s reuse is limited to related contexts. A high ranking for a user of
Yahoo! Chess doesn’t really tell you whether you should buy something from that
user on eBay, but it might tell you something about how committed the user is to
board gaming tournaments. See the sections “Reputation Takes Place Within a
Context” on page 4 and “FICO: A Study in Global Reputation and Its Chal-
lenges” on page 10 for a deeper consideration of the limiting effects of context.

Messages and Processes
Again, look at the simplest reputation model diagram shown in Figure 2-3. The input
reputation statement appears on the left and is delivered as a message to the reputation
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process box. Messages and processes make up the working mechanics of the reputation
model:

Reputation message
Reputation messages, represented by the flow lines in reputation model diagrams,
are information supplied to a reputation process for some sort of computational
action. In this example, the input is a reputation statement delivered as a message
to the Raw Sum of Votes process. These messages may come from other processes,
explicit user action, or external autonomous software. Don’t confuse the party
sending the messages with the reputation source; they are usually unrelated. For
example, even when the source of a reputation input is a user, the message usually
comes from an application—allowing the reputation system to take different ac-
tions based on the sender’s identity.

Input event (reputation message)
In this book, we call initial messages—those that start the execution flow of a
reputation model—input events; we show them at the start of a model diagram.
Input events are said to be transient when the reputation message does not need
to be undone or referenced in the future. Transient input events are not stored.

If, on the other hand, an event may need to be displayed or reversed in the future
(e.g., if a user abuses the reputation model), it is said to be reversible and must be
stored either in an external file such as a log or as a reputation statement. Most
rating-and-review models have reversible inputs. But for very large-scale systems,
such as IP address reputations that identify mail spammers, it’s too costly to store
a separate input event for every email received. For those reputation models, the
transient input method is appropriate.

Reputation process
The large boxes represent one or more reputation processes. Using the message
parameters, these processes normalize, transform, store, decide how to route new
messages, or, most often, calculate a value. Although this book describes several
common process types, the logic in these processes is usually customized to the

Figure 2-3. Users endorse articles, and the sum of their votes is displayed by that article.
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application’s requirements for more engineering-level detail about a specific im-
plementation example, see Appendix A.

Stored Reputation Value
A stored reputation value is simply a reputation statement that may be read as part
of a reputation process that calculates a new claim value for itself or another rep-
utation statement.

Many reputation processes use message input to transform a reputation statement.
In our example in Figure 2-3, when a user clicks “I Digg this URL,” the application
sends the input event to a reputation process that is a simple counter:
CountOfVotes. This counter is a stored reputation value that is read for its current
value, then incremented by one, and then is stored again. This brings the reputation
database up to date and the application may use the target identifier (in Digg’s case,
a URL) to get the claim value.

Roll-ups
A roll-up is a specific kind of stored reputation value—any aggregated reputation
score that incorporates multiple inputs over time or from multiple processes. Sim-
ple average and simple accumulator are examples of roll-ups.

Reputation Model Explained: Vote to Promote
Figure 2-3 is the first of many reputation model diagrams in this book. We follow each
diagram with a detailed explanation.

This model is the simple accumulator: It counts votes for a target object. It can count
clickthroughs or thumbs-ups, or it can mark an item as a favorite.

Even though most models allow multiple input messages, for clarity we’re presenting
a simplified model that has only one, in the form of a single reputation statement:

• As users take actions, they cause votes to be recorded and start the reputation model
by sending them as a messages (represented by the arrows) to the Raw Sum of Votes
process.

Likewise, whereas models typically have many processes, this example has only one:

• Raw Sum of Votes: When vote messages arrive, the CountOfVotes counter is incre-
mented and stored in a reputation statement of the claim type Counter, set to the
value of CountOfVotes and with the same target as the originating vote. The source
of this statement is said to be aggregate because it is a roll-up—the product of many
inputs from many different sources.

See Chapter 3 for a detailed list of common reputation process patterns, and see Chap-
ters 6 and 7 for a discussion of the effects of various score classes on a user interface.
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Building on the Simplest Model
Figure 2-4 shows a fuller representation of a Digg.com-like vote-to-promote reputation
model. This example adds a new element to determining community interest in an
article: adding a reputation for the level of user activity, measured by comments left on
the target entity. These two are weighted and combined to produce a rating.

Figure 2-4. Now articles are ranked not only according to endorsements, but also the amount of
discussion they generate.

The input messages take the form of two reputation statements:

• When a user endorses an article, the thumbs-up vote is represented as a 1.0 and
sent as a message to the Raw Sum of Votes process. If a previous thumbs-up vote
is withdrawn, a score of 0.0 is sent instead.
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• When a user comments on an article, it is counted as activity and represented as a
1.0 and sent as a message to the Level of Activity process. If the comment is later
deleted by the user, a score of 0.0 is sent to undo the earlier vote.

This model involves the following reputation processes:

Raw Sum of Votes
This process either increments (if the input is 1.0) or decrements a roll-up reputa-
tion statement containing a simple accumulator called CountOfVotes. The process
stores the new value and sends it in a message to another process, Community
Interest Rank.

Level of Activity
This process either increments (if the input is 1.0) or decrements a roll-up reputa-
tion statement containing a simple accumulator called ActivityLevel. It stores the
new value back into the statement and sends it in a message to another process,
Community Interest Rank.

Community Interest Rank
This process always recalculates a roll-up reputation statement containing a weigh-
ted sum called interest, which is the value that the application uses to rank the
target article in search results and in other page displays. The calculation uses a
local constant—Weighting—to combine the values of CountOfVotes and Activity
Level scores disproportionately; in this example, an endorsement is worth 10 times
the interest score of a single comment. The resulting Interest score is stored in a
typical roll-up reputation statement: aggregate source, numeric score, and target
shared by all of the inputs.

Complex Behavior: Containers and Reputation Statements
As Targets
Just as there exist some interesting-looking molecules in nature, and much like hydro-
gen bonds are especially strong, certain types of reputation statements called contain-
ers join multiple closely related statements into one super-statement. Most websites
with user-generated ratings and comments for products or services provide examples
of this kind of reputation statement: they clump together different star ratings with a
text comment into an object formally called a review. See Figure 2-5 for a typical ex-
ample, restaurant reviews.

Containers are useful devices for determining the order of reputation statements. Al-
though it’s technically true that each individual component of a container could be
represented and addressed as a statement of its own, that arrangement would be se-
mantically sloppy and lead to unnecessary complexity in your model. The container
model maps well to real life. For example, you probably wouldn’t think of the series of
statements about Dessert Hut made by user Zary22 as a rapid-fire stream of individual
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opinions; you’d more likely consider them related and influenced by one another.
Taken as a whole, the statements express Zary22’s experience at Dessert Hut.

A container is a compound reputation statement with multiple claims
for the same source and target.

Once a reputation statement exists in your system, consider how you might make it a
reputable entity itself, as in Figure 2-6. This indirection provides for subtle yet powerful
feedback. For example, people regularly form their own opinions about the opinions
of others based on some external criteria or context. (“Jack hated The Dark Knight, but
he and I never see eye to eye anyway.”)

Another feature of review-based reputation systems is that they often incorporate a
form of built-in user feedback about reviews written by other users. We’ll call this
feature the Was This Helpful? pattern. (See Figure 2-7.) When a user indicates whether
a review was helpful, the target is a review (container) written earlier by a different user.

Figure 2-6. A reputation statement can itself be the target of a helpful vote. Here, MuvyLuvr has
written a review that others can then rate.

Figure 2-5. A reputation container: some claims make more sense when considered together than
when standing alone.
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Figure 2-7. Helpful votes for a review are rolled up into an aggregate HelpfulScore. It’s often more
efficient to just store this score back to the review container for easy retrieval.

The input message takes the form of a single reputation statement:

• A user votes on the quality of another reputation statement, in this case a review:
a thumbs-up vote is represented by a 1.0 value, and a thumbs-down vote by a 0.0
value.

This model includes only one reputation process:

• Calculate Helpful Score: When the message arrives, load the TotalVotes stored
reputation value, increment, and store it. If the vote is not zero, the process incre-
ments HelpfulVotes. Finally, set the HelpfulScore to a text representation of the
score suitable for display: “HelpfulVotes out of TotalVotes.” This representation
is usually stored in the very same review container that the voter was judging (i.e.,
had targeted) as helpful. This configuration simplifies indexing and retrieval, e.g.,
“Retrieve a list of the most helpful movie reviews by MuvyLuvr” and “Sort the list
of movie reviews of Aliens by helpful score.” Though the original review writer isn’t
the author of his helpful votes, his review is responsible for them and should con-
tain them.
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You’ll see variations on this simple pattern of reputation-statements-as-targets repeated
throughout this book. It makes it possible to build fairly advanced meta-moderation
capabilities into a reputation system. Not only can you ask a community “What’s
good?”; you can also ask “…and whom do you believe?”

Solutions: Mixing Models to Make Systems
In one more invocation of our chemistry metaphor, consider that physical materials
are rarely made of a single type of molecule. Chemists combine molecules into solu-
tions, compounds, and mixtures to get the exact properties they want. But not all sub-
stances mix well—oil and water, for example. The same is true in combining multiple
reputation model contexts in a single reputation system. It’s important to combine only
those models with compatible reputation contexts.

Reputation system
A reputation system is a set of one or more interacting reputation models. An ex-
ample is SlashDot.com, which combines two reputation models: an entity repu-
tation model of users’ evaluations of individual message board postings and a
karma reputation model for determining the number of moderation opportunities
granted to users to evaluate posts. It is a “the best users have the most control”
reputation system. See Figure 2-8.

Reputation framework
The reputation framework is the execution environment for one or more reputation
systems. It handles message routing, storing, and retrieving statements, and
maintaining and executing the model processes. Appendix A describes an imple-
mentation of a reputation framework.

Figure 2-8 shows a simple abuse reporting system that integrates two different repu-
tation models in a single weighted voting model that takes weights for the IP addresses
of the abuse reporters from an external karma system. This example also illustrates an
explicit output, common in many implementations. In this example, the output is an
event sent to the application environment suggesting that the target comment be dealt
with. In this case, the content would need to be reviewed and either hidden or de-
stroyed. Many services also consider punitive action against the content creator’s ac-
count, such as suspension of access.

For the reporter trustworthiness context, the inputs and mechanism of this external
reputation model are opaque—we don’t know how the model works—because it is on
a foreign service, namely TrustedSource.org by McAfee, Inc. Its service provides us one
input, and it is different from previous examples:

1. When a reputation system is prompted to request a new trust score for a particular
IP address—perhaps by a periodic timer or on demand by external means—it re-
trieves the TrustedSourceReputation as input using the web service API,
represented here as a URL. The result is one of the following categories: Trusted,
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Neutral, Unverified, Suspicious, or Malicious, which the system passes to the
McAfee TrustedSource Web Reputation process.

This message arrives at a reputation process that transforms the external IP reputation,
in a published API format, into the reputation system’s normalized range:

2. McAfee TrustedSource Web Reputation: Using a transformation table, the system
normalizes the TrustedSourceReputation into WebReputation with a range from 0.0
(no trust) to 1.0 (maximum trust). The system stores the normalized score in a
reputation statement with a source of TrustedSource.org, claim type simple
karma, with the claim value equal to the normalized WebReputation, and a target
of the IP address being evaluated.

The main context of this reputation is content quality, which is designed to collect
flags from users whenever they think that the comment in question violates the site’s
terms of service. When enough users whose web providers have a high enough

Figure 2-8. Two or more separate models can work in symphony to create a larger, more robust
reputation system.
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reputation flag the content, the reputation system sends out a special event. This rep-
utation model is a weighted voting model.

This model has one input:

3. A user, connected using a specific IP address, flags a target comment as violating
the site’s terms of service. The value of the flag is always 1.0 and is sent to the
Abusive Content Score process.

This model involves two processes—one to accumulate the total abuse score, and an-
other to decide when to alert the outer application:

4. The Abusive Content Score process uses one external variable: WebReputation. This
variable is stored in a reputation statement with the same target IP address as was
provided with the flag input message. The AbuseScore starts at 0 and is increased
by the value of Flag multiplied by WebReputation. The system stores the score in a
reputation statement with an aggregate source, numeric score type, and the com-
ment identifier as the target, then passes the statement in a message to the Is Abu-
sive? process.

5. Is Abusive? then tests the AbuseScore against an internal constant, called
AbuseThreshold, in order to determine whether to highlight the target comment for
special attention by the application. In a simple (request-reply) framework imple-
mentation, this reputation system returns the result of the Is Abusive? process as
TRUE or FALSE to indicate whether the comment is considered to be abusive. For
high-performance asynchronous (fire-and-forget) reputation platforms such as the
one described in Appendix A, an alert is triggered only when the result is TRUE.

From Reputation Grammar to…
This chapter defined the graphical reputation grammar, from bottom (reputation state-
ments made of sources, claims, and targets) to top (models, systems, and frameworks).
All members of any team defining a reputation-enhanced application should find this
reference material helpful in understanding their reputation systems.

But at this point, readers with different team functional roles might want to look at
different parts of the book next:

Product managers, application designers
Chapter 3 expands the grammar with a comprehensive review of common source,
claim, target, and process types that serve as the basis of most reputation models.
Think of these as the building blocks that you would start with when thinking
about designing your customized reputation model.
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Reputation framework engineers, software architects
If you’re interested in technical details and want to know more about implementing
reputation systems and dealing with issues such as reliability, reversibility, and
scale, look at Appendix A for a detailed discussion of reputation frameworks before
proceeding.

Reputation enthusiasts
If you’re considering skipping the detailed extension of the grammar provided in
Chapter 3, be sure not to miss the section “Practitioner’s Tips: Reputation Is
Tricky” on page 57 for some detailed insights before skipping ahead to Chap-
ter 4, which provides a detailed look at common deployed reputation systems.
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PART II

Extended Elements
and Applied Examples





CHAPTER 3

Building Blocks and Reputation Tips

By now you should feel fairly conversant in the lingua franca of reputation systems (the
graphical grammar presented in Chapter 2), and you’ve had some exposure to their
constituent bits and pieces. We’ve gone over reputation statements, messages, and
processes, and you’ve become familiar with some rudimentary but serviceable models.

In this chapter, we “level up” and explore reputation claims in greater detail. We de-
scribe a taxonomy of claim types, exploring reputation roll-ups: actual computations
on incoming messages that affect a particular output. Functionally, different types of
roll-ups yield very different types of reputations, so we offer guidance on when to use
which roll-ups. We end the chapter with practical advice in a section of “practitioner’s
tricks.”

Extending the Grammar: Building Blocks
Though understanding the elements of the reputation grammar is essential, building
reputation models from the atoms up every time is time consuming and tedious. There’s
a lot of benefit to developing tools and shorthand for common patterns and using those
to configure reputation statements and templates for well-understood reputation
models.

The Data: Claim Types
Remember, a fundamental component of a reputation statement is the claim—the
assertion of quality that a source makes about a target. In “The Reputation State-
ment” on page 6, we discussed how claims can be either explicit (a direct statement of
quality, intended by the statement’s source to act as such) or implicit (representing a
source-user’s concrete actions associated with a target entity). These fundamentally
different approaches are important because the combination of implicit and explicit
claims can yield some very nuanced and robust reputation models. In other words, we
should pay attention to what people say, but we should give equal weight to what they
do to determine which entities hold the community’s interest.
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Claims also can be of different types. One helpful distinction is between qualitative
claims (claims that describe one or more qualities that may or may not be easily meas-
ured) and quantitative claims, which are claims that can be measured (and, in fact, are
largely generated, communicated, and read back as numbers of some kind).

Reputation statements have claim values, which you can generally think of as “what
you get back when you ask for a reputation’s current state.” So, for instance, we can
always query the system for Movies.Review.Overall.Average and get back a normalized
score within the range of 0–1.

Note that the format of a claim does not always map exactly to the format in which
you may wish to display (or, for that matter, gather) that claim. It’s more likely that
you’d want to translate the Movies.Review.Overall.Average to show your users three
colored stars (out of five) instead of a normalized score or percentage.

Qualitative claim types

Qualitative claims attempt to describe some quality of a reputable object. This quality
may be as general as the object’s overall “quality” (“This is an excellent restaurant!”)
or as specific as some particular dimension or aspect of the entity (“The cinematography
was stunning!”). Generally, qualitative claim types are fuzzier than hard quantitative
claims, so qualitative claims quite often end up being useful implicit claims.

This is not to say, however, that qualitative claims can’t have a quantitative value when
considered en masse: almost any claim type can at least be counted and displayed in
the form of some simple cumulative score (or “aggregator”—we discuss the various
reputation roll-ups later in “Processes: Computing Reputation” on page 46). So while
we can’t necessarily assign an evaluative score to a user-contributed text comment, for
instance (at least not without the rest of the community involved), it’s quite common
on the Web to see a count of the number of comments left about an entity, as a crude
indicator of that item’s popularity or the level of interest it draws.

The following sections describe some common types of qualitative claims.

User-contributed text comments are perhaps the most common, defining
feature of the user-generated content on the Web. Though a debate rages about the
value of such comments (which in any case differs from site to site and from community
to community), no one denies that the ability to leave text comments about an item of
content—whether it’s a blog entry, an article, or a YouTube video—is a wildly popular
form of expression on the Web.

Text comment fields typically are provided as a freeform means of expression: a little
white box that users can fill in any way they choose. However, better social sites will
attempt to direct comments by providing guidelines or suggestions about what may be
considered on- or off-topic.

Text comments.
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Users’ comments are usually freeform (unstructured) textual data. They typically are
character-constrained in some way, but the constraints vary depending on the context:
the character allowance for a message board posting is generally much greater than
Twitter’s famous 140-character limit.

In comment fields, you can choose whether to accommodate rich-text entry and dis-
play, and you can apply certain content filters to comments up front (for instance, you
can choose to prohibit profanity or disallow fully formed URLs).

Comments are often just one component of a larger compound reputation statement.
Movie reviews, for instance, typically are a combination of 5-star qualitative claims
(and perhaps different ones for particular aspects of the film) and one or more freeform
comment-type claims.

Comments are powerful reputation claims when interpreted by humans, but they may
not be easy for automated systems to evaluate. The best way to evaluate text comments
varies depending on the context. If a comment is just one component of a user review,
the comment can contribute to a “completeness” score for that review: reviews with
comments are deemed more complete than those without (and, in fact, the comment
field may be required for the review to be accepted at all).

If the comments in your system are directed at another contributor’s content (for ex-
ample, user comments about a photo album or message board replies to a thread),
consider evaluating comments as a measure of interest or activity around that reputable
entity.

Here are examples of claims in the form of text comments:

• Flickr’s Interestingness algorithm likely accounts for the rate of commenting ac-
tivity targeted at evaluating the quality of photos.

• On Yahoo! Local, it’s possible to give an establishment a full review (with star
ratings, freeform comments, and bar ratings for subfacets of a user’s experience
with the establishment). Or a user can simply leave a rating of 1 to 5 stars. (This
option encourages quick engagement with the site.) It’s easy to see that there’s
greater business value (and utility to the community) in full reviews with well-
written text comments, provided Yahoo! Local tracks the value of the reviews
internally.
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In our research at Yahoo!, we often probed notions of authenticity to
look at how readers interpret the veracity of a claim or evaluate the
authority or competence of a claimant.

We wanted to know: when people read reviews online (or blog entries,
or tweets), what are the specific cues that make them more likely to
accept what they’re reading as accurate? Is there something about the
presentation of material that makes it more trustworthy? Or is it the way
the content author is presented? (Does an “expert” badge convince
anyone?)

Time and again, we found that it’s the content itself—the review, entry,
or comment being evaluated—that makes up readers’ minds. If an ar-
gument is well stated, if it seems reasonable, and if readers can agree
with some aspect of it, then they are more likely to trust the content—
no matter what meta-embellishment or framing it’s given.

Conversely, research shows that users don’t see poorly written reviews
with typos or shoddy logic as coming from legitimate or trustworthy
sources. People really do pay attention to content.

Reputation value can be derived from other types of qualitative claim
types besides just freeform textual data. Any time a user uploads media—either in
response to another piece of content (see Figure 3-1) or as a subcomponent of the
primary contribution itself—that activity is worth noting as a claim type.

We distinguish textual claims from other media for two reasons:

• While text comments typically are entered in context (users type them right into
the browser as they interact with your site), media uploads usually require a slightly
deeper level of commitment and planning on the user’s part. For example, a user
might need to use an external device of some kind and edit the media in some way
before uploading it.

• Therefore, you may want to weight these types of contributions differently from
text comments (or not, depending on the context) reflecting increased contribution
value.

A media upload consists of qualitative claim types that are not textual in nature:

• Video

• Images

• Audio

• Links

• Collections of any of the above

When a media object is uploaded in response to another content submission, consider
it as input indicating the level of activity related to the item or the level of interest in it.

Media uploads.
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When the upload is an integral part of a content submission, factor its presence, ab-
sence, or level of completion into the quality rating for that entity.

Here are examples of claims in the form of media uploads:

• Since YouTube video responses require extra effort by the contributors and lead
to viewers spending more time on the site, they should have a larger influence on
the popularity rank than simple text comments.

• A restaurant review site may attribute greater value to a review that features up-
loaded pictures of the reviewer’s meal: it makes for a compelling display and gives
a more well-rounded view of that reviewer’s dining experience.

Figure 3-1. “Video Responses” to a YouTube video may boost its interest reputation.
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A third type of qualitative claim is the presence or absence of
inputs that are external to a reputation system. Reputation-based search relevance al-
gorithms (which, again, lie outside the scope of this book) such as Google PageRank
rely heavily on this type of claim.

A common format for such a claim is a link to an externally reachable and verifiable
item of supporting data. This approach includes embedding Web 2.0 media widgets
into other claim types, such as text comments.

When an external reference is provided in response to another content submission,
consider it as input indicating the level of activity related to the item or the level of
interest in it.

When the external reference is an integral part of a content submission, factor its pres-
ence or absence into the quality rating or level of completion for that entity.

Here are examples of claims based on external objects:

• Some shopping review sites encourage cross-linking to other products or offsite
resources as an indicator of review completeness. Cross-linking demonstrates that
the review author has done her homework and fully considered all options.

• On blogs, the trackback feature originally had some value as an externally verifiable
indicator of a post’s quality or interest level. (Sadly, however, trackbacks have been
a highly gamed spam mechanism for years.)

Quantitative claim types

Quantitative claims are the nuts and bolts of modern reputation systems, and they’re
probably what you think of first when you consider ways to assess or express an opinion
about the quality of an item. Quantitative claims can be measured (by their very nature,
they are measurements). For that reason, computationally and conceptually, they are
easier to incorporate into a reputation system.

Normalized value is the most common type of claim in reputation sys-
tems. A normalized value is always expressed as a floating-point number in a range
from 0.0 to 1.0. Within the range of 0.0 to 1.0, closer to 0 is worse and closer to 1 is
better. Normalization is a best practice for handling claim values because it provides
ease of interpretation, integration, debugging, and general flexibility. A reputation sys-
tem rarely, if ever, displays a normalized value to users. Instead, normalized values are
denormalized into a display format that is appropriate for the context of your applica-
tion (they may be converted back to stars, for example).

Relevant external objects.

Normalized value.
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One strength of normalized values is their general flexibility. They are the easiest of all
quantitative types on which to perform math operations, they are the only quantitative
claim type that is finitely bounded, and they allow reputation inputs gathered in a
number of different formats to be normalized with ease (and then denormalized back
to a display-specific form suitable for the context in which you want to display).

Another strength of normalized values is the general utility of the format: normalizing
data is the only way to perform cross-object and cross-reputation comparisons with
any certainty. (Do you want your application to display “5-star restaurants” alongside
“4-star hotels”? If so, you’d better normalize those scores somewhere.)

Normalized values are also highly readable: because the bounds of a normalized score
are already known, they are very easy (for you, the system architect, or others with
access to the data) to read at a glance. With normalized scores, you do not need to
understand the context of a score to be able to understand its value as a claim. Very
little interpretation is needed.

A rank value is a unique positive integer. A set of rank values is limited to
the number of targets in a bounded set of targets. For example, given a data set of “100
Movies from the Summer of 2009,” it is possible to have a ranked list in which each
movie has exactly one value.

Here are some examples of uses for rank values:

• Present claims for large collections of reputable entities: for example, quickly con-
struct a list of the top 10, 20, or 100 objects in a set. One common pattern is
displaying leaderboards.

• Compare like items one-to-one, which is common on electronic product sales sites
such as Shopping.com.

• Build a ranked list of objects in a collection, as with Amazon’s sales rank.

When you think of scalar rating systems, we’d be surprised if—in your
mind—you’re not seeing stars. Rating systems of 3, 4, and 5 stars abound on the Web
and have achieved a level of semipermanence in reputation systems. Perhaps that’s
because of the ease with which users can engage with star ratings; choosing a number
of stars is a nice way to express an opinion beyond simple like or dislike.

Rank value.

Scalar value.
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More generally, a scalar value is a type of reputation claim in which a user gives an
entity a “grade” somewhere along a bounded spectrum. The spectrum may be finely
delineated and allow for many gradations of opinion (10-star ratings are not unheard
of), or it may be binary (for example, thumbs-up, thumbs-down):

• Star ratings (3-, 4-, and 5-star scales are common)

• Letter grade (A, B, C, D, F)

• Novelty-type themes (“4 out of 5 cupcakes”)

Yahoo! Movies features letter grades for reviews. The overall grades are calculated using
a combination of professional reviewers’ scores (which are transformed from a whole
host of different claim types, from the New York Times letter-grade style to the classic
Siskel and Ebert thumbs-up, thumbs-down format) and Yahoo! user reviews, which
are gathered on a 5-star system.

Processes: Computing Reputation
Every reputation model is made up of inputs, messages, processes, and outputs. Pro-
cesses perform various tasks. In addition to creating roll-ups, in which interim results
are calculated, updated, and stored, processes include transformers, which change data
from one format to another; and routers, which handle input, output, and the decision
making needed to direct traffic among processes. In reputation model diagrams, indi-
vidual processes are represented as discrete boxes, but in practice the implementation
of a process in an operational system combines multiple roles. For example, a single
process may take input; do a complex calculation; send the result as a message to
another process; and perhaps return the value to the calling application, which would
terminate that branch of the reputation model.

Processes are activated only when they receive an input message.

Roll-ups: Counters, accumulators, averages, mixers, and ratios

A roll-up process is the heart of any reputation system—it’s where the primary
calculation and storage of reputation statements are performed. Several generic kinds
of roll-ups serve as abstract templates for the actual customized versions in operational
reputation systems. Each type—counter, accumulator, average, mixer, and ratio—
represents the most common simple computational unit in a model. In actual imple-
mentations, additional computation is almost always integrated with these simple
patterns.

All processes receive one or more inputs, which consist of a reputation source, a target,
a contextual claim name, and a claim value. In the upcoming diagrams, unless otherwise
stated, the input claim value is a normalized score. All processes that generate a new
claim value, such as roll-ups and transformers, are assumed to be able to forward the
new claim value to another process, even if that capability is not indicated on the dia-
gram. By default in roll-ups, the resulting computed claim value is stored in a reputation
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statement by the aggregate source. A common pattern for naming the aggregate
claim is to concatenate the claim context name (Movies_Acting) with a roll-up context
name (Average). For example, the roll-up of many Movies_Acting_Ratings is the
Movies_Acting_Average.

A Simple Counter roll-up (Figure 3-2) adds one to a stored numeric claim
representing all the times that the process received any input.

Figure 3-2. A Simple Counter process does just what you’d expect—as inputs come in, it counts them
and stores the result.

A Simple Counter roll-up ignores any supplied claim value. Once it receives the input
message, it reads (or creates) and adds one to the CountOfInputs, which is stored as the
claim value for this process.

Here are pros and cons of using a Simple Counter roll-up:

Pros Cons

Counters are simple to main-
tain and can easily be opti-
mized for high performance.

A Simple Counter affords no way to recover from abuse. If abuse occurs, see “Reversible Coun-
ter” on page 47.

Counters increase continuously over time, which tends to deflate the value of individual con-
tributions. See “Bias, Freshness, and Decay” on page 60.

Counters are the most subject of any process to “First-mover effects” on page 63, especially
when they are used in public reputation scores and leaderboards.

Like a Simple Counter roll-up, a Reversible Counter roll-up ignores
any supplied claim value. Once it receives the input message, it either adds or subtracts
one to a stored numeric claim, depending on whether there is already a stored claim
for this source and target.

Reversible Counters, as shown in Figure 3-3, are useful when there is a high probability
of abuse (perhaps because of commercial incentive benefits, such as contests; see
“Commercial incentives” on page 115) or when you anticipate the need to rescind
inputs by users or the application for other reasons.

Simple Counter.

Reversible Counter.
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Here are pros and cons of using a Reversible Counter roll-up:

Pros Cons

Counters are easy to understand.

Individual contributions can be performed
automatically, allowing for correction of abu-
sive input and for bugs.

Reversible Counters allow for individual in-
spection of source activity across targets.

A Reversible Counter scales with the database transaction rate, which makes it
at least twice as expensive as a “Simple Counter” on page 47.

Reversible Counters require the equivalent of keeping a logfile for every event.

Counters increase continuously over time, which tends to deflate the value of
individual contributions. See “Bias, Freshness, and Decay” on page 60.

Counters are the most subject of any process to “First-mover ef-
fects” on page 63, especially when they are used in public reputation scores
and leaderboards.

Figure 3-3. A Reversible Counter also counts incoming inputs, but it also remembers them, so that
they (and their effects) may be undone later; trust us, this can be very useful.

A Simple Accumulator roll-up, shown in Figure 3-4, adds a single
numeric input value to a running sum that is stored in a reputation statement.

Figure 3-4. A Simple Accumulator process adds arbitrary amounts and stores the sum.

Simple Accumulator.
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Here are pros and cons of using a Simple Accumulator roll-up:

Pros Cons

A Simple Accumulator is as simple as it gets; the
sums of related targets can be compared mathe-
matically for ranking.

Storage overhead for simple claim types is low; the
system need not store each user’s inputs.

Older inputs can have disproportionately high value.

A Simple Accumulator affords no way to recover from abuse. If abuse
occurs, see “Reversible Accumulator” on page 49.

If both positive and negative values are allowed, comparison of the sums
may become meaningless.

A reversible accumulator roll-up, shown in Figure 3-5, either (1)
stores and adds a new input value to a running sum, or (2) undoes the effects of a
previous addition. Consider using a Reversible Accumulator if you would otherwise
use a Simple Accumulator, but you want the option either to review how individual
sources are contributing to the Sum or to be able to undo the effects of buggy software
or abusive use. However, if you expect a very large amount of traffic, you may want to
stick with a Simple Accumulator, storing a reputation statement for every contribution
can be prohibitively database intensive if traffic is high.

Figure 3-5. A Reversible Accumulator process improves on the Simple model—it remembers inputs
so they may be undone.

Here are pros and cons of using a Reversible Accumulator roll-up:

Pros Cons

Individual contributions can be performed automati-
cally, allowing for correction of abusive input and for
bugs.

Reversible Accumulators allow for individual inspection
of source activity across targets.

A Reversible Accumulator scales with the database transaction rate,
which makes it at least twice as expensive as a Simple Accumulator.

Older inputs can have disproportionately high value.

If both positive and negative values are allowed, comparison of the
sums may become meaningless.

Reversible Accumulator.
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A Simple Average roll-up, shown in Figure 3-6, calculates and stores a
running average, including new input.

The Simple Average roll-up is probably the most common reputation score basis. It
calculates the mathematical mean of a series of the history of inputs. Its components
are a SumOfInputs, CountOfInputs, and the process claim value, AvgOfInputs.

Here are pros and cons of using a Simple Average roll-up:

Pros Cons

Simple averages are easy for users to understand. Older inputs can have disproportionately high value compared to the aver-
age. See “First-mover effects” on page 63.

A Simple Average affords no way to recover from abuse. If abuse occurs, see
“Reversible Average” on page 50.

Most systems that compare ratings using Simple Averages suffer from ratings
bias effects (see “Ratings bias effects” on page 61) and have uneven rating
distributions.

When Simple Averages are used to compare ratings, in cases when the
average has very few components, they don’t accurately reflect group sen-
timent. See “Liquidity: You Won’t Get Enough Input” on page 58.

Figure 3-6. A Simple Average process keeps a running total and count for incremental calculations.

A Reversible Average, shown in Figure 3-7, is a reversible version of
Simple Average—it keeps a reputation statement for each input and optionally uses it
to reverse the effects of the input.

If a previous input exists for this context, the Reversible Average operation reverses it:
the previously stored claim value is removed from the AverageOfInputs, the CountOfIn
puts is decremented, and the source’s reputation statement is destroyed. If there is no
previous input for this context, compute a Simple Average (see the section “Simple
Average” on page 50) and store the input claim value in a reputation statement made
by this source for the target with this context.

Simple Average.

Reversible Average.
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Here are pros and cons of using a Reversible Average roll-up:

Pros Cons

Reversible Averages are easy for users
to understand.

Individual contributions can be per-
formed automatically, allowing for
correction of abusive input and for
bugs.

Reversible Averages allow for individ-
ual inspection of source activity across
targets.

A Reversible Average scales with the database transaction rate, which makes it at least
twice as expensive as a Simple Average (see “Simple Average” on page 50).

Older inputs can have disproportionately high value compared to the average. See
“First-mover effects” on page 63.

Most systems that compare ratings using Simple Averages suffer from ratings bias
effects (see “Ratings bias effects” on page 61) and have uneven rating distributions.

When Reversible Averages are used to compare ratings, in cases when the average has
very few components, they don’t accurately reflect group sentiment. See “Liquidity:
You Won’t Get Enough Input” on page 58.

A Mixer roll-up, Figure 3-8, combines two or more inputs or read values into a
single score according to a weighting or mixing formula. It’s preferable, but not re-
quired, to normalize the input and output values. Mixers perform most of the custom
calculations in complex reputation models.

Mixer.

Figure 3-7. A Reversible Average process remembers inputs so they may be undone.
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Figure 3-8. A Mixer combines multiple inputs together and weights each.

A Simple Ratio roll-up, Figure 3-9, counts the number of inputs (the total),
separately counts the number of times the input has a value of exactly 1.0 (for example,
hits), and stores the result as a text claim with the value of “(hits) out of (total).”

Figure 3-9. A Simple Ratio process keeps running sums and counts.

If the source already has a stored input value for a target, a Reversible
Ratio roll-up, Figure 3-10, reverses the effect of the previous hit. Otherwise, this roll-
up counts the total number of inputs (the total) and separately counts the number of
times the input has a value of exactly 1.0 (hits). It stores the result as a text claim value
of “(hits) out of (total)” and also stores the source’s input value as a reputation state-
ment for possible reversal and retrieval.

Simple Ratio.

Reversible Ratio.
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Figure 3-10. A Reversible Ratio process remembers inputs so they may be undone.

Transformers: Data normalization

Data transformation is essential in complex reputation systems, in which information
enters a model in many different forms. For example, consider an IP address reputation
model for a mail system: perhaps it accepts this-email-is-spam votes from users, along-
side incoming traffic rates to the mail server, as well as a historical karma score for the
user submitting the vote. Each of these values must be transformed into a common
numerical range before being combined.

Furthermore, it may be useful to represent the result in a discrete Spammer/DoNotKnowIf
Spammer/NotSpammer category. In this example, transformation processes, shown in
Figure 3-11, do both the normalization and denormalization.

Figure 3-11. Transformers normalize and denormalize data; they are not usually independent
processes.
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Simple normalization is the process of con-
verting from a usually scalar score to the normalized range of 1.0. It is often custom
built, and typically accomplished with functions and tables.

Scalar denormalization is the process of converting usually nor-
malized values inputs into a regular scale, such as bronze, silver, gold, number of stars,
or rounded percentage. Often custom built, and typically accomplished with functions
and tables.

An external data transform is a process that accesses a foreign
database and converts its data into a locally interpretable score, usually normalized.
The example of the McAfee transformation shown in Figure 2-8 illustrates a table-based
transformation from external data to a reputation statement with a normalized score.
What makes an external data transformer unique is that, because retrieving the original
value often is a network operation or is computationally expensive, it may be executed
implicitly on demand, periodically, or even only when it receives an explicit request
from some external process.

Routers: Messages, Decisions, and Termination
Besides calculating the values in a reputation model, there is important meaning in the
way a reputation system is wired internally and back to the application: connecting the
inputs to the transformers to the roll-ups to the processes that decide who gets notified
of whatever side effects are indicated by the calculation. These are accomplished with
a class of building blocks called routers. Messaging delivery patterns, decision points,
and terminators determine the flow throughout the model as it executes.

Common decision process patterns

We’ve described the process types as pure primitives, but we don’t mean to imply that
your reputation processes can’t or shouldn’t be combinations of the various types. It’s
completely normal to have a simple accumulator that applies mixer semantics.

There are several common decision process patterns that change the flow of messages
into, through, and out of a reputation model: evaluators, terminators, and message
routers of various types and combinations.

The Simple Terminator process is one that does not send any message
to another reputation process, ending the execution of this branch of the model. Op-
tionally a terminator may return its claim value to the application. This is accomplished
via a function return, sending a reply, or by signaling to the application environment.

A Simple Evaluator process provides the basic “If…then…” statement
of reputation models, usually comparing two inputs and sending a message onto an-
other process(es). Remember that the inputs may arrive asynchronously and separately,
so the evaluator may need to have its own state.

Simple normalization (and weighted transform).

Scalar denormalization.

External data transform.

Simple Terminator.

Simple Evaluator.
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A Terminating Evaluator ends the execution path started by the
initial input, usually by returning or sending a signal to the application when some
special condition or threshold has been met.

A Message Splitter, shown in Figure 3-12, replicates a message and for-
wards it to more than one model event process. This operation starts multiple simul-
taneous execution paths for one reputation model, depending on the specific charac-
teristics of the reputation framework implementation. See Appendix A for details.

Figure 3-12. A message coming from a process may split and feed into two or more downstream
processes.

Conjoint Message Delivery, shown in Figure 3-13, describes the
pattern of messages from multiple different input sources being delivered to one process
which treats them as if they all have the exact same meaning. For example, in a very
large-scale system, multiple servers may send reputation input messages to a shared
reputation system environment reporting on user actions. It doesn’t matter which
server sent the message; the reputation model treats them all the same way. This is
drawn as two message lines joining into one input on the left side of the process box.

Figure 3-13. Conjoint message paths are represented by merging lines; these two different kinds of
inputs will be evaluated in exactly the same way.

Input

Reputation models are effectively dormant when inactive; the model we present in this
book doesn’t require any persistent processes. Based on that assumption, a reputation

Terminating Evaluator.

Message Splitter.

Conjoint Message Delivery.
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model is activated by a specific input arriving as a message to the model. Input gets the
ball rolling. Based on the requirements of custom reputation processes, there can be
many different forms of input, but a few basic input patterns provide the common basic
structure.

Normally, every message to a reputation process must contain several
items: the source, the target, and an input value. Often, the contextual claim name and
other values, such as a timestamp and a reputation process ID, also are required for the
reputation system to initialize, calculate, and store the required state.

Our diagramming convention shows reputation statements
as inputs. That’s not always strictly accurate—it’s just shorthand for the common
method in which the application creates a reputation statement and passes a message
containing the statement’s context, source, claim, and target to the model. Don’t con-
fuse this notational convention with the case when a reputation statement is the target
of an input message, which is always represented as a embedded miniature version of
the target reputation statement. See “Reputation Targets: What (or Who) Is the Focus
of a Claim?” on page 25.

Sometimes reputation models are activated on the basis of an input that’s
not reputation based, such as a timer that will perform an external data transform. At
present, this grammar provides no explicit mechanism for reputation models to spon-
taneously wake up and begin executing, and this has an effect on mechanisms such as
those detailed in “Freshness and decay” on page 63. So far, in our experience, spon-
taneous reputation model activation is not necessary and keeping this constraint out
has simplified high-performance implementations. However, there is no particular
universal requirement for this limitation.

Output

Many reputation models terminate without explicitly returning a value to the applica-
tion at all. Instead, they store the output asynchronously in reputation statements. The
application then retrieves the results as reputation statements as they are needed—
always getting the best possible result, even if it was generated as the result of some
other user on some other server in another country.

Simple reputation environments, in which all the model is implemented
serially and executed in-line with the actual input actions, are usually implemented
using on request-reply semantics: the reputation model runs for exactly one input at a
time and runs until it terminates by returning a copy of the roll-up value that it calcu-
lated. Large-scale, asynchronous reputation frameworks, such as the one described in
Appendix A, don’t return results in this way. Instead, they terminate silently and some-
times send signals (see the next paragraph).

Sometimes a reputation model needs to no-
tify the application environment that something significant has happened and special
handling is required. To accomplish this, the process sends a signal: a message that

Typical inputs.

Reputation statements as input.

Periodic inputs.

Return values.

Signals: Breaking out of the reputation framework.
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breaks out of the reputation framework. The mechanism of signaling is specific to each
framework implementation, but in our diagramming grammar, signaling is always rep-
resented by an arrow leaving the box.

A reputation logging process provides a specialized form of output: it records
a copy of the current score or message into an external store, typically using an asyn-
chronous write. This action is usually the result of an evaluator deciding that a signif-
icant event requires special output. For example, if a user karma score has reached a
new threshold, an evaluator may decide that the hosting application should send the
user a congratulatory message.

Practitioner’s Tips: Reputation Is Tricky
When you begin designing a reputation model and system using our graphical gram-
mar, it may be tempting to take elements of the grammar and just plug them together
in the simplest possible combinations to create an Amazon-like rating and review sys-
tem, or a Digg-like voting model, or even a points-based karma incentive model as on
StackOverflow. In practice—“in the wild,” where people with myriad personal incen-
tives interact with them both as sources of reputation and as consumers—the imple-
mentation of reputation systems is fraught with peril. In this section, we describe several
pitfalls to avoid in designing reputation models.

The Power and Costs of Normalization
We make much of normalization in this book. Indeed, in almost all of the reputation
models we describe, calculations are performed on numbers from 0.0 to 1.0, even when
normalization and denormalization might seem to be extraneous steps. Here are the
reasons that normalization of claim values is an important, powerful tool for reputation:

Normalized values are easy to understand
Normalized claim values are always in a fixed, well-understood range. When ap-
plications read your claim values from the reputation database, they know that 0.5
means the middle of the range. Without normalization, claim values are ambigu-
ous. A claim value of 5 could mean 5 out of 5 stars, 5 on a 10-point scale, 5 thumbs
up, 5 votes out of 50, or 5 points.

Normalized values are portable (messages and data sharing)
Probably the most compelling reason to normalize the claim values in your repu-
tation statements and messages is that normalized data is portable across various
display contexts (see Chapter 7) and can reuse any of the roll-up process code in
your reputation framework that accepts and outputs normalized values. Other
applications will not require special understanding of your claim values to interpret
them.

Logging.
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Normalized values are easy to transform (denormalize)
The most common representation of the average of scalar inputs is a percentage,
and this denormalization is accomplished trivially by multiplying the normalized
value by 100. Any normalized score may be transformed into a scalar value by using
a table or, if the conversion is linear, by performing a simple multiplication. For
example, converting to a 5-star rating system could be as simple as multiplying the
rating by 0.20 to get the normalized score. To get the stars back, just multiply by
5.0.

Normalization also allows the values of any claim type, such as thumbs-up (1.0)/
thumbs-down (0.0), to be denormalized as a different claim type, such as a per-
centage (0%–100%) or turned into a 3-point scale of thumbs-up (0.66–1.0),
thumbs-down (0.0–0.33), or thumb-to-side (0.33–0.66). Using a normalized score
allows this conversion to take place at display time without committing the con-
verted value to the database. Also, the exact same values can be denormalized by
different applications with completely different needs.

As with all things, the power of normalization comes with some costs:

Combining normalized scalar values introduces bias
Using different normalized numbers in large reputation systems can cause unex-
pected biases when the original claim types were scalar values with slightly different
ranges. Averaging normalized maximum 4-star ratings (25% each) with maximum
5-star ratings (20% each) leads to rounding errors that cause the scores to clump
up if the average is denormalized back to 5 stars. See Table 3-1.

Table 3-1. An example of ugly side effects when normalizing/denormalizing across different
scales

Scale 1 stars
normalized

2 stars
normalized

3 stars
normalized

4 stars
normalized

5 stars
normalized

4 stars 0–25 26–50 51–75 76–100 N/A

5 stars 0–20 21–40 41–60 61–80 81–100

Mean range/
denormalized

0–22 /
★☆☆☆☆

23–45 /
★★☆☆☆

46–67 /
★★★☆☆

68–90 /
★★★★☆

78–100 /
★★★★★

Liquidity: You Won’t Get Enough Input
When is 4.0 greater than 5.0?
When enough people say it is!

—F. Randall Farmer,
Yahoo! Community Analyst, 2007

Consider the following problem with simple averages: it is mathematically unreason-
able to compare two similar targets with averages made from significantly different
numbers of inputs. For the first target, suppose that there are only three ratings
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averaging 4.667 stars, which after rounding displays as ★★★★★, and you compare
that average score to a target with a much greater number of inputs, say 500, averaging
4.4523 stars, which after rounding displays as only ★★★★☆. The second target, the
one with the lower average, better reflects the true consensus of the inputs, since there
just isn’t enough information on the first target to be sure of anything. Most simple-
average displays with too few inputs shift the burden of evaluating the reputation to
users by displaying the number of inputs alongside the simple average, usually in pa-
rentheses, like this: ★★★★☆ (142).

But pawning off the interpretation of averages on users doesn’t help when you’re rank-
ing targets on the basis of averages—a lone ★★★★★ rating on a brand-new item will
put the item at the top of any ranked results it appears in. This effect is inappropriate
and should be compensated for.

We need a way to adjust the ranking of an entity based on the quantity of ratings. Ideally,
an application performs these calculations on the fly so that no additional storage is
required.

We provide the following solution: a high-performance liquidity compensation algo-
rithm to offset variability in very small sample sizes. It’s used on Yahoo! sites to which
many new targets are added daily, with the result that, often, very few ratings are applied
to each one.

RankMean

r = SimpleMean m - AdjustmentFactor a + 
      LiquidityWeight l * Adjustment Factor a

LiquidityWeight

l = min(max((NumRatings n - LiquidityFloor f)
                            / LiquidityCeiling c, 0), 1) * 2

or

r = m - a + min(max((n - f) / c, 0.00), 1.00) * 2.00 * a

This formula produces a curve like that in Figure 3-14. Though a more mathematically
continuous curve might seem appropriate, this linear approximation can be done with
simple nonrecursive calculations and requires no knowledge of previous individual
inputs.

The following are suggested initial values for a, c, and f (assuming normalized inputs):

AdjustmentFactor
a = 0.10

This constant is the fractional amount to remove from the score before adding back
in effects based on input volume. For many applications, such as 5-star ratings, it
should be within the range of integer rounding error—in this example, if the
AdjustmentFactor is set much higher than 10%, a lot of 4-star entities will be ranked
before 5-star ones. If it’s set too much lower, it might not have the desired effect.
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LiquidityFloor
f = 10

This constant is the threshold for which we consider the number of inputs required
to have a positive effect on the rank. In an ideal environment, this number is be-
tween 5 and 10, and our experience with large systems indicates that it should
never be set lower than 3. Higher numbers help mitigate abuse and get better rep-
resentation in consensus of opinion.

LiquidityCeiling
c = 60

This constant is the threshold beyond which additional inputs will not get a
weighting bonus. In short, we trust the average to be representative of the optimum
score. This number must not be lower than 30, which in statistics is the minimum
required for a t-score. Note that the t-score cutoff is 30 for data that is assumed to
be unmanipulated (read: random).

We encourage you to consider other values for a, c, and f, especially if you have any
data on the characteristics of your sources and their inputs.

Bias, Freshness, and Decay
When you’re computing reputation values from user-generated ratings, several com-
mon psychological and chronological issues will likely represent themselves in your
data. Often, data will be biased because of the cultural mores of an audience or simply
because of the way the application gathers and shares reputations; for example, an
application may favor the display of items that were previously highly rated. Data may
also be stale because the nature of the target being evaluated is no longer relevant. For
example, because of advances in technology, the ratings for the features of a specific
model of digital camera, such as the number of pixels in each image, may be irrelevant
within a few months. Numerous solutions and workarounds exist for these problems,

Figure 3-14. The effects of the liquidity compensation algorithm.
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one of which is to implement a method to decay old contributions to your reputations.
Read on for details of these problems and what you can do about them.

Ratings bias effects

Figure 3-15 shows the graphs of 5-star ratings from nine different Yahoo! sites with all
the volume numbers redacted. We don’t need them, since we want to talk only about
the shapes of the curves.

Figure 3-15. Some real ratings distributions on Yahoo! sites. Only one of these distributions suggests
a healthy, useful spread of ratings within a community. Can you spot it?

Eight of these graphs have what is known to reputation system aficionados as J-curves—
where the far right point (5 stars) has the very highest count, 4 stars the next highest,
and 1 star a little more than the rest. Generally, a J-curve is considered less than ideal
for several reasons. The average aggregate scores, which are all clumped together be-
tween 4.5 and 4.7 and therefore all display as 4 or 5 stars, are not so useful in visual
sorting of options. Also, a J-curve begs the question: why use a 5-point scale at all?
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Wouldn’t you get the same effect with a simpler thumbs-up, thumbs-down scale, or
maybe even just a super-simple favorite pattern?

The outlier among the graphs is for Yahoo! Autos Custom (now shut down), where
users rated car profile pages created by other users. That graph has a W-curve: lots of
1-, 3-, and 5-star ratings and a healthy share of 4- and 2-star ratings, too. It was a healthy
distribution and suggested that a 5-point scale was good for the community.

But why were Yahoo! Autos Custom’s ratings so very different from Yahoo! Shopping,
Local, Movies, and Travel?

Most likely, the biggest difference was that Autos Custom users were rating one an-
other’s content. The other sites had users evaluating static, unchanging, or feed-based
content in which they didn’t have a vested interest.

In fact, if you look at the curves for Shopping and Local, they are practically identical,
and have the flattest J-hook, giving the lowest share of 1-star ratings. This similarity
was a direct result of the overwhelming use pattern for those sites. Users come to find
a great place to eat or the best vacuum to buy. When they search, the results with the
highest ratings appear first. If a user has experienced that place or thing, he may well
also rate it—if it’s easy to do so—and most likely will give it 5 stars (see “First-mover
effects” on page 63). If the user sees an object that isn’t rated but that he likes, he
may also rate and/or review it, usually giving it 5 stars so that others can share his
discovery—otherwise, why bother? People don’t think that it’s worth the bother to
seek out and create Internet ratings for mediocre places or things. The curves, then, are
the direct result of a product design intersecting with users’ goals. This pattern—“I’m
looking for good things, so I’ll help others find good things”—is a prevalent form of
ratings bias. An even stronger example happens when users are asked to rate episodes
of TV shows. They rate every episode 4.5 stars plus or minus .5 star because only the
fans bother to rate the episodes, and no fan is ever going to rate an episode below a 3.
Look at any popular current TV show on Yahoo! TV or Television Without Pity.

Our closer look at how Yahoo! Autos Custom ratings worked and how users were
evaluating the content showed why 1-star ratings were given out so often: users gave
feedback to other users to get them to change their behavior. Specifically, you would
get one star if you (1) didn’t upload a picture of your ride, or (2) uploaded a dealer
stock photo of your ride. The site is Autos Custom, after all! Users reserved 5-star ratings
for the best of the best. Ratings of 2 through 4 stars were actually used to evaluate the
quality and completeness of the car’s profile. Unlike all the sites graphed here, the 5-
star scale truly represented a broad sentiment, and people worked to improve their
scores.

One ratings curve isn’t shown here: the U-curve, in which 1 star and 5 stars are dis-
proportionately selected. Some highly controversial objects on Amazon are targets of
this rating curve. Yahoo’s now-defunct personal music service also saw this kind of
curve when new music was introduced to established users: 1 star came to mean “Never
play this song again” and 5 meant “More like this one, please.” If you’re seeing
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U-curves, consider that users may be telling you something other than what you wanted
to measure (or that you might need a different rating scale).

First-mover effects

When an application handles quantitative measures based on user input, whether it’s
ratings or measuring participation by counting the number of contributions to a site,
several issues arise—all resulting from bootstrapping of communities—that we group
together under the term first-mover effects:

Early behavior modeling and early ratings bias
The first people to contribute to a site have a disproportionate effect on the char-
acter and future contributions of others. After all, this is social media, and people
usually try to fit into any new environment. For example, if the tone of comments
is negative, new contributors will also tend to be negative, which will also lead to
bias in any user-generated ratings. See “Ratings bias effects” on page 61.

When an operator introduces user-generated content and associated reputation
systems, it is important to take explicit steps to model behavior for the earliest users
in order to set the pattern for those who follow.

Discouraging new contributors
Take special care with systems that contain leaderboards (see “Leaderboard rank-
ing” on page 189) when they’re used either for content or for users. Items displayed
on leaderboards tend to stay on the leaderboards, because the more people who
see those items and click, rate, and comment on them, the more who will follow
suit, creating a self-sustaining feedback loop.

This loop not only keeps newer items and users from breaking into the leader-
boards, it discourages new users from even making the effort to participate by
giving the impression that they are too late to influence the result in any significant
way.
Though this phenomenon applies to all reputation scores, even for digital cameras,
it’s particularly acute in the case of simple point-based karma systems, which give
active users ever more points for activity so that leaders, over years of feverish
activity, amass millions of points, making it mathematically impossible for new
users to ever catch up.

Freshness and decay

As the previous section showed, time leaches value from reputation, but there’s also
the simple problem of ratings becoming stale over time as their target reputable entities
change or become unfashionable. Businesses change ownership, technology becomes
obsolete, cultural mores shift.

The key insight to dealing with this problem is to remember the expression, “What did
you do for me this week?” When you’re considering how your reputation system will
display reputation and use it indirectly to modify the experience of users, remember to
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account for time value. A common method for compensating for time in reputation
values is to apply a decay function: subtract value from the older reputations as time
goes on, at a rate that is appropriate to the context. For example, digital camera ratings
for resolution should probably lose half their weight every year, whereas restaurant
reviews should only lose 10% of their value in the same interval.

Here are some specific algorithms for decaying a reputation score over time:

Linear aggregate decay
Every score in the corpus is decreased by a fixed percentage per unit time elapsed,
whenever it is recalculated. This is high performance, but scarcely updated repu-
tations will have disproportionately high values. To compensate, a timer input can
perform the decay process at regular intervals.

Dynamic decay recalculation
Every time a score is added to the aggregate, recalculate the value of every contri-
buting score. This method provides a smoother curve, but it tends to become
computationally expensive O(n2) over time.

Window-based decay recalculation
The Yahoo! Spammer IP reputation system has used a time-window-based decay
calculation: fixed time or a fixed-size window of previous contributing claim values
is kept with the reputation for dynamic recalculation when needed. New values
push old values out of the window, and the aggregate reputation is recalculated
from those that remain. This method produces a score with the most recent infor-
mation available, but the information for low-liquidity aggregates may still be old.

Time-limited recalculation
This is the de facto method that most engineers use to present any information in
an application: use all of the ratings in a time range from the database and compute
the score just in time. This is the most costly method, because it involves always
hitting the database to recalculate an aggregate reputation (say, for a ranked list of
hotels), when 99% of the time the resulting value is exactly the same as it was in
the previous iteration. This method also may throw away still contextually valid
reputation. Performance and reliability are usually best served with the alternate
approaches described previously.

Implementer’s Notes
The massive-scale Yahoo! Reputation Platform, detailed in Appendix A, implemented
the reputation building blocks, such as the accumulator, sum, and even rolling average,
in both the reputation model execution engine and in the database layer. This division
of labor provided important performance improvements because the read-modify-write
logic for stored reputation values are kept as close to the data store as possible. For
small systems, it may be reasonable to keep the entire reputation system in memory at
once, thus avoiding this complication. But be careful. If your site is as successful as you
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hope it might someday be, making an all-memory-based design may well come back
to bite you, hard.

Making Buildings from Blocks
In this chapter, we extended the grammar by defining various reputation building
blocks out of which hundreds of currently deployed reputation systems are built. We
also shared tips about a few surprises we’ve encountered that emerge when these pro-
cesses interact with real human beings.

In Chapter 4, we combine and customize these blocks to describe full-fledged reputa-
tion models and systems that are available on the Web today. We look at a selection
of common patterns, including voting, points, and karma. We also review complex
reputations, such as those at eBay and Flickr, in considerable detail. Diagramming these
currently operational examples demonstrates the expressiveness of the grammar, and
the lessons learned from their challenges provide important experiences to consider
when designing new models.
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CHAPTER 4

Common Reputation Models

Now we’re going to start putting our simple reputation building blocks from Chap-
ter 3 to work. Let’s look at some actual reputation models to understand how the
claims, inputs, and processes described in the last chapter can be combined to model
a target entity’s reputation.

In this chapter, we name and describe a number of simple and broadly deployed rep-
utation models, such as vote to promote, simple ratings, and points. You probably have
some degree of familiarity with these patterns by simple virtue of being an active online
participant. You see them all over the place; they’re the bread and butter of today’s
social web. Later in this chapter, we show you how to combine these simple models
and expand upon them to make real-world models.

Understanding how these simple models combine to form more complete ones will
help you identify them when you see them in the wild. All of this will become important
later in the book, as you start to design and architect your own tailored reputation
models.

Simple Models
At their very simplest, some of the models we present next are really no more than
fancified reputation primitives: counters, accumulators, and the like. Notice, however,
that just because these models are simple doesn’t mean that they’re not useful. Varia-
tions on the favorites-and-flags, voting, ratings-and-reviews, and karma models are
abundant on the Web, and the operators of many sites find that, at least in the begin-
ning, these simple models suit their needs perfectly.
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Favorites and Flags
The favorites-and-flags model excels at identifying outliers in a collection of entities.
The outliers may be exceptional either for their perceived quality or for their lack of
same. The general idea is this: give your community controls for identifying or calling
attention to items of exceptional quality (or exceptionally low quality).

These controls may take the form of explicit votes for a reputable entity, or they may
be more subtle implicit indicators of quality (such as the ability to bookmark content
or send a link to it to a friend). A count of the number of times these controls are accessed
forms the initial input into the system; the model uses that count to tabulate the entities’
reputations.

In its simplest form, a favorites-and-flags model can be implemented as a simple counter
(Figure 4-1). When you start to combine them into more complex models, you’ll prob-
ably need the additional flexibility of a reversible counter.

Figure 4-1. Favorites, flags, or send-to-a-friend models can be built with a Simple Counter process—
count ’em up and keep score.

The favorites-and-flags model has three variants: vote to promote, favorites, and report
abuse.

Vote to promote

The vote-to-promote model, a variant of the favorites-and-flags model, has been popu-
larized by crowd-sourced news sites such as Digg, Reddit, and Yahoo! Buzz. In a vote-
to-promote system, a user promotes a particular content item in a community pool of
submissions. This promotion takes the form of a vote for that item, and items with
more votes rise in the rankings to be displayed with more prominence.

Vote to promote differs from this-or-that voting (see the section “This-or-That Vot-
ing” on page 69) primarily in the degree of boundedness around the user’s options.
Vote to promote enacts an opinion on a reputable object within a large, potentially
unbounded set (sites like StumbleUpon, for instance, have the entire Web as its can-
didate pool of potential objects).
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Favorites

Counting the number of times that members of your community bookmark a content
item can be a powerful method for tabulating content reputation. This method provides
a primary value (see the sidebar “Provide a Primary Value” on page 132) to the user:
bookmarking an item gives the user persistent access to it, and the ability to save, store,
or retrieve it later. And, of course, it also provides a secondary value to the reputation
system.

Report abuse

Unfortunately, there are many motivations in user-generated content applications for
users to abuse the system. So it follows that reputation systems play a significant role
in monitoring and flagging bad content. This is not that far removed from bookmarking
the good stuff. The most basic type of reputation model for abuse moderation involves
keeping track of the number of times the community has flagged something as abusive.
Craigslist uses this mechanism, and sets a custom threshold for each item listed based
on a per-user, per-category, and even per-city basis—though the value and the formu-
lation are always kept secret from the users.

Typically, once a certain threshold is reached, either the application or human agents
(staff) will act upon the content accordingly, or some piece of application logic will
determine the proper automated outcome: remove the “offending” item, properly cat-
egorize it (for instance, add an “adult content” disclaimer to it), or add it to a prioritized
queue for human agent intervention.

If your application is at a scale where automated responses to abuse
reports are necessary, you’ll probably want to consider tracking repu-
tations for abuse reporters themselves. See “Who watches the watch-
ers?” on page 209 for more.

This-or-That Voting
If you give your users options for expressing their opinion about something, you are
giving them a vote. A very common use of the voting model (which we’ve referenced
throughout this book) is to allow community members to vote on the usefulness, ac-
curacy, or appeal of something.

To differentiate from more open-ended voting schemes like vote to promote, it may
help to think of these types of actions as “this-or-that” voting: choosing from the most
attractive option within a bounded set of possibilities (see Figure 4-2).

It’s often more convenient to store that reputation statement back as a part of the
reputable entity that it applies to, making it easier, for example, to fetch and display a
“Was this review helpful?” score (see Figure 2-7 in Chapter 2).
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Ratings
When an application offers users the ability to express an explicit opinion about the
quality of something, it typically employs a ratings model (Figure 4-3). There are a
number of different scalar-value ratings: stars, bars, “HotOrNot,” or a 10-point scale.
(We discuss how to choose from among the various types of ratings inputs in the section
“Determining Inputs” on page 131.) In the ratings model, ratings are gathered from
multiple individual users and rolled up as a community average score for that target.

Figure 4-3. Individual ratings contribute to a community average.

Reviews
Some ratings are most effective when they travel together. More complex reputable
entities frequently require more nuanced reputation models, and the ratings-and-
review model, shown in Figure 4-4, allows users to express a variety of reactions to a
target. Although each rated facet could be stored and evaluated as its own specific
reputation, semantically that wouldn’t make much sense; it’s the review in its entirety
that is the primary unit of interest.

In the reviews model, a user gives a target a series of ratings and provides one or
more freeform text opinions. Each individual facet of a review feeds into a community
average.

Figure 4-2. Those “Helpful Review” scores that you see are often nothing more than a Simple Ratio.
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Points
For some applications, you may want a very specific and granular accounting of user
activity on your site. The points model, shown in Figure 4-5, provides just such a ca-
pability. With points, your system counts up the hits, actions, and other activities that
your users engage in and keeps a running sum of the awards.

Figure 4-5. As a user engages in various activities, they are recorded, weighted, and tallied.

This is a tricky model to get right. In particular, you face two dangers:

• Tying inputs to point values almost forces a certain amount of transparency into
your system. It is hard to reward activities with points without also communicating

Figure 4-4. A full user review typically is made up of a number of ratings and some freeform text
comments. Those ratings with a numerical value can, of course, contribute to aggregate community
averages as well.
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to your users what those relative point values are. (See “Keep Your Barn Door
Closed (but Expect Peeking)” on page 91.)

• You risk unduly influencing certain behaviors over others: it’s almost certain that
some minority of your users (or, in a success-disaster scenario, the majority of your
users) will make points-based decisions about which actions they’ll take.

There are significant differences between points awarded for reputation
purposes and monetary points that you may dole out to users as cur-
rency. The two are frequently confounded, but reputation points should
not be spendable.

If your application’s users must actually surrender part of their own
intrinsic value in order to obtain goods or services, you will be punishing
your best users, and you’ll quickly lose track of people’s real relative
worths. Your system won’t be able to tell the difference between truly
valuable contributors and those who are just good hoarders and never
spend the points allotted to them.

It would be far better to link the two systems but allow them to remain
independent of each other: a currency system for your game or site
should be orthogonal to your reputation system. Regardless of how
much currency exchanges hands in your community, each user’s un-
derlying intrinsic karma should be allowed to grow or decay uninhibited
by the demands of commerce.

Karma
A karma model is reputation for users. In the section “Solutions: Mixing Models to
Make Systems” on page 33, we explained that a karma model usually is used in support
of other reputation models to track or create incentives for user behavior. All the com-
plex examples later in this chapter (“Combining the Simple Models” on page 74)
generate and/or use a karma model to help calculate a quality score for other purposes,
such as search ranking, content highlighting, or selecting the most reputable provider.

There are two primitive forms of karma models: models that measure the amount of
user participation and models that measure the quality of contributions. When these
types of karma models are combined, we refer to the combined model as robust. In-
cluding both types of measures in the model gives the highest scores to the users who
are both active and produce the best content.

Participation karma

Counting socially and/or commercially significant events by content creators is prob-
ably the most common type of participation karma model. This model is often imple-
mented as a point system (see the earlier section “Points” on page 71), in which each
action is worth a fixed number of points and the points accumulate. A participation
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karma model looks exactly like Figure 4-5, where the input event represents the number
of points for the action and the source of the activity becomes the target of the karma.

There is also a negative participation karma model, which counts how many bad things
a user does. Some people call this model strikes, after the three-strikes rule of American
baseball. Again, the model is the same, except that the application interprets a high
score inversely.

Quality karma

A quality-karma model, such as eBay’s seller feedback model (see “eBay Seller Feedback
Karma” on page 78), deals solely with the quality of user contributions. In a quality-
karma model, the number of contributions is meaningless unless it is accompanied by
an indication of whether each contribution is good or bad for business. The best quality-
karma scores are always calculated as a side effect of other users evaluating the contri-
butions of the target.

On eBay, a successful auction bid is the subject of the evaluation, and the results roll
up to the seller: if there is no transaction, there should be no evaluation. For a detailed
discussion of this requirement, see “Karma is complex, built of indirect in-
puts” on page 176. Look ahead to Figure 4-6 for a diagram of a combined ratings-and-
reviews and quality-karma model.

Figure 4-6. A robust-karma model might combine multiple other karma scores—measuring, perhaps,
not just a user’s output (Participation) but his effectiveness (or Quality) as well.

Robust karma

By itself, a participation-based karma score is inadequate to describe the value of a
user’s contributions to the community, and we will caution time and again throughout
the book that rewarding simple activity is an impoverished way to think about user
karma. However, you probably don’t want a karma score based solely on quality of
contributions, either. Under this circumstance, you may find your system rewarding
cautious contributors, ones who, out of a desire to keep their quality-ratings high, only

Simple Models | 73



contribute to “safe” topics, or—once having attained a certain quality ranking—decide
to stop contributing to protect that ranking.

What you really want to do is to combine quality-karma and participation-karma scores
into one score—call it robust karma. The robust-karma score represents the overall
value of a user’s contributions: the quality component ensures some thought and care
in the preparation of contributions, and the participation side ensures that the con-
tributor is very active, that she’s contributed recently, and (probably) that she’s
surpassed some minimal thresholds for user participation—enough that you can rea-
sonably separate the passionate, dedicated contributors from the fly-by post-then-flee
crowd.

The weight you’ll give to each component depends on the application. Robust-karma
scores often are not displayed to users, but may be used instead for internal ranking or
flagging, or as factors influencing search ranking; see “Keep Your Barn Door Closed
(but Expect Peeking)” on page 91, later in this chapter, for common reasons for this
secrecy. But even when karma scores are displayed, a robust-karma model has the
advantage of encouraging users both to contribute the best stuff (as evaluated by their
peers) and to do it often.

When negative factors are included in factoring robust-karma scores, it is particularly
useful for customer care staff—both to highlight users who have become abusive or
users whose contributions decrease the overall value of content on the site, and po-
tentially to provide an increased level of service to proven-excellent users who become
involved in a customer service procedure. A robust-karma model helps find the best of
the best and the worst of the worst.

Combining the Simple Models
By themselves, the simple models described earlier are not enough to demonstrate a
typical deployed large-scale reputation system in action. Just as the ratings-and-reviews
model is a combination of the simpler atomic models that we described in Chapter 3,
most reputation models combine multiple smaller, simpler models into one complex
system.

We present these models for understanding, not for wholesale copying.
If we impart one message in this book, we hope it is this: reputation is
highly contextual, and what works well in one context will almost in-
evitably fail in many others. Copying any existing implementation of a
model too closely may indeed lead you closer to the surface aspects of
the application that you’re emulating. Unfortunately, it may also lead
you away from your own specific business and community objectives.

Part III shows how to design a system specific to your own product and
context. You’ll see better results for your application if you learn from
models presented in this chapter, then set them aside.
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User Reviews with Karma
Eventually, a site based on a simple reputation model, such as the ratings-and-reviews
model, is bound to become more complex. Probably the most common reason for
increasing complexity is the following progression. As an application becomes more
successful, it becomes clear that some of the site’s users produce higher-quality reviews.
These quality contributions begin to significantly increase the value of the site to end
users and to the site operator’s bottom line. As a result, the site operator looks for ways
to recognize these contributors, increase the search ranking value of their reviews, and
generally provide incentives for this value-generating behavior. Adding a karma repu-
tation model to the system is a common approach to reaching those goals.

The simplest way to introduce a quality-karma score to a simple ratings-and-reviews
reputation system is to introduce a “Was this helpful?” feedback mechanism that vis-
iting readers may use to evaluate each review.

The example in Figure 4-7 is a hypothetical product reputation model, and the reviews
focus on 5-star ratings in the categories “overall,” “service,” and “price.” These specifics
are for illustration only and are not critical to the design. This model could just as well
be used with thumb ratings and any arbitrary categories, such as “sound quality” or
“texture.”

The combined ratings-and-reviews with karma model has one compound input: the
review and the was-this-helpful vote. From these inputs, the community rating aver-
ages, the WasThisHelpful ratio, and the reviewer quality-karma rating are generated on
the fly. Pay careful attention to the sources and targets of the inputs of this model; they
are not the same users, nor are their ratings targeted at the same entities.

The model can be described as follows:

1. The review is a compound reputation statement of claims related by a single source
user (the reviewer) about a particular target, such as a business or a product:

• Each review contains a text-only comment that typically is of limited length and
that often must pass simple quality tests, such as minimum size and spell check-
ing, before the application will accept it.

• The user must provide an overall rating of the target; in this example, in the
form of a 5-star rating, although it could be in any scale appropriate to the
application.

• Users who wish to provide additional detail about the target can contribute
optional service and/or price scores. A reputation system designer might en-
courage users to contribute optional scores by increasing their reviewer quality
karma if they do so. (This option is not shown in the diagram.)

Combining the Simple Models | 75



• The last claim included in the compound review reputation statement is the
WasThisHelpful ratio, which is initialized to 0 out of 0 and is never actually
modified by the reviewer but derived from the was-this-helpful votes of readers.

2. The was-this-helpful vote is not entered by the reviewer but by a user (the reader)
who encounters the review later. Readers typically evaluate a review itself by click-

Figure 4-7. In this two-tiered system, users write reviews and other users review those reviews. The
outcome is a lot of useful reputation information about the entity in question (here, Dessert Hut) and
all the people who review it.
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ing one of two icons, “thumb-up” (Yes) or “thumb-down” (No), in response to the
prompt “Did you find this review helpful?”.

This model has only three processes or outputs and is pretty straightforward. Note,
however, the split shown for the was-this-helpful vote, where the message is duplicated
and sent both to the Was This Helpful? process and the process that calculates reviewer
quality karma. The more complex the reputation model, the more common this kind
of split becomes.

Besides indicating that the same input is used in multiple places, a split also offers the
opportunity to do parallel and/or distributed processing—the two duplicate messages
take separate paths and need not finish at the same time or at all.

3. The Community Overall Averages process calculates the average of all the com-
ponent ratings in the reviews. The overall, service, and price claims are averaged.
Since some of these inputs are optional, keep in mind that each claim type may
have a different total count of submitted claim values.

Because users may need to revise their ratings and the site operator may wish to
cancel the effects of ratings by spammers and other abusive behavior, the effects
of each review are reversible. This is a simple reversible average process, so it’s a
good idea to consider the effects of bias and liquidity when calculating and
displaying these averages (see the section “Practitioner’s Tips: Reputation Is
Tricky” on page 57).

4. The Was This Helpful? process is a reversible ratio, keeping track of the total (T)
number of votes and the count of positive (P) votes. It stores the output claim in
the target review as the HelpfulScore ratio claim with the value P out of T.

Policies differ for cases when a reviewer is allowed to make significant changes to
a review (for example, changing a formerly glowing comment into a terse “This
sucks now!”). Many site operators simply revert all the was-this-helpful votes and
reset the ratio. Even if your model doesn’t permit edits to a review, for abuse mit-
igation purposes, this process still needs to be reversible.

5. After a simple point accumulation model, our reviewer quality User Karma process
implements probably the simplest karma model possible: track the ratio of total
was-this-helpful votes for all the reviews that a user has written to the total number
of votes received. We’ve labeled this a custom ratio because we assume that the
application will be programmed to include certain features in the calculation such
as requiring a minimum number of votes before considering any display of karma
to a user. Likewise, it is typical to create a nonlinear scale when grouping users into
karma display formats, such as badges like “top 100 reviewer.” See the next section
and Chapter 7 for more on display patterns for karma.

Karma models, especially public karma models, are subject to massive abuse by
users interested in personal status or commercial gain. For that reason, this process
must be reversible.
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Now that we have a community-generated quality-karma claim for each user (at least
those who have written a review noteworthy enough to invite helpful votes), you may
notice that this model doesn’t use that score as an input or weight in calculating other
scores. This configuration is a reminder that reputation models all exist within an ap-
plication context, and therefore the most appropriate use for this score will be deter-
mined by your application’s needs.

Perhaps you will keep the quality-karma score as a corporate (internal) reputation,
helping to determine which users should get escalating customer support. Perhaps the
score will be public, displayed next to every one of a user’s reviews as a status symbol
for all to see. It might even be personal, shared only with each reviewer, so that reviewers
can see what the overall community thinks of their contributions. Each of these choices
has different ramifications, which we discuss in Chapter 6 in detail.

eBay Seller Feedback Karma
eBay contains the Internet’s most well-known and studied user reputation or karma
system: seller feedback. Its reputation model, like most others that are several years
old, is complex and continuously adapting to new business goals, changing regulations,
improved understanding of customer needs, and the never-ending need to combat rep-
utation manipulation through abuse. See Appendix B for a brief survey of relevant
research papers about this system and Chapter 9 for further discussion of the contin-
uous evolution of reputation systems in general.

Rather than detail the entire feedback karma model here, we focus on claims that are
from the buyer and about the seller. An important note about eBay feedback is that
buyer claims exist in a specific context: a market transaction, which is a successful bid
at auction for an item listed by a seller. This specificity leads to a generally higher-quality
karma score for sellers than they would get if anyone could just walk up and rate a seller
without even demonstrating that they’d ever done business with them; see “Implicit:
Walk the Walk” on page 6.

The reputation model in Figure 4-8 was derived from the following eBay
pages: http://pages.ebay.com/help/feedback/scores-reputation.html and
http://pages.ebay.com/sellerinformation/PowerSeller/requirements.html,
both current as of March 2010.

We have simplified the model for illustration, specifically by omitting the processing
for the requirement that only buyer feedback and detailed seller ratings (DSRs) provided
over the previous 12 months are considered when calculating the positive feedback ratio,
DSR community averages, and—by extension—power seller status. Also, eBay reports
user feedback counters for the last month and quarter, which we are omitting here for
the sake of clarity. Abuse mitigation features, which are not publicly available, are also
excluded.
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Figure 4-8. This simplified diagram shows how buyers influence a seller’s karma scores on eBay.
Though the specifics are unique to eBay, the pattern is common to many karma systems.
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Figure 4-8 illustrates the seller feedback karma reputation model, which is made of
typical model components: two compound buyer input claims—seller feedback and
detailed seller ratings—and several roll-ups of the seller’s karma, including community
feedback ratings (a counter), feedback level (a named level), positive feedback per-
centage (a ratio), and the power seller rating (a label).

The context for the buyer’s claims is a transaction identifier—the buyer may not leave
any feedback before successfully placing a winning bid on an item listed by the seller
in the auction market. Presumably, the feedback primarily describes the quality and
delivery of the goods purchased. A buyer may provide two different sets of complex
claims, and the limits on each vary:

1. Typically, when a buyer wins an auction, the delivery phase of the transaction starts
and the seller is motivated to deliver the goods of the quality advertised in a timely
manner. After either a timer expires or the goods have been delivered, the buyer is
encouraged to leave feedback on the seller, a compound claim in the form of a
three-level rating—positive, neutral, or negative—and a short text-only comment
about the seller and/or transaction. The ratings make up the main component of
seller feedback karma.

2. Once each week in which a buyer completes a transaction with a seller, the buyer
may leave detailed seller ratings, a compound claim of four separate 5-star ratings
in these categories: “item as described,” “communications,” “shipping time,” and
“shipping and handling charges.” The only use of these ratings, other than aggre-
gation for community averages, is to qualify the seller as a power seller.

eBay displays an extensive set of karma scores for sellers: the amount of time the seller
has been a member of eBay, color-coded stars, percentages that indicate positive feed-
back, more than a dozen statistics that track past transactions, and lists of testimonial
comments from past buyers or sellers. This is just a partial list of the seller reputations
that eBay puts on display.

The full list of displayed reputations almost serves as a menu of reputation types present
in the model. Every process box represents a claim displayed as a public reputation to
everyone, so to provide a complete picture of eBay seller reputation, we simply detail
each output claim separately.

3. The Feedback Score counts every positive rating given by a buyer as part of seller
feedback, a compound claim associated with a single transaction. This number is
cumulative for the lifetime of the account, and it generally loses its value over time;
buyers tend to notice it only if it has a low value.

It is fairly common for a buyer to change this score, within some time limitations,
so this effect must be reversible. Sellers spend a lot of time and effort working to
change negative and neutral ratings to positive ratings to gain or to avoid losing a
Power Seller Rating.

When this score changes, it is used to calculate the feedback level.
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4. The Feedback Level process generates a graphical representation (in colored stars)
of the feedback score. This is usually a simple data transformation and normali-
zation process; here we’ve represented it as a mapping table, illustrating only a
small subset of the mappings.

This visual system of stars on eBay relies, in part, on the assumption
that users will know that a red shooting star is a better rating than a
purple star. But we have our doubts about the utility of this represen-
tation for buyers. Iconic scores such as these often mean more to their
owners, and they might represent only a slight incentive for increasing
activity in an environment in which each successful interaction equals
cash in your pocket.

5. The Community Feedback Ratings process generates a compound claim contain-
ing the historical counts for each of the three possible seller feedback ratings—
positive, neutral, and negative—over the last 12 months, so that the totals can be
presented in a table showing the results for the last month, 6 months, and year.
Older ratings are decayed continuously, though eBay does not disclose how often
this data is updated if new ratings don’t arrive. One possibility would be to update
the data whenever the seller posts a new item for sale.

The positive and negative ratings are used to calculate the positive feedback
percentage.

6. The Positive Feedback Percentage process divides the positive feedback ratings by
the sum of the positive and negative feedback ratings over the last 12 months. Note
that the neutral ratings are not included in the calculation.

This is a recent change reflecting eBay’s confidence in the success
of updates deployed in the summer of 2008 to prevent bad sellers
from using retaliatory ratings against buyers who are unhappy with
a transaction (known as tit-for-tat negatives). Initially this calcula-
tion included neutral ratings because eBay feared that negative
feedback would be transformed into neutral ratings. It was not.

This score is an input into the power seller rating, which is a highly coveted rating
to achieve. This means that each and every individual positive and negative rating
given on eBay is a critical one—it can mean the difference for a seller between
acquiring the coveted power seller status or not.

7. The Detailed Seller Ratings (DSR) Community Averages are simple reversible aver-
ages for each of the four ratings categories: “item as described,” “communica-
tions,” “shipping time,” and “shipping and handling charges.” There is a limit on
how often a buyer may contribute DSRs.
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eBay only recently added these categories as a new reputation model because in-
cluding them as factors in the overall seller feedback ratings diluted the overall
quality of seller and buyer feedback. Sellers could end up in disproportionate trou-
ble just because of a bad shipping company or a delivery that took a long time to
reach a remote location. Likewise, buyers were bidding low prices only to end up
feeling gouged by shipping and handling charges.

Fine-grained feedback allows one-off small problems to be averaged out across the
DSR community averages instead of being translated into red-star negative scores
that poison overall trust. Fine-grained feedback for sellers is also actionable by
them and motivates them to improve, since these DSR scores make up half of the
power seller rating.

8. The Power Seller Rating, appearing next to the seller’s ID, is a prestigious label that
signals the highest level of trust. It includes several factors external to this model,
but two critical components are the positive feedback percentage, which must be
at least 98%, and the DSR community averages, which each must be at least 4.5
stars (around 90% positive). Interestingly, the DSR scores are more flexible than
the feedback average, which tilts the rating toward overall evaluation of the trans-
action rather than the related details.

Though the context for the buyer’s claims is a single transaction or history of transac-
tions, the context for the aggregate reputations that are generated is trust in the eBay
marketplace itself. If the buyers can’t trust the sellers to deliver against their promises,
eBay cannot do business. When considering the roll-ups, we transform the single-
transaction claims into trust in the seller, and—by extension—that same trust rolls up
into eBay. This chain of trust is so integral and critical to eBay’s continued success that
it must continuously update the marketplace’s interface and reputation systems.

Flickr Interestingness Scores for Content Quality
The popular online photo service Flickr uses reputation to qualify new user submissions
and track user behavior that violates Flickr’s terms of service. Most notably, Flickr uses
a completely custom reputation model called “interestingness” for identifying the
highest-quality photographs submitted from the millions uploaded every week. Flickr
uses that reputation score to rank photos by user and, in searches, by tag.

Interestingness is also the key to Flickr’s “Explore” page, which displays a daily calendar
of the photos with the highest interestingness ratings, and users may use a graphical
calendar to look back at the worthy photographs from any previous day. It’s like a daily
leaderboard for newly uploaded content.
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The version of Flickr interestingness that we are presenting here is an
abstraction based on several different pieces of evidence: the U.S. patent
application (Number 2006/0242139 A1) filed by Flickr, comments that
Flickr staff have made on their own message boards, observations by
power users in the community, and our own experience in building such
reputation systems.

We offer two pieces of advice for anyone building similar systems: there
is no substitute for gathering historical data when you are deciding how
to clip and weight your calculations, and—even if you get your initial
settings correct—you will need to adjust them over time to adapt to
the use patterns that will emerge as the direct result of implementing
reputation. (See the section “Emergent effects and emergent de-
fects” on page 236.)

Figure 4-9 has two primary outputs: photo interestingness and interesting photogra-
pher Karma, and everything else feeds into those two key claims.

Of special note in this model is the existence of a karma loop (represented in the figure
by a dashed-pipe). A user’s reputation score influences how much “weight” her opinion
carries when evaluating others’ work (commenting on it, favoriting it, or adding to
groups): photographers with higher interestingness karma on Flickr have a greater voice
in determining what constitutes “interesting” on the site.

Each day, Flickr generates and stores a list of the top 500 most interesting photos for
the “Explore” page. It also updates the current interestingness score of each and every
photo each time one of the input events occurs. Here, we illustrate a real-time model
for that update, though it isn’t at all clear that Flickr actually does these calculations
in real time, and there are several good reasons to consider delaying that action. See
“Keep Your Barn Door Closed (but Expect Peeking)” on page 91.

Since there are four main paths through the model, we’ve grouped all the inputs by the
kind of reputation feedback they represent: viewer activities, tagging, flagging, and
republishing. Each path provides a different kind of input into the final reputations.

1. Viewer activities represent the actions that a viewing user performs on a photo.
Each action is considered a significant endorsement of the photo’s content because
any action requires special effort by the user. We have assumed that all actions
carry equal weight, but that is not a requirement of the model:

• A viewer can attach a note to the photo by adding a rectangle over a region of
the photo and typing a short note.

• When a viewer comments on a photo, that comment is displayed for all other
viewers to see. The first comment is usually the most important, because it
encourages other viewers to join the conversation. We don’t know whether
Flickr weighs the first comment more heavily than subsequent ones. (Though
that is certainly common practice in some reputation models.)
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• By clicking the “Add to Favorites” icon, a viewer not only endorses a photo but
shares that endorsement—the photo now appears in the viewer’s profile, on her
“My Favorites” page.

Figure 4-9. Interestingness ratings are used in several places on the Flickr site, but most noticeably on
the “Explore” page, a daily calendar of photos selected using this content reputation model.
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• If a viewer downloads the photo (depending on a photo’s privacy settings, image
downloads are available in various sizes), that is also counted as a viewer activity.
(Again, we don’t know for sure, but it would be smart on Flickr’s part to count
multiple repeat downloads as only one action, lest they risk creating a back door
to attention-gaming shenanigans.)

• Finally, the viewer can click “Send to Friend,” creating an email with a link to
the photo. If the viewer addresses the message to multiple users or even a list,
this action could be considered republishing. However, applications generally
can’t distinguish a list address from an individual person’s address, so for
reputation purposes, we assume that the addressee is always an individual.

2. Tagging is the action of adding short text strings describing the photo for catego-
rization. Flickr tags are similar pregenerated categories, but they exist in a folk-
sonomy: whatever tags users apply to a photo, that’s what the photo is about.
Common tags include 2009, me, Randy, Bryce, Fluffy, and cameraphone, along with
the expected descriptive categories of wedding, dog, tree, landscape, purple, tall,
and irony—which sometimes means “made of iron”!

Tagging gets special treatment in a reputation model because users must apply
extra effort to tag an object, and determining whether one tag is more likely to be
accurate than another requires complicated computation. Likewise, certain tags,
though popular, should not be considered for reputation purposes at all. Tags have
their own quantitative contribution to interestingness, but they also are considered
viewer activities, so the input is split into both paths.

3. Sadly, many popular photographs turn out to be pornographic or in violation of
Flickr’s terms of service.

On many sites—if left untended—porn tends to quickly generate
a high-quality reputation score. Remember, “quality” as we’re dis-
cussing it is, to some degree, a measure of attention. Nothing
garners attention like appealing to prurient interests.

The smart reputation designer can, in fact, leverage this unfortu-
nate truth. Build a corporate-user “porn probability” reputation
into your system—one that identifies content with a high (or too-
high) velocity of attention and puts it in a prioritized queue for
human agents to review.

Flagging is the process by which users mark content as inappropriate for the service.
This is a negative reputation vote: by tagging a photo as abusive, the user is saying
“this doesn’t belong here.” This strong action should decrease the interestingness
score fast—faster, in fact, than the other inputs can raise it.

4. Republishing actions represent a user’s decision to increase the audience for a photo
by either adding it to a Flickr group or embedding it in a web page. Users can
accomplish either by using the blog publishing tools in Flickr’s interface or by
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copying and pasting an HTML snippet that the application provides. Flickr’s pat-
ent doesn’t specifically say that these two actions are treated similarly, but it seems
reasonable to do so.

Generally, four things determine a Flickr photo’s interestingness (represented by the
four parallel paths in Figure 4-9): the viewer activity score, which represents the effect
of viewers taking a specific action on a photo; tag relatedness, which represents a tag’s
similarity to others associated with other tagged photos; the negative feedback adjust-
ment, which reflects reasons to downgrade or disqualify the tag; and group weighting,
which has an early positive effect on reputation with the first few events.

5. The events coming into the Karma Weighting process are assumed to have a nor-
malized value of 0.5, because the process is likely to increase it. The process reads
the interesting-photographer karma of the user taking the action (not the person
who owns the photo) and increases the viewer activity value by some weighting
amount before passing it onto the next process. As a simple example, we’ll suggest
that the increase in value will be a maximum of 0.25—with no effect for a viewer
with no karma and 0.25 for a hypothetical awesome user whose every photo is
beloved by one and all. The resulting score will be in the range 0.5 to 0.75. We
assume that this interim value is not stored in a reputation statement for perform-
ance reasons.

6. Next, the Relationship Weighting process takes the input score (in the range of 0.5
to 0.75) and determines the relationship strength of the viewer to the photographer.
The patent indicates that a stronger relationship should grant a higher weight to
any viewer activity. Again, for our simple example, we’ll add up to 0.25 for a mutual
first-degree relationship between the users. Lower values can be added for one-way
(follower) relationships or even relationships as members of the same Flickr
groups. The result is now in the range of 0.5 to 1.0 and is ready to be added into
the historical contributions for this photo.

7. The Viewer Activity Score is a simple accumulator and custom denormalizer that
sums up all the normalized event scores that have been weighted. In our example,
they arrive in the range of 0.5 to 1.0. It seems likely that this score is the primary
basis for interestingness. The patent indicates that each sum is marked with a
timestamp to track changes in viewer activity score over time.

The sum is then denormalized against the available range, from 0.5 to the maxi-
mum known viewer activity score, to produce an output from 0.0 to 1.0, which
represents the normalized accumulated score stored in the reputation system so
that it can be used to recalculate photo interestingness as needed.

8. Unlike most of the reputation messages we’ve considered so far, the incoming
message to the tagging process path does not include any numeric value at all; it
contains only the text tag that the viewer is adding to the photo. The tag is first
subjected to the Tag Blacklist process, a simple evaluator that checks the tag against
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a list of forbidden words. If the flow is terminated for this event, there is no con-
tribution to photo interestingness for this tag.

Separately, it seems likely that Flickr would want a tag on the list
of forbidden words to have a negative, penalizing effect on the
karma score for the person who added it.

Otherwise, the tag is considered worthy of further reputation consideration and is
sent on to the Tag Relatedness process. Only if the tag was on the list of forbidden
words is it likely that any record of this process would be saved for future reference.

9. The nonblacklisted tag then undergoes the Tag Relatedness process, which is a
custom computation of reputation based on cluster analysis described in the patent
in this way (from Flickr’s U.S. Patent Application No. 2006/0242139 A1):

[0032] As part of the relatedness computation, the statistics engine may employ a
statistical clustering analysis known in the art to determine the statistical proximity
between metadata (e.g., tags), and to group the metadata and associated media
objects according to corresponding cluster. For example, out of 10,000 images tag-
ged with the word “Vancouver,” one statistical cluster within a threshold proximity
level may include images also tagged with “Canada” and “British Columbia.” An-
other statistical cluster within the threshold proximity may instead be tagged with
“Washington” and “space needle” along with “Vancouver.” Clustering analysis
allows the statistics engine to associate “Vancouver” with both the “Vancouver-
Canada” cluster and the “Vancouver-Washington” cluster. The media server may
provide for display to the user the two sets of related tags to indicate they belong to
different clusters corresponding to different subject matter areas, for example.

This is a good example of a black-box process that may be calculated outside of
the formal reputation system. Such processes are often housed on optimized ma-
chines or run continuously on data samples in order to give best-effort results in
real time.

For our model, we assume that the output will be a normalized score from 0.0 (no
confidence) to 1.0 (high confidence) representing how likely the tag is related to
the content. The simple average of all the scores for the tags on this photo is stored
in the reputation system so that it can be used to recalculate photo interestingness
as needed.

10. The Negative Feedback path determines the effects of flagging a photo as abusive
content. Flickr documentation is nearly nonexistent on this topic (for good reason;
see “Keep Your Barn Door Closed (but Expect Peeking)” on page 91), but it seems
reasonable to assume that even a small number of negative feedback events should
be enough to nullify most, if not all, of a photo’s interestingness score.

For illustration, let’s say that it would take only five abuse reports to do the most
damage possible to a photo’s reputation. Using this math, each abuse report event
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would be worth 0.2. Negative feedback can be thought of as a Reversible Accu-
mulator with a maximum value of 1.0.

This model doesn’t account for abuse by users ganging up on a photo
and flagging it as abusive when it is not. (See “Who watches the watch-
ers?” on page 209). That is a different reputation model, which we il-
lustrate in detail in Chapter 10.

11. The last component of the process is the republishing path. When a photo gets
even more exposure by being shared on channels such as blogs and Flickr groups,
then Flickr assigns some additional reputation value to it, shown here as the Group
Weighting process.

Flickr official forum posts indicate that for the first five or so actions, this value
quickly increases to its maximum value—1.0 in our system. After that, it stabilizes,
so this process is also a simple accumulator, adding 0.2 for every event and capping
at 1.0.

12. All of the inputs to Photo Interestingness, a simple mixer, are normalized scores
from 0.0 to 1.0 and represent either positive (viewer activity score, tag relatedness,
group weighting) or negative (negative feedback) effects on the claim.

The exact formulation for this calculation is not detailed in any documentation,
nor is it clear that anyone who doesn’t work for Flickr understands all its subtleties.
But…for illustration purposes, we propose this drastically simplified formulation:
photo interestingness is made up of 20% each of group weighting and tag related-
ness plus 60% viewer activity score minus negative feedback.

A common early modification to a formulation like this is to increase the positive
percentages enough so that no minor component is required for a high score. For
example, you could increase the 60% viewer activity score to 80% and then cap
the result at 1.0 before applying any negative effects.

A copy of this claim value is stored in the same high-performance database as the
rest of the search-related metadata for the target photo.

13. The Interesting Photographer Karma score is recalculated each time the
interestingness reputation of one of the photos changes. This liquidity compensa-
ted average is sufficient when using this karma to evaluate other user’s photos.

The Flickr model is undoubtedly complex and has spurred a lot of discussion and
mythology in the photographer community on Flickr.

It’s important to reinforce the point that all of this computational work is in support
of three very exact contexts: interestingness works specifically to influence photos’
search rank on the site, their display order on user profiles, and ultimately whether or
not they’re featured on the site-wide “Explore” page. It’s the third context, Explore,
that introduces one more important reputation mechanic: randomization.
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Each day’s photo interestingness calculations produce a ranked list of photos. If the
content of the “Explore” page were 100% determined by those calculations, it could
get boring. First-mover effects can predict that you would probably always see the same
photos by the same photographers at the top of the list (see the section “First-mover
effects” on page 63). Flickr lessens this effect by including a random factor in the se-
lection of the photos.

Each day, the top 500 photos appear in randomized order. In theory, the photo with
the 500th-ranked photo interestingness score could be displayed first and the one with
the highest photo interestingness score could be displayed last. The next day, if they’re
still on the top-500 list, they could both appear somewhere in the middle.

This system has two wonderful effects:

• A more diverse set of high-quality photos and photographers gets featured, en-
couraging more participation by the users producing the best content.

• It mitigates abuse, because the photo interestingness score is not displayed and the
randomness of the display prevents it from being deduced. Randomness makes it
nearly impossible to reverse-engineer the specifics of the reputation model—there
is simply too much noise in the system to be certain of the effects of smaller con-
tributions to the score.

What’s truly wonderful is that this randomness doesn’t harm Explore’s efficacy in the
least; given the scale and activity of the Flickr community, each and every day there are
more than enough high-quality photos to fill a 500-photo list. Jumbling up the order
for display doesn’t detract from the experience of browsing them by one whit.

When and Why Simple Models Fail
As a business owner on today’s Web, probably the greatest thing about social media is
that the users themselves create the media from which you, the site operator, capture
value. This means, however, that the quality of your site is directly related to the quality
of the content created by your users.

This can present problems. Sure, the content is cheap, but you usually get what you
pay for, and you will probably need to pay more to improve the quality. Additionally,
some users have a different set of motivations than you might prefer.

We offer design advice to mitigate potential problems with social collaboration and
suggestions for specific nontechnical solutions.

Party Crashers
As illustrated in the real-life models earlier, reputation can be a successful motivation
for users to contribute large volumes of content and/or high-quality content to your
application. At the very least, reputation can provide critical money-saving value to
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your customer care department by allowing users to prioritize the bad content for at-
tention and likewise flag power users and content to be featured.

But mechanical reputation systems, of necessity, are always subject to unwanted or
unanticipated manipulation; they are only algorithms, after all. They cannot account
for the many, sometimes conflicting, motivations for users’ behavior on a site. One of
the strongest motivations of users who invade reputation systems is commercial. Spam
invaded email. Marketing firms invade movie review and social media sites. And drop-
shippers are omnipresent on eBay.

eBay drop-shippers put the middleman back into the online market; they are people
who resell items that they don’t even own. It works roughly like this:

1. A seller develops a good reputation, gaining a seller feedback karma of at least 25
for selling items that she personally owns.

2. The seller buys some drop-shipping software, which helps locate items for sale on
eBay and elsewhere cheaply, or joins an online drop-shipping service that has the
software and presents the items in a web interface.

3. The seller finds cheap items to sell and lists them on eBay for a higher price than
they’re available from the drop-shipper but lower than other eBay sellers are selling
them for. The seller includes an average or above-average shipping and handling
charge.

4. The seller sells an item to a buyer, receives payment, and sends an order for the
item, along with a drop-shipping payment, to the drop-shipper, who then delivers
the item to the buyer.

This model of doing business was not anticipated by the eBay seller feedback karma
model, which only includes buyers and sellers as reputation entities. Drop-shippers are
a third party in what was assumed to be a two-party transaction, and they cause the
reputation model to break in various ways:

• The drop-shippers sometimes fail to deliver the goods as promised to the buyer.
The buyer then gets mad and leaves negative feedback: the dreaded red star. That
would be fine, but it is the seller—who never saw or handled the good—that re-
ceives the mark of shame, not the actual shipping party.

• This arrangement is a big problem for the seller, who cannot afford the negative
feedback if she plans to continue selling on eBay.

• The typical options for rectifying a bungled transaction won’t work in a drop-
shipper transaction: it is useless for the buyer to return the defective goods to the
seller. (They never originated from the seller anyway.) Trying to unwind the ship-
ment (the buyer returns the item to the seller; the seller returns it to the
drop-shipper, if that is even possible; the drop-shipper buys or waits for a replace-
ment item and finally ships it) would take too long for the buyer, who expects
immediate recompense.
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In effect, the seller can’t make the order right with the customer without refunding the
purchase price in a timely manner. This puts them out-of-pocket for the price of the
goods along with the hassle of trying to recover the money from the drop-shipper.

But a simple refund alone sometimes isn’t enough for the buyer! Depending on the
amount of perceived hassle and effort this transaction has cost the buyer, he is still
likely to rate the transaction negatively overall. (And rightfully so. Once it’s become
evident that a seller is working through a drop-shipper, many of their excuses and delays
start to ring very hollow.) So a seller may have, at this point, outlayed a lot of her own
time and money to rectify a bad transaction only to still suffer the penalties of a red star.

What option does the seller have left to maintain her positive reputation? You guessed
it—a payoff. Not only will a concerned seller eat the price of the goods—and any
shipping involved—but she will also pay an additional cash bounty (typically up to
$20.00) to get buyers to flip a red star to green.

What is the cost of clearing negative feedback on drop-shipped goods? The cost of the
item + $20.00 + lost time negotiating with the buyer. That’s the cost that reputation
imposes on drop-shipping on eBay.

The lesson here is that a reputation model will be reinterpreted by users as they find
new ways to use your site. Site operators need to keep a wary eye on the specific behavior
patterns they see emerging and adapt accordingly. Chapter 9 provides more detail and
specific recommendations for prospective reputation modelers.

Keep Your Barn Door Closed (but Expect Peeking)
You will—at some point—be faced with a decision about how open (or not) to be about
the details of your reputation system. Exactly how much of your model’s inner workings
should you reveal to the community? Users inevitably will want to know:

• What reputations is the system keeping? (Remember, not all reputations will be
visible to users; see “Corporate Reputations Are Internal Use Only: Keep Them
Hush-hush” on page 172.)

• What are the inputs that feed into those reputations?

• How are they weighted? (That is, what are the important inputs?)

This decision is not at all trivial: if you err on the side of extreme secrecy, you risk
damaging your community’s trust in the system that you’ve provided. Your users may
come to question its fairness or—if the inner workings remain too opaque—they may
flat-out doubt the system’s accuracy.

Most reputation-intensive sites today attempt at least to alleviate some of the com-
munity’s curiosity about how content reputations and user reputations are earned. It’s
not like you can keep your system a complete secret.
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Equally bad, however, is divulging too much detail about your reputation system to the
community. And more site designers probably make this mistake, especially in the early
stages of deploying the system and growing the community. As an example, consider
the highly specific breakdown of actions on the Yahoo! Answers site, and the points
rewarded for each (see Figure 4-10).

Figure 4-10. How to succeed at Yahoo! Answers? The site courteously provides you with a scorecard.

Why might this breakdown be a mistake? For a number of reasons. Assigning overt
point values to specific actions goes beyond enhancing the user experience and starts
to directly influence it. Arguably, it may tip right over into the realm of dictating user
behavior, which generally is frowned upon.

A detailed breakdown also arms the malcontents in your community with exactly the
information they need to deconstruct your model. And they won’t even need to guess
at things like relative weightings of inputs into the system; the relative value of different
inputs is right there on the site, writ large. Try, instead, to use language that is clear
and truthful without necessarily being comprehensive and exhaustively complete, like
this example from the Yahoo! UK Message Boards:

The exact formula that determines medal-achievement will not be made public (and is
subject to change) but, in general, it may be influenced by the following factors: com-
munity response to your messages (how highly others rate your messages); the amount
of (quality) contributions that you make to the boards; and how often and accurately
you rate others’ messages.

Staying vague does not mean, of course, that some in your community won’t continue
to wonder, speculate, and talk among themselves about the specifics of your reputation
system. Algorithm gossip has become something of a minor sport on collaborative sites
like Digg and YouTube.
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For some participants, guessing at the workings of reputations like “highest rated” or
“most popular” is probably just that—an entertaining game and nothing more. Others,
however, see only the benefit of any insight they might be able to gain into the system’s
inner workings: greater visibility for themselves and their content, more influence
within the community, and the greater currency that follows both. (See “Egocentric
incentives” on page 118.)

The following are some helpful strategies for masking the inner workings of your rep-
utation models and algorithms.

Decay and delay

Time is on your side. Or it can be, in one of a couple of ways. First, consider the use of
time-based decay in your models: recent actions “count for” more than actions in the
distant past, and the effects of older actions decay (lessen) over time. Incorporating
time-based delays has several benefits:

• Reputation leaders can’t rest on their laurels. When reputations decay, they have
to be earned back continually. This requirement encourages your community to
stay active and engage with your site frequently.

• Decay is an effective counter to the stagnation that naturally results from network
effects (see “First-mover effects” on page 63). Older, more established participants
will not tend to linger at the top of rankings quite as much.

• Those who do probe the system to gain an unfair advantage will not reap long-term
benefits from doing so unless they continue to do it within the constraints imposed
by the decay. (Coincidentally, this profile of behavior makes it easier to spot—and
correct for—users who are gaming the system.)

It’s also beneficial to delay the results of newly triggered inputs. If a reasonable window
of time exists between the triggering of an input (marking a photo as a favorite, for
instance) and the resulting effect on that object’s reputation (moving the photo higher
in a visible ranking), it confounds a gaming user’s ability to do easy what-if comparisons
(particularly if the period of delay is itself unpredictable).

When the reputation effects of various actions are instantaneous, you’ve given the
gamers of your system a powerful analytic tool for reverse-engineering your models.

Provide a moving target

We’ve already cautioned that it’s important to keep your system flexible (see “Plan for
Change” on page 226). That’s not just good advice from a technical standpoint, but
from a social and strategic one as well. Put simply: leave yourself enough wiggle room
to adjust the impact of different inputs in the system (add new inputs, change their
relative weightings, or eliminate ones that were previously considered). That flexibility
gives you an effective tool for confounding gaming of the system. If you suspect that a
particular input is being exploited, you at least have the option of tweaking the model
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to compensate for the abuse. You will also want the flexibility of introducing new types
of reputations to your site (or retiring ones that are no longer serving a purpose).

It is tricky, however, to enact changes like these without affecting the social contract
you’ve established with the community. Once you’ve codified a certain set of desired
behaviors on your site, some users will (understandably) be upset if the rug gets pulled
out from under them. This risk is yet another argument for avoiding disclosure of too
many details about the mechanics of the system, or for downplaying the system’s
importance.

Reputation from Theory to Practice
Parts I and II of this book focused on reputation theory:

• Understanding reputation systems through defining the key concepts

• Defining a visual grammar for reputation systems

• Creating a set of key building blocks and using them to describe simple reputation
models

• Using it all to illuminate popular complex reputation systems found in the wild

Along the way, we sprinkled in practitioner’s tips to share what we’ve learned from
existing reputation systems to help you understand what could, and already has, gone
wrong.

Now you’re prepared for the second section of the book: applying this theory to a
specific application—yours. Chapter 5 starts the project off with three basic questions
about your application design. In haste, many projects skip over one or more of these
critical considerations, and the results are often very costly.
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PART III

Building Web
Reputation Systems





CHAPTER 5

Planning Your System’s Design

Parts I and II were theory—a comprehensive description of the graphical grammar and
the tools needed to conceptualize reputation systems. The remaining chapters put all
of that theory into practice. We describe how to define the requirements for a reputation
model; design web interfaces for the gathering of user evaluations; provide patterns for
the display and utilization of reputation; and provide advice on implementation, test-
ing, tuning, and understanding community effects on your system.

Every reputation system starts as an idea from copying a competitor’s model or doing
something innovative. In our experience, that initial design motivation usually ignores
the most important questions that should be asked before rushing into such a long-
term commitment.

Asking the Right Questions
When you’re planning a reputation system—as in most endeavors in life—you’ll get
much better answers if you spend a little time up front considering the right questions.
This is the point where we pause to do just that. We explore some very simple questions:
why are we doing this? What do we hope to get out of it? How will we know we’ve
succeeded?

The answers to these questions undoubtedly will not be quite so simple. Community
sites on the Web vary wildly in makeup, involving different cultures, customs, business
models, and rules for behavior. Designing a successful reputation system means de-
signing a system that’s successful for your particular set of circumstances. You’ll there-
fore need a fairly well-tuned understanding of your community and the social outcomes
that you hope to achieve.

We’ll get you started. Some careful planning and consideration now will save you a
world of heartache later.
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Here are the questions that we help you answer in this chapter:

• What are your goals for your application?

— Is generating revenue based on your content a primary focus of your business?

— Will user activity be a critical measure of success?

— What about loyalty (keeping the same users coming back month after month)?

• What is your content control pattern?

— Who is going to create, review, and moderate your site’s content and/or
community?

— What services do staff, professional feed content, or external services provide?

— What roles do the users play?

The answers to these questions will tell you how comprehensive a reputation sys-
tem you need. In some cases, the answer will be none at all. Each content control
pattern includes recommendations and examples of incentive models to consider
for your system.

• Given your goals and the content models, what types of incentives are likely to
work well for you?

— Should you rely on altruistic, commercial, or egocentric incentives, or some
combination of those?

— Will karma play a role in your system? Should it?

Understanding how the various incentive models have been demonstrated to work
in similar environments will narrow down the choices you make as you proceed
to Chapter 6.

What Are Your Goals?
Marney Beard was a longtime design and project manager at Sun Microsystems, and
she had a wonderful guideline for participating in any team endeavor. Marney would
say, “It’s all right to start selfish. As long as you don’t end there.” (Marney first gave
this advice to her kids, but it turns out to be equally useful in the compromise-laden
world of product development.)

So, following Marney’s excellent advice, we encourage you to—for a moment—take a
very self-centered view of your plans for a rich reputation system for your website. Yes,
ultimately your system will be a balance among your goals, your community’s desires,
and the tolerances and motivations of everyone who visits the site. But for now, let’s
just talk about you.

Both people and content reputations can be used to strengthen one or more aspects of
your business. There is no shame in that. As long as we’re starting selfish, let’s get
downright crass. How can imbuing your site with an historical sense of people and
content reputation help your bottom line?
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User engagement

Perhaps you’d like to deepen user engagement—either the amount of time that users
spend in your community or the number and breadth of activities that they partake in.
For a host of reasons, users who are more engaged are more valuable, both to your
community and to your business.

Offering incentives to users may persuade them to try more of your offering than they
would try by virtue of their own natural curiosity alone. Offline marketers have long
been aware of this phenomenon; promotions such as sweepstakes, contests, and give-
aways are all designed to influence customer behavior and deepen engagement.

User engagement can be defined in many different ways. Eric T. Peterson offers up a
pretty good list of basic metrics for engagement. He posits that the most engaged users
are those who do the following (list adapted from http://blog.webanalyticsdemystified
.com/weblog/2006/12/how-do-you-calculate-engagement-part-i.html):

• View critical content on your site

• Have returned to your site recently (made multiple visits)

• Return directly to your site (not by following a link) some of the time

• Have long sessions, with some regularity, on your site

• Have subscribed to at least one of your site’s available data feeds

This list is definitely skewed toward an advertiser’s or a content publisher’s view of
engagement on the Web. It’s also loaded with subjective measures. (For example, what
constitutes a “long” session? Which content is “critical”?) But that’s fine. We want
subjective—at this point, we can tailor our reputation approach to achieve exactly what
we hope to get out of it.

So what would be a good set of metrics to determine community engagement on your
site? Again, the best answer to that question for you will be intimately tied to the goals
that you’re trying to achieve.

Tara Hunt, as part of a longer discussion on Metrics for Healthy Communities, offers
the following suggestions (list adapted from http://www.horsepigcow.com/2007/10/03/
metrics-forhealthy-communities/):

• The rate of attrition in your community, especially with new members.

• The average length of time it takes for a newbie to become a regular contributor.

• Multiple community crossover. If your members are part of many communities,
how do they interact with your site? Flickr photos? Twittering? Etc.?

• The number of both giving actions and receiving actions—for example, posters
give (advice, knowledge, etc.), and readers receive. (See Figure 5-1.)

• Community participation in tending and policing the community to keep it a nice
place (for example, users who report content as spam, who edit a wiki for better
layout, etc.).
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This is a good list, but it’s still highly subjective. Once you decide how you’d like your
users to engage with your site and community, you’ll need to determine how to measure
that engagement.

Speaking of Metrics…
In Chapter 9, we ask you to evaluate your site’s performance against the goals that you
define in this chapter. Of course, that exercise will be much more effective if you can
compare actual data from before and after the rollout of your reputation system.

To be able to make that comparison, you will need to anticipate the metrics that will
help you evaluate the system’s performance; to make sure now that your site or
application is configured to provide that data; and to ensure that the data is being
appropriately logged and saved for the time when you’ll need it for decision making,
tweaking, and tuning your system.

After all, there’s nothing quite like setting out to do a before-and-after comparison only
to realize that you weren’t keeping proper data before.

Establishing loyalty

Perhaps you’re interested in building brand loyalty among your site’s visitors, estab-
lishing a relationship with them that extends beyond the boundaries of one visit or
session. Yahoo! Fantasy Sports employs a fun reputation system, shown in Fig-
ure 5-2, enhanced with nicely illustrated trophies for achieving milestones (such as a
winning season in a league) for various sports.

This simple feature serves many purposes: the trophies are fun and engaging, they may
serve as an incentive for community members to excel at a sport, they help extend each
user’s identity and give the user way to express her own unique set of interests and
biases to the community, and they are also an effective way of establishing a continuing

Figure 5-1. No matter how you measure it, Bernadette e. is one active and engaged “Yelper.”
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bond with Fantasy Sports players—one that persists from season to season and sport
to sport.

Any time a Yahoo! Fantasy Sports user is considering a switch to a competing service
(fantasy sports in general is big business, and there are any number of very capable
competitors), the existence of the service’s trophies provides tangible evidence of the
switching cost for doing so: a reputation reset.

Coaxing out shy advertisers

Maybe you are concerned about your site’s ability to attract advertisers. User-generated
content is a hot Internet trend that’s almost become synonymous with Web 2.0, but it
has also been slow to attract advertisers—particularly big, traditional (but deep-
pocketed) companies worried about displaying their own brand in the Wild West en-
vironment that’s sometimes evident on sites like YouTube or Flickr.

Once again, reputation systems offer a way out of this conundrum. By tracking the
high-quality contributors and contributions on your site, you can guarantee to adver-
tisers that their brand will be associated only with content that meets or exceeds certain
standards of quality.

In fact, you can even craft your system to reward particular aspects of contribution.
Perhaps, for instance, you’d like to keep a “clean contributor” reputation that takes
into account a user’s typical profanity level and also weighs abuse reports against him
into the mix. Without some form of filtering based on quality and legality, there’s
simply no way that a prominent and respected advertiser like Johnson’s would associate
its brand with YouTube’s user-contributed, typically anything-goes videos (see Fig-
ure 5-3).

Figure 5-2. “Boca Joe” has played a variety of fantasy sports on Yahoo! since 2002. Do you suppose
the reputation he’s earned on the site helps brings him back each year?
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Figure 5-3. The Johnson’s Baby Channel on YouTube places a lot of trust in the quality of user
submissions.

Of course, another way to allay advertisers’ fears is by generally improving the quality
(both real and perceived) of content generated by the members of your community.

Improving content quality

Reputation systems really shine at helping you make value judgments about the relative
quality of content that users submit to your site. Chapter 8 focuses on the myriad
techniques for filtering out bad content and encouraging high-quality contributions.
For now, it’s only necessary to think of “content” in broad strokes. First, let’s examine
content control patterns—patterns of content generation and management on a site.
The patterns will help you make smarter decisions about your reputation system.

Content Control Patterns
The question of whether you need a reputation system at all and, if so, the particular
models that will serve you best, are largely a function of how content is generated and
managed on your site. Consider the workflow and life cycle of content that you have
planned for your community, and the various actors who will influence that workflow.
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First, who will handle your community’s content? Will users be doing most of the
content creation and management? Or staff? (“Staff” can be employees, trusted third-
party content providers, or even deputized members of the community, depending on
the level of trust and responsibility that you give them.)

In most communities, content control is a function of some combination of users and
staff, so we’ll examine the types of activities that each might be doing. Consider all the
potential activities that make up the content life cycle at a very granular level:

• Who will draft the content?

• Will anyone edit it or otherwise determine its readiness for publishing?

• Who is responsible for actually publishing it to your site?

• Can anyone edit content that’s live?

• Can live content be evaluated in some way? Who will do that?

• What effect does evaluation have on content?

— Can an evaluator promote or demote the prominence of content?

— Can an evaluator remove content from the site altogether?

You’ll ultimately have to answer all of these fine-grained questions, but we can abstract
them somewhat at this stage. Right now, the questions you really need to pay attention
to are these three:

• Who will create the content on your site? Users or staff?

• Who will evaluate the content?

• Who has responsibility for removing content that is inappropriate?

There are eight different content control patterns for these questions—one for each
unique combination of answers. For convenience, we’ve given each pattern a name,
but the names are just placeholders for discussion, not suggestions for recategorizing
your product marketing.
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If you have multiple content control patterns for your site, consider
them all and focus on any shared reputation opportunities. For example,
you may have a community site with a hierarchy of categories that are
created, evaluated, and removed by staff. Perhaps the content within
that hierarchy is created by users.

In that case, two patterns apply: the staff-tended category tree is an
example of the Web 1.0 content control pattern, and as such it can
effectively be ignored when selecting your reputation models. Focus in-
stead on the options suggested by the Submit-Publish pattern formed
by the users populating the tree.

Web 1.0: Staff creates, evaluates, and removes

When your staff is in complete control of all of the content on your site—even if it is
supplied by third-party services or data feeds—you are using a Web 1.0 content control
pattern. There’s really not much a reputation system can do for you in this case; no
user participation equals no reputation needs. Sure, you could grant users reputation
points for visiting pages on your site or clicking indiscriminately, but to what end?
Without some sort of visible result to participating, they will soon give up and go away.

Neither is it probably worth the expense to build a content reputation system for use
solely by staff, unless you have a staff of hundreds evaluating tens of thousands of
content items or more.

Bug report: Staff creates and evaluates, users remove

In this content control pattern, the site encourages users to petition for removal or
major revision of corporate content—items in a database created and reviewed by staff.
Users don’t add any content that other users can interact with. Instead, they provide
feedback intended to eventually change the content. Examples include bug tracking
and customer feedback platforms and sites, such as Bugzilla and GetSatisfaction. Each
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site allows users to tell the provider about an idea or problem, but it doesn’t have any
immediate effect on the site or other users.

A simpler form of this pattern is when users simply click a button to report content as
inappropriate, in bad taste, old, or duplicate. The software decides when to hide the
content item in question. AdSense, for example, allows customers who run sites to
mark specific advertisements as inappropriate matches for their site—teaching Google
about their preferences as content publishers.

Typically, this pattern doesn’t require a reputation system; user participation is a rare
event and may not even require a validated login. In cases where a large number of
interactions per user are appropriate, a corporate reputation system that rates a user’s
effectiveness at performing a task can quickly identify submissions from the best
contributors.

This pattern resembles the Submit pattern (see “Submit-publish: Users create, staff
evaluates and removes” on page 107), though the moderation process in that pattern
typically is less socially oriented than the review process in this pattern (since the feed-
back is intended for the application operators only). These systems often contain strong
negative feedback, which is crucial to understanding your business but isn’t appropriate
for review by the general public.

Reviews: Staff creates and removes, users evaluate

This popular content control pattern—the first generation of online reputation
systems—gave users the power to leave ratings and reviews of otherwise static web
content, which then was used to produce ranked lists of like items. Early, and still
prominent, sites using this pattern include Amazon.com and dozens of movie, local
services, and product aggregators. Even blog comments can be considered user evalu-
ation of otherwise tightly controlled content (the posts) on sites like BoingBoing or The
Huffington Post.

The simplest form of this pattern is implicit ratings only, such as Yahoo! News, which
tracks the most emailed stories for the day and the week. The user simply clicks a button
labeled “Email this story,” and the site produces a reputation rank for the story.

Historically, users who write reviews usually have been motivated by altruism (see
“Incentives for User Participation, Quality, and Moderation” on page 111). Until
strong personal communications tools arrived—such as social networking, news feeds,
and multidevice messaging (connecting SMS, email, the Web, and so on)—users didn’t
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produce as many ratings and reviews as many sites were looking for. There were often
more site content items than user reviews, leaving many content items (such as obscure
restaurants or specialized books) without reviews.

Some site operators have tried to use commercial (direct payment) incentives to en-
courage users to submit more and better reviews. Epinions offered users several forms
of payment for posting reviews. Almost all of those applications eventually were shut
down, leaving only a revenue-sharing model for reviews that are tracked to actual pur-
chases. In every other case, payment for reviews seemed to have created a strong in-
centive to game the system (by generating false was-this-helpful votes, for example),
which actually lowered the quality of information on a site. Paying for participation
almost never results in high-quality contributions.

More recently, sites such as Yelp have created egocentric incentives for encouraging
users to post reviews: Yelp lets other users rate reviewers’ contributions across dimen-
sions such as “useful,” “funny,” and “cool,” and it tracks and displays more than 20
metrics of reviewer popularity. This configuration encourages more participation by
certain mastery-oriented users, but it may result in an overly specialized audience for
the site by selecting for people with certain tastes. Yelp’s whimsical ratings can be a
distraction to older audiences, discouraging some from contributing.

What makes the reviews content control pattern special is that it is by and for other
users. It’s why the was-this-helpful reputation pattern has emerged as a popular par-
ticipation method in recent years—hardly anyone wants to take several minutes to write
a review, but it only takes a second to click a thumb-shaped button. Now a review itself
can have a quality score and its author can have the related karma. In effect, the review
becomes its own context and is subject to a different content control pattern: “Basic
social media: Users create and evaluate, staff removes” on page 109.

Surveys: Staff creates, users evaluate and remove

In the surveys content control pattern, users evaluate and eliminate content as fast as
staff can feed it to them. This pattern’s scarcity in public web applications usually is
related to the expense of supplying content of sufficient minimum quality. Consider
this pattern a user-empowered version of the reviews content control pattern, where
content is flowing so swiftly that only the fittest survive the user’s wrath. Probably the
most obvious example of this pattern is the television program American Idol and other
elimination competitions that depend on user voting to decide what is removed and
what remains, until the best of the best is selected and the process begins anew. In this
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example, the professional judges are the staff that selects the initial acts (content) that
the users (the home audience) will see perform (content) from week to week, and the
users among the home audience who vote via telephone act as the evaluators and
removers.

The keys to using this pattern successfully are as follows:

• Keep the primary content flowing at a controlled rate appropriate for the level of
consumption by the users, and keep the minimum quality consistent or improving
over time.

• Make sure that the users have the tools they need to make good evaluations and
fully understand what happens to content that is removed.

• Consider carefully what level of abuse mitigation reputation systems you may need
to counteract any cheating. If your application will significantly increase or de-
crease the commercial or egocentric value of content, it will provide incentives for
people to abuse your system. For example, this web robot helped win Chicken
George a spot as a housemate on Big Brother: All Stars (from the Vote for the
Worst website):

Click here to open up an autoscript that will continue to vote for chicken George
every few seconds. Get it set up on every computer that you can, it will vote without
you having to do anything.

Submit-publish: Users create, staff evaluates and removes

In the submit-publish content control pattern, users create content that will be reviewed
for publication and/or promotion by the site. Two common evaluation patterns exist
for staff review of content: proactive and reactive. Proactive content review (or mod-
eration) is when the content is not immediately published to the site and is instead
placed in a queue for staff to approve or reject. Reactive content review trusts users’
content until someone complains and only then does the staff evaluate the content and
remove it if needed.

Some websites that display this pattern are television content sites, such as the site for
the TV program Survivor. That site encourages viewers to send video to the program
rather than posting it, and they don’t publish it unless the viewer is chosen for the show.
Citizen news sites such as Yahoo! You Witness News accept photos and videos and
screen them as quickly as possible before publishing them to their sites. Likewise, food
magazine sites may accept recipe submissions that they check for safety and copyright
issues before republishing.
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Since the feedback loop for this content control pattern typically lasts days, or at best
hours, and the number of submissions per user is minuscule, the main incentives that
tend to drive people fall under the altruism category: “I’m doing this because I think it
needs to be done, and someone has to do it.” Attribution should be optional but en-
couraged, and karma is often worth calculating when the traffic levels are so low.

An alternative incentive that has proven effective to get short-term increases in partic-
ipation for this pattern is commercial: offer a cash prize drawing for the best, funniest,
or wackiest submissions. In fact, this pattern is used on many contest sites, such as
YouTube’s Symphony Orchestra contest (http://www.youtube.com/symphony). You-
Tube had judges sift through user-submitted videos to find exceptional performers to
fly to New York City for a live symphony concert performance of a new piece written
for the occasion by the renowned Chinese composer Tan Dun, which was then repub-
lished on YouTube. As Michael Tilson Thomas, director of music, San Francisco Sym-
phony, said:

How do you get to Carnegie Hall? Upload! Upload! Upload!

Agents: Users create and remove, staff evaluates

The agents content control pattern rarely appears as a standalone form of content
control, but it often appears as a subpattern in a more complex system. The staff acts
as a prioritizing filter of the incoming user-generated content, which is passed on to
other users for simple consumption or rejection. A simple example is early web indexes,
such as the 100% staff-edited Yahoo! Directory, which was the Web’s most popular
index until web search demonstrated that it could better handle the Web’s exponential
growth and the types of detailed queries required to find the fine-grained content
available.

Agents are often used in hierarchical arrangements to provide scale, because each layer
of hierarchy decreases the work on each individual evaluator several times over, which
can make it possible for a few dozen people to evaluate a very large amount of user-
generated content. We mentioned that the contest portion of American Idol was a sur-
veys content control pattern, but talent selection initially goes through a series of agents,
each prioritizing and passing them on to a judge, until some of the near-finalists (se-
lected by yet another agent) appear on camera before the celebrity judges. The judges
choose the talent (the content) for the season, but they don’t choose who appears in
the qualification episodes—the producer does.
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The agents pattern generally doesn’t have many reputation system requirements, de-
pending on how much power you invest in the users to remove content. In the case of
the Yahoo! Directory, the company may choose to pay attention to the links that remain
unclicked in order to optimize its content. If, on the other hand, your users have a lot
of authority over the removal of content, consider the abuse mitigation issues raised in
the “Surveys: Staff Creates, Users Evaluate and Remove” pattern (see “Surveys: Staff
creates, users evaluate and remove” on page 106).

Basic social media: Users create and evaluate, staff removes

An application that lets users create and evaluate a significant portion of the site’s
content is what people are calling basic social media these days. On most sites with a
basic social media content control pattern, content removal is controlled by staff, for
two primary reasons:

Legal exposure
Compliance with local and international laws on content and who may consume
it cause most site operators to draw the line on user control here. In Germany, for
instance, certain Nazi imagery is banned from websites, even if the content is from
an American user, so German sites filter for it. No amount of user voting will
overturn that decision. U.S. laws that affect what content may be displayed and to
whom include the Children’s Online Privacy and Protection Act (COPPA) and the
Child Online Protection Act (COPA), which govern children’s interaction with
identity and advertising, and the Digital Copyright Millennium Act (DCMA),
which requires sites with user-generated content to remove items that are alleged
to violate copyright on the request of the content’s copyright holder.

Minimum editorial quality and revenue exposure
When user-generated content is popular but causes the company grave business
distress, it is often removed by staff. A good example of a conflict between user-
generated content and business goals surfaces on sites with third-party advertising:
Ford Motor Company wouldn’t be happy if one of its advertisements appeared
next to a post that read, “The Ford Taurus sucks! Buy a Scion instead.” Even if
there is no way to monitor for sentiment, often a minimum quality of contribution
is required for the greater health of the community and business. Compare the
comments on just about any YouTube video to those on popular Flickr photos.
This suggests that the standard for content quality should be as high as cost allows.
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Often, operators of new sites start out with an empty shell, expecting users to create
and evaluate en masse, but most such sites never gather a critical mass of content cre-
ators, because the operators didn’t account for the small fraction of users who are
creators (see “Honor creators, synthesizers, and consumers” on page 15). But if you
bootstrap yourself past the not-enough-creators problem, through advertising, repu-
tation, partnerships, and/or a lot of hard work, the feedback loop can start working for
you (see “The Reputation Virtuous Circle” on page 17). The Web is filled with examples
of significant growth with this content control pattern: Digg, YouTube, Slashdot, JPG
Magazine, etc.

The challenge comes when you become as successful as you dreamed, and two things
happen: people begin to value their status as a contributor to your social media eco-
system, and your staff simply can’t keep up with the site abuse that accompanies the
increase in the site’s popularity. Plan to implement your reputation system for
success—to help users find the best stuff their peers are creating and to allow them to
point your moderation staff at the bad stuff that needs attention. Consider content
reputation and karma in your application design from the beginning, because it’s often
disruptive to introduce systems of users judging each other’s content after community
norms are well established.

The Full Monty: Users create, evaluate, and remove

What? You want to give users complete control over the content? Are you sure? Before
you decide, read the section “Basic social media: Users create and evaluate, staff re-
moves” on page 109 to find out why most site operators don’t give communities control
over most content removal.

We call this content control pattern the Full Monty, after the musical about desperate
blue-collar guys who’ve lost their jobs and have nothing to lose, so they let it all hang
out at a benefit performance, dancing naked with only hats for covering. It’s kinda like
that—all risk, but very empowering and a lot of fun.

There are a few obvious examples of appropriate uses of this pattern. Wikis were spe-
cifically designed for full user control over content (that is, if you have reason to trust
everyone with the keys to the kingdom, get the tools out of the way). The Full Monty
pattern works very well inside companies and nonprofit organizations, and even in ad
hoc workgroups. In these cases, some other mechanism of social control is at work—
for example, an employment contract or the risk of being shamed or banished from the
group. Combined with the power for anyone to restore any damage (intentional or
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otherwise) done by another, these mechanisms provide enough control for the pattern
to work.

But what about public contexts in which no social contract exists to define acceptable
behavior? Wikipedia, for example, doesn’t really use this pattern: it employs an army
of robots and professional editors who watch every change and enforce policy in real
time. Wikipedia follows a pattern much more like the one described in “Basic social
media: Users create and evaluate, staff removes” on page 109.

When no external social contract exists to govern users’ actions, you have a wide-open
community, and you need to substitute a reputation system in order to place a value
on the objects and the users involved in it. Consider Yahoo! Answers (covered in detail
in Chapter 10). Yahoo! Answers decided to let users themselves remove content from
display on the site because of the staff backlog. Because response time for abusive
content complaints averaged 12 hours, most of the potential damage had already been
done by the time the offending content was removed. By building a corporate karma
system that allowed users to report abusive content, Yahoo! Answers dropped the
average amount of time that bad content was displayed to 30 seconds. Sure, customer
care staff was still involved with the hardcore problem cases of swastikas, child abuse,
and porn spammers, but most abusive content came to be completely policed by users.

Notice that catching bad content is not the same as identifying good content. In a
universe where the users are in complete control, the best you can hope to do is en-
courage the kinds of contributions you want through modeling the behavior you want
to see, constantly tweaking your reputation systems, improving your incentive models,
and providing clear lines of communication between your company and customers.

Incentives for User Participation, Quality, and Moderation
Why do people do the things they do? If you believe classical economics, it’s because
of incentives. An incentive creates an expectation in a person’s mind (of reward, or
delight, or punishment) that leads them to behave in a certain way. If you’re going to
attempt to motivate your users, you’ll need some understanding of incentives and how
they influence behavior.

Predictably irrational

When analyzing what role reputation may have in your application, you need to look
at what motivates your users and what incentives you may need to provide to facilitate
your goals. Out of necessity, this will take us on a short side trip through the intersection
of human psychology and market economics.

In Chapter 4 of his book Predictably Irrational (HarperCollins), Duke University Pro-
fessor of behavioral economics Dan Ariely describes a view of two separate incentive
exchanges for doing work and the norms that set the rules for them; he calls them social
norms and market norms.
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Social norms govern doing work for other people because they asked you to—often
because doing the favor makes you feel good. Ariely says these exchanges are “wrapped
up in our social nature and our need for community. They are usually warm and fuzzy.”
Market norms, on the other hand, are cold and mediated by wages, prices, and cash:
“There’s nothing warm and fuzzy about [them],” writes Ariely. Market norms come
from the land of “you get what you pay for.”

Social and market norms don’t mix well. Ariely gives several examples of confusion
when these incentive models mix. In one, he describes a hypothetical scene after a
family home-cooked holiday dinner, in which he offers to pay his mother $400, and
the outrage that would ensue, and the cost of the social damage (which would take a
long time to repair). In a second example, less purely hypothetical and more common,
Ariely shows what happens when social and market norms are mixed in dating and
sex. A guy takes a girl out on a series of expensive dates. Should he expect increased
social interaction—maybe at least a passionate kiss? “On the fourth date he casually
mentions how much this romance is costing him. Now he’s crossed the line (and has
upset his date!). He should have known you can’t mix social and market norms—
especially in this case—without implying that the lady is a tramp.”

Ariely goes on to detail an experiment that verifies that social and market exchanges
differ significantly, at least when it comes to very small units of work. The work-effort
he tested is similar to many of reputation evaluations we’re trying to create incentives
for. The task in the experiments was trivial: use a mouse to drag a circle into a square
on a computer screen as many times as possible in five minutes. Three groups were
tested: one group was offered no compensation for participating in the test, one group
was offered 50 cents, and the last group was offered $5. Though the subjects who were
paid $5 did more work than those who were paid 50 cents, the subjects who did the
most work were the ones who were offered no money at all. When the money was
substituted with a gift of the same value (a Snickers bar and a box of Godiva chocolates),
the work distinction went away—it seems that gifts operate in the domain of social
norms, and the candy recipients worked as hard as the subjects who weren’t compen-
sated. But when a price sticker was left on the chocolates so that the subjects could see
the monetary value of the reward, it was again market norms that applied, and the
striking difference in work results reappeared—with volunteers working harder than
subjects who received priced candy.

Incentives and reputation

When considering how a content control pattern might help you develop a reputation
system, be careful to consider two sets of needs: what incentives would be appropriate
for your users in return for the tasks you are asking them to do on your behalf? And
what particular goals do you have for your application? Each set of needs may point to
a different reputation model—but try to accommodate both.

Ariely talked about two categories of norms—social and market—but for reputation
systems, we talk about three main groups of online incentive behaviors:
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• Altruistic motivation, for the good of others

• Commercial motivation, to generate revenue

• Egocentric motivation, for self-gratification

Interestingly, these behaviors map somewhat to social norms (altruistic and egocentric)
and market norms (commercial and egocentric). Notice that egocentric motivation is
listed both a social and a market norm. This is because market-like reputation systems
(like points or virtual currencies) are being used to create successful work incentives
for egocentric users. In effect, egocentric motivation crosses the two categories in a
entirely new virtual social environment—an online reputation-based incentive
system—in which these social and market norms can coexist in ways that we might
normally find socially repugnant in the real world. In reputation-based incentive sys-
tems, bragging can be good.

Altruistic or sharing incentives

Altruistic, or sharing, incentives reflect the giving nature of users who have something
to share—a story, a comment, a photo, an evaluation—and who feel compelled to share
it on your site. Their incentives are internal. They may feel an obligation to another
user or to a friend, or they may feel loyal to (or despise) your brand.

Altruistic or sharing incentives can be characterized into several categories:

• Tit-for-tat or pay-it-forward incentives: “I do it because someone else did it for me
first.”

• Friendship incentives: “I do it because I care about others who will consume this.”

• Know-it-all or crusader or opinionated incentives: “I do it because I know something
everyone else needs to know.”

• Other altruistic incentives: If you know of other incentives driven by altruism or
sharing, please contribute them to the website for this book: http://buildingreputa
tion.com.

When you’re considering reputation models that offer altruistic incentives, remember
that these incentives exist in the realm of social norms; they’re all about sharing, not
accumulating commercial value or karma points. Avoid aggrandizing users driven by
altruistic incentives—they don’t want their contributions to be counted, recognized,
ranked, evaluated, compensated, or rewarded in any significant way. Comparing their
work to anyone else’s will actually discourage them from participating.

A tit-for-tat incentive is at work when a user has
received a benefit either from the site or from the other users of the site, and then
contributes to the site to return the favor. Early social sites, which contained only staff-
provided content and followed a content control patterns such as reviews, provided no
incentives to participate. On those sites, users most often indicated that they were
motivated to contribute only because another user’s review on the site helped them.

Tit-for-tat and pay-it-forward incentives.
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A pay-it-forward incentive (from the book by that title by Catherine Ryan Hyde, and
the motion picture in 2000) is at work when a user contributes to a site with the goal
of improving the state of the world by doing an unrequested deed of kindness toward
another—with the hope that the recipient would do the same thing for one or more
other people, creating a never-ending and always expanding world of altruism. It can
be a model for corporate reputation systems that track altruistic contributions as an
indicator of community health.

In Fall 2004, when the Yahoo! 360° social network first introduced
the vitality stream (later made popular by Facebook and Twitter as the personal news
feed), it included activity snippets of various types, such as status and summary items
that were generated by Yahoo! Local whenever a user’s friends wrote a review of a
restaurant or hotel. From the day the vitality stream was launched, Yahoo! Local saw
a sustained 45% increase in the number of reviews written daily. A Yahoo! 360° user
was over 50 times more likely to write a review than a typical Yahoo! Local user.

The knowledge that friends would be notified when you wrote a review—in effect
notifying them both of where you went and what you thought—became a much stron-
ger altruistic motivator than the tit-for-tat incentive. There’s really no reputation system
involved in the friendship incentive; it’s simply a matter of displaying users’ contribu-
tions to their friends through news feed events, in item searches, or whenever they
happen to encounter a reputable entity that a friend evaluated.

Some users are motivated to contribute to a
site by a passion of some kind. Some passions are temporary; for example, the crusad-
ers are like those who’ve had a terrible customer experience and might wish to share
their frustration with the anonymous masses, perhaps exacting some minor revenge on
the business in question. Some passions stem from deeply held religious or political
beliefs that they feel compelled to share; these are the opinionated. The know-it-all users’
passions emerge from topical expertise and others who are just killing time. In any case,
people seem to have a lot to say that has very mixed commercial value. Just glancing
at the comments on a popular YouTube video will show many of these motivations all
jumbled together.

This group of altruistic incentives is a mixed bag. It can result in some great contribu-
tions as well as a lot of junk (as we mentioned in “There’s a Whole Lotta Crap Out
There” on page 13). If you have reason to believe that a large portion of your most
influential community members will be motivated by controversial ideas, carefully
consider the costs of evaluation and removal in the content control pattern that you
choose. Having a large community that is out of control can be worse than having no
community at all.

On any movie review site, look at the way people respond to one another’s reviews for
hot-button movies like Fahrenheit 9/11 (Figure 5-4) or The Passion of the Christ. If the
site offers “Was this review helpful?” voting, the reviews with the highest total votes

Friendship incentives.

Crusader, opinionated incentives, and know-it-all.
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are likely to be very polarized. Clearly, in these contexts the word helpful means “agree-
ment with the review-writer’s viewpoint.”

Figure 5-4. In the context of movie reviews, it appears as if the community has interpreted the “Was
This Helpful?” question in its own way. They’re probably using that input to agree or disagree with
a viewpoint, rather than gauging how “useful” it may or may not be.

Commercial incentives

Commercial incentives fall squarely in the range of Ariely’s market norms. They reflect
people’s motivation to do something for money, though the money may not come in
the form of direct payment from the user to the content creator. Advertisers have a
nearly scientific understanding of the significant commercial value of something they
call branding. Likewise, influential bloggers know that their posts build their brand,
which often involves the perception of them as subject matter experts. The standing
that they establish may lead to opportunities such as speaking engagements, consulting
contracts, improved permanent positions at universities or prominent corporations, or
even a book deal. A few bloggers may actually receive payment for their online content,
but more are capturing commercial value indirectly.

Reputation models that exhibit content control patterns based on commercial
incentives must communicate a much stronger user identity. They need strong and
distinctive user profiles with links to each user’s valuable contributions and content.
For example, as part of reinforcing her personal brand, an expert in textile design would
want to share links to content that she thinks her fans will find noteworthy.

But don’t confuse the need to support strong profiles for contributors with the need
for a strong or prominent karma system. When a new brand is being introduced to a
market, whether it’s a new kind of dish soap or a new blogger on a topic, a karma system
that favors established participants can be a disincentive to contribute content. A com-
munity decides how to treat newcomers—with open arms or with suspicion. An ex-
ample of the latter is eBay, where all new sellers must “pay their dues” and bend over
backward to get a dozen or so positive evaluations before the market at large will
embrace them as trustworthy vendors. Whether you need karma in your commercial
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incentive model depends on the goals you set for your application. One possible rule
of thumb: if users are going to pass money directly to other people they don’t know,
consider adding karma to help establish trust.

There are two main subcategories of commercial incentives:

Direct revenue incentives
Extracting commercial value (better yet, cash) directly from the user as soon as
possible

Branding incentives
Creating indirect value by promotion—revenue will follow later

A direct revenue incentive is at work whenever someone forks
over money for access to a content contributor’s work and the payment ends up, some-
times via an intermediary or two, in the contributor’s hands. The mechanism for
payment can be a subscription, a short-term contract, a transaction for goods or serv-
ices, on-content advertising like Google’s AdSense, or even a PayPal-based tip jar.

When real money is involved, people take trust seriously, and reputation systems play
a critical role in establishing trust. By far the most well-known and studied reputation
system for online direct revenue business is eBay’s buyer and seller feedback (karma)
reputation model. Without a way for strangers to gauge the trustworthiness of the other
party in a transaction, no online auction market could exist.

When you’re considering reputation systems for an application with a direct revenue
incentive, step back and make sure that you might not be better off with either an
altruistic or an egocentric incentive. Despite what you may have learned in school,
money is not always the best motivator, and for consumers it’s a pretty big barrier to
entry. The ill-fated Google Answers failed because it was based on a user-to-user direct
revenue incentive model in which competing sites, such as WikiAnswers, provided
similar results for free (financed, ironically, by using Google AdSense to monetize an-
swer pages indexed by, you guessed it, Google).

The Zero Price Effect: Free Is Disproportionately Better Than Cheap
In Predictably Irrational, Ariely details a series of experiments to show that people have
an irrational urge to choose a free item over an unusually low-priced but higher-quality
item. First he offered people a single choice between buying a 1-cent Hershey’s Kiss
and a 15-cent Lindt truffle, and most people bought the higher-quality truffle. But when
he dropped the price of both items by one penny, making the Kiss free, a dramatic
majority of a new group of buyers instead selected the Kiss. He calls this the zero price
effect. For designing incentive systems, it provokes two thoughts:

• Don’t delude yourself that you will overcome the zero price effect by pricing items
low enough in a user-to-user direct revenue incentive design.

• Even if you give away user contributions for free, you can still have direct revenue:
charge advertisers or sponsors instead of charging consumers.

Direct revenue incentives.
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Various forms of indirect commercial in-
centives can together be referred to as branding, the process of professionally promoting
people, goods, or organizations. The advertiser’s half of the direct revenue incentive
model lives here, too. The goal is to expose the audience to your message and eventually
capture value in the form of a sale, a subscriber, or a job.

Typically, the desired effects of branding are preceded by numerous branding activities:
writing blog posts, running ads, creating widgets to be embedded on other sites, par-
ticipating in online discussions, attending conferences, and so on. Reputation systems
offer one way to close that loop by capturing direct feedback from consumers. They
also help measure the success of branding activities.

Take the simple act of sharing a URL on a social site such as Twitter. Without a repu-
tation system, you have no idea how many people followed your link or how many
other people shared it. The URL-shortening service Awe.sm, shown in Figure 5-5, pro-
vides both features: it tracks how many people click your link and how many different
people shared the URL with others.

Figure 5-5. Awe.sm turns URL shortening into a reputation system, measuring how many people click
your URL and how many share it with others.

For contributors who are building a brand, public karma systems are a double-edged
sword. If a contributor is at the top of his market, his karma can be a big indicator of
trustworthiness, but most karma scores can’t distinguish inexperience from a newly
registered account from complete incompetence—this fact handicaps new entrants.

An application can address this experience-inequity by including time-limited scores
in the karma mix. For example, B.F. Skinner was a world-renowned and respected
behavioral scientist, but his high reputation has a weakness—it’s old. In certain con-
texts, it’s even useless. For example, his great reputation would do me no good if I were
looking for a thesis advisor, because he’s been dead for almost 20 years.

Incentives through branding: Professional promotion.
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Egocentric incentives

Egocentric incentives are often exploited in the design online in computer games and
many reputation-based websites. The simple desire to accomplish a task taps into
deeply hardwired motivations described in behavioral psychology as classical and
operant conditioning (which involves training subjects to respond to food-related stim-
ulus) and schedules of reinforcement. This research indicates that people can be influ-
enced to repeat simple tasks by providing periodic rewards, even a reward as simple as
a pleasing sound.

But, an individual animal’s behavior in the social vacuum of a research lab is not the
same as the ways in which we very social humans reflect our egocentric behaviors to
one another. Humans make teams and compete in tournaments. We follow leader-
boards comparing ourselves to others and comparing groups that we associate
ourselves with. Even if our accomplishments don’t help another soul or generate any
revenue for us personally, we often want to feel recognized for them. Even if we don’t
seek accolades from our peers, we want to be able to demonstrate mastery of
something—to hear the message, “You did it! Good job!”

Therefore, in a reputation system based on egocentric incentives, user profiles are a key
requirement. In this kind of system, users need someplace to show off their accom-
plishments—even if only to themselves. Almost by definition, egocentric incentives
involve one or more forms of karma. Even with only a simple system of granting trophies
for achievements, users will compare their collections to one another. New norms will
appear that look more like market norms than social norms: people will trade favors
to advance their karma, people will attempt to cheat to get an advantage, and those
who feel they can’t compete will opt out altogether.

Egocentric incentives and karma do provide very powerful motivations, but they are
almost antithetical to altruistic ones. The egocentric incentives of many systems have
been overdesigned, leading to communities consisting almost exclusively of experts.
Consider just about any online role playing game that survived more than three years.
For example, to retain its highest-level users and the revenue stream they produce,
World of Warcraft must continually produce new content targeted at those users. If it
stops producing new content for its most dedicated users, its business will collapse.
This elder game focus stunts its own growth by all but abandoning improvements aimed
at acquiring new users. When new users do arrive (usually in the wake of a marketing
promotion), they end up playing alone because the veteran players are only interested
in the new content and don’t want to bother going through the long slog of playing
through the lowest levels of the game yet again.

We describe three subcategories of egocentric incentives:

Fulfillment incentives
The desire to complete a task, assigned by oneself, a friend, or the application

Recognition incentives
The desire for the praise of others
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The Quest for Mastery
Personal and private motivation to improve oneself

The simplest egocentric incentive is the desire to complete a task:
to fulfill a goal as work or personal enjoyment. Many reputation model designs that
tap the desire of users to complete a complex task can generate knock-on reputations
for use by other users or in the system as a whole. For example, free music sites are
based on the desire of some users to personalize their own radio stations to gather
ratings, which they can then use to recommend music to others. Not only can reputa-
tion models that fulfill preexisting user needs gather more reputation claims than al-
truism and commercial incentives can, but the data typically is of higher quality because
it more closely represents users’ true desires.

Outward-facing egocentric incentives are all related to personal or
group recognition. They’re driven by admiration, praise, or even envy, and they’re
focused exclusively on reputation scores. That’s all there is to it. Scores often are dis-
played on one or more public leaderboards, but they can also appear as events in a
user’s news feed—for example, messages from Zynga’s Mafia Wars game that tell all
your friends you became a Mob Enforcer before they did, or that you gave them the
wonderful gift of free energy that will help them get through the game faster.

Recognition is a very strong motivator for many users, but not all. If, for example, you
give accumulating points for user actions in a context where altruism or commercial
incentives produce the best contributions, your highest-quality contributors will end
up leaving the community, while those who churn out lower-value content fill your site
with clutter.

Always consider implementing a quality-based reputation system alongside any rec-
ognition incentives to provide some balance between quality and quantity. In May
2009, Wired writer Nate Ralph wrote “Handed Keys to Kingdom, Gamers Race to
Bottom” in which he details examples of how Digg, and the games Little Planet, and
City of Heroes were hijacked by people who gamed user recognition reputation systems
to the point of seriously decreasing the quality of the applications’ key content. Like
clockwork, it didn’t take long for reputation abuse to hit the iTunes application library
as well.

Personal or private forms of egocentric in-
centives can be summarized as motivating a quest for mastery. For example, when
people play solitaire or do crossword or sudoku puzzles alone, they do it simply for the
stimulation and to see if they can accomplish a specific goal; maybe they want to beat
a personal score or time or even just manage to complete the game. The same is true
for all single-player computer games, which are much more complex. Even multiple-
player games, online and off, such as World of Warcraft or Scrabble, have strong per-
sonal achievement components, such as bonus multipliers or character mastery levels.

Fulfillment incentives.

Recognition incentives.

Personal or private incentives: The quest for mastery.
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Notice especially that players of online single-player computer games—or casual game
sites, as they are known in the industry—skew more female and older than most game-
player stereotypes you may have encountered. According to the Consumer Electronics
Association, 65% of the gamers are women. And women between the ages of 35 and
49 are more likely to visit online gaming websites than even teenage boys. So, if you
expect more women than men to use your application, consider staying away from
recognition incentives and using mastery-based incentives instead.

Common mastery incentives include achievements (feedback that the user has accom-
plished one of a set of multiple goals), ranks or levels with caps (acknowledgments of
discrete increases in performance—for example, Ensign, Corporal, Lieutenant, and
General—but with a clear achievable maximum), and performance scores such as per-
centage accuracy, where 100% is the desired perfect score.

Resist the temptation to keep extending the top tier of your mastery incentives. Doing
so would lead to user fatigue and abuse of the system. Let the user win. It’s OK. They’ve
already given you a lot of great contributions and likely will move on to other areas of
your site.

Summary: Motivation and Incentive
• Altruistic motivation: for the good of others

— Tit-for-tat or pay-it-forward incentives: “I do it because someone else did it for
me first.”

— Friendship incentives: “I do it because I care about others who will consume
this.”

— Know-it-all or crusader or opinionated incentives: “I do it because I know some-
thing everyone else needs to know.”

• Commercial motivation: to generate revenue

— Direct revenue incentives: Extracting commercial value (better yet, cash) di-
rectly from the user as soon as possible

— Branding incentives: Creating indirect value by promotion—revenue will follow
later

• Egocentric motivation: for self-gratification

— Fulfillment incentives: The desire to complete a task, assigned by oneself, a
friend, or the application

— Recognition incentives: The desire for the praise of others

— The Quest for Mastery: Personal and private motivation to improve oneself
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Consider Your Community
Introducing a reputation system into your community will almost certainly affect its
character and behavior in some way. Some of these effects will be positive (we hope! I
mean, that’s why you’re reading this book, right?). But there are potentially negative
side effects to be aware of, too. It is almost impossible to predict exactly what com-
munity effects will result from implementing a reputation system because—and we bet
you can guess what we’re going to say here—it is so bound to the particular context
for which you are designing. But the following sections present a number of community
factors to consider early in the process.

What are people there to do?

This question may seem simple, but it’s one that often goes unasked: what, exactly, is
the purpose of this community? What are the actions, activities, and engagements that
users expect when they come to your site? Will those actions be aided by the overt
presence of content- or people-based reputations? Or will the mechanisms used to
generate reputations (event-driven inputs, visible indicators, and the like) actually de-
tract from the primary experience that your users are here to enjoy?

Is this a new community? Or an established one?

Many of the models and techniques that we cover in this book are equally applicable,
whether your community is a brand-new, aspiring one or has been around a while and
already has acquired a certain dynamic. However, it may be slightly more difficult to
introduce a robust reputation system into an existing and thriving community than to
have baked-in reputation from the beginning. Here’s why:

• An established community already has shared mores and customs. Whether the
community’s rules have been formalized or not, users do indeed have expectations
about how to participate, including an understanding of what types of actions and
behaviors are viewed as transgressive. The more established and the more strongly
held those community values are, the more important it is for you to match your
reputation system’s inputs and rewards to those values.

• Some communities may have been around long enough to suffer from problems
of scale that would not affect an early stage or brand-new site. The amount of
conversation (or noise, depending on how you look at it) might already be over-
whelming. And some sites face migration issues:

— Should you grandfather in old content or just leave it out of the new system?

— Will you expect people to go back and grade old content retroactively? (In all
likelihood, they won’t.)

• In particular, it may be difficult to make changes to an existing reputation system.
Whether the changes are as trivial and opaque as tweaking some of the parameters
that determine a video’s popularity ranking or as visible and significant as
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introducing a new level designation for top performers, you are likely to encounter
resistance (or, at the very least, curiosity) from your community. You are, in effect,
changing the rules of your community, so expect the typical reaction: some will
welcome the changes, others (typically, users who benefited most under the old
rules) will denounce them.

We don’t mean to imply, however, that designing a reputation system for a new, green-
field community is an easy task. For a new community, rather than identify the com-
munity characteristics that you’d like to enhance (or leave unharmed), your task is to
imagine the community effects that you’re hoping to influence, then make smart
decisions to achieve those outcomes.

The competitive spectrum

Is your community a friendly, welcoming place? Helpful? Collaborative? Argumenta-
tive or spirited? Downright combative? Communities can put a whole range of behav-
iors on display, and it can be dangerous to generalize too much about any specific
community. But it’s important to at least consider the overall character of the com-
munity that you plan to influence through your reputation system.

A very telling aspect of community character (though it’s not the only one worth con-
sidering) is the level of perceived competitiveness in your community (see Figure 5-6).
That aspect includes the individual goals of community members and to what degree
those goals coexist peacefully or conflict. What are the actions that community mem-
bers engage in? How might those actions impinge on the experiences of other com-
munity members? Do comparisons or contests among people produce the desired
behaviors?

Figure 5-6. The competitive spectrum may help suggest the appropriate reputation model for your
community’s needs.

In general, the more competitive a group of people in a community is, the more ap-
propriate it is to compare those people (and the artifacts that they generate) to one
another.

Read that last bit again, and carefully. A common mistake made by product architects
(especially for social web experiences) is assuming a higher level of competitiveness
than what really exists. Because reputation systems and their attendant incentive sys-
tems are often intended to emulate the principles of engaging game designs, designers
often gravitate toward the aggressively competitive—and comparative—end of the
spectrum.
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Even the intermediate stages along the spectrum can be deceiving. For example, where
would you place a community like Match.com or Yahoo! Personals along the spectrum?
Perhaps your first instinct was to say, “I would place a dating site firmly in the ‘com-
petitive’ part of the spectrum.” People are competing for attention, right? And dates?

Remember, though, the entire context for reputation in this example. Most impor-
tantly, remember the desires of the person who is doing the evaluating on these sites.
A visitor to a dating site probably doesn’t want competition, and she may not view her
activity on the site as competitive at all but as a collaborative endeavor. She’s looking
for a potential dating partner who meets her own particular criteria and needs—not
necessarily “the best person on the site.”

“The Competitive Spectrum” is expanded upon in Christian Crumlish
and Erin Malone’s Designing Social Interfaces (O’Reilly).

Better Questions
Our goal for this chapter was to get you asking the right questions about reputation
for your application. Do you need reputation at all? How might it promote more and
better participation? How might it conflict with your goals for community use of your
application? We’ve given you a lot to consider in this chapter, but your answers to these
questions will be invaluable as you dive into Chapter 6, where we teach you how to
define the what, who, how, and limits of your reputation system.
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CHAPTER 6

Objects, Inputs, Scope, and Mechanism

Having answered the three key questions posed in Chapter 5 (see “Asking the Right
Questions” on page 97), you should have a pretty good idea of what you want to ac-
complish with your system. In this chapter, we start showing you how to accomplish
those goals. We’ll start identifying the components of your reputation system and we
systematically determine these details:

• Which objects (people or things) will play a part in the reputation system? Some
objects will themselves be reputable entities and will accrue and lose reputation
over time. Other objects may not directly benefit from having a reputation but may
play a part in the system nevertheless.

• What inputs will feed into your system? Inputs frequently will take the form of
actions that your users may take, but other inputs are possible, and we’ll discuss
them in some detail.

• In the case of user-expressed opinions and actions, what are the appropriate mech-
anisms to offer your users? What would be the difference between offering 5-star
ratings, thumbs-up voting, or social bookmarking?

In addition, we share a number of practitioner’s tips, as always. This time around, we
consider the effects of exclusivity on your reputation system (how stingy, or how gen-
erous, should you be when doling out reputations?). We also provide some guidance
for determining the appropriate scope of your reputations in relation to context.

The Objects in Your System
To accomplish your reputation-related goals, you’ll have two main weapons—the
objects that your software understands and the software tools, or mechanisms, that
you provide to users and embed in processes. To put it simply, if you want to build
birdhouses, you need wood and nails (the objects) along with saws and hammers (the
tools), and you need someone to do the actual construction (the users).
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Architect, Understand Thyself
Where will the relevant objects in your reputation system come from? Why, they’re
present in your larger application, of course. (Not all objects need be contained within
the application—see “Relevant external objects” on page 44—but this will be the ma-
jority case.) Let’s start by thinking clearly about the architecture and makeup of your
application.

In places, it may sound as though we’re describing a “brownfield” de-
ployment of your reputation system: that is, that we’re assuming you
already have an application in mind or in production and are merely
retrofitting a reputation system onto it. That is not at all the case.

You would consider the same questions and dependencies regardless of
whether your host application was already live or was still in the plan-
ning stages. It’s just much easier for us to talk about reputation as
though there were preexisting objects and models to graft it onto. (Plan-
ning your application architecture is a whole other book altogether.)

So…what does your application do?

You know your application model, right? You can probably list the five most important
objects represented in your system without even breaking a sweat. In fact, a good place
to start is by composing an “elevator pitch” for your application; in other words, de-
scribe, as succinctly as you can, what your application will do. Here are some examples:

• A social site that lets you share recipes and keep and print shopping lists of
ingredients

• A tool that lets you edit music mashups, build playlists of them, and share those
lists with your friends

• An intranet application that lets paralegal assistants access and save legal briefs
and share them with lawyers in a firm

These are short, sweet, and somewhat vague descriptions of three very different appli-
cations, but each one still tells us much of what we need to know to plan our reputation
needs. The recipe sharing site likely will benefit from some form of reputation for rec-
ipes and will require some way for users to rate them. The shopping lists? Not so much;
those are more like utilities for individual users to manage the application data.

If an artifact or object in your system has an audience of one, you prob-
ably don’t need to display a reputation for it. You may, however, opt to
keep one or more reputations for those objects’ useful inputs—designed
to roll up into the reputations of other, more visible objects.

126 | Chapter 6: Objects, Inputs, Scope, and Mechanism



As for the music site, perhaps it’s not any one track that’s worth assessing but the quality
of the playlists. Or maybe what’s relevant is users’ reputations as deejays (their per-
formance, over time, at building and sustaining an audience). Tracking either one will
probably also require keeping mashup tracks as an object in the system, but those tracks
may not necessarily be treated as primary reputable entities.

In the intranet application for paralegals, the briefs are the primary atomic unit of
interest. Who saved what briefs, how are users adding metadata, and how many people
attach themselves to a document? These are all useful bits of information that will help
filter and rank briefs to present back to other users.

So the first step toward defining the relevant objects in your reputation system is to
start with what’s important in the application model, then think forward a little to what
types of problems reputation will help your users solve. Then you can start to catalog
the elements of your application in a more formal fashion.

Perform an application audit

Although you’ve thought at a high level about the primary objects in your application
model, you’ve probably overlooked some smaller-order, secondary objects and con-
cepts. These primary and secondary objects relate to one another in interesting ways
that we can make use of in our reputation system. An application audit can help you
to fully understand the entities and relationships in your application.

Make a complete inventory of every kind of object in your application model that may
have anything to do with accomplishing your goals. Some obvious items are user profile
records and data objects that are special to your application model: movies, transac-
tions, landmarks, CDs, cameras, or whatever. All of these are clear candidates for
tracking as reputable entities.

It is very important to know what objects will be the targets of reputation statements
and any new objects you’ll need to create for that purpose. Make sure you understand
the metadata surrounding each object and how your application will access it. How
are the objects organized? Are they searchable by attributes? Which attributes? How
are the different objects related to one another?

Some objects in your application model will be visually represented in the interface, so
one way to start an audit is with a simple survey of screen designs, at whatever fidelity
is available. For in-progress projects, early-stage wireframes are fine—if your applica-
tion is in production, take some screenshots and print them. Figure 6-1 shows an audit-
screengrab for a project already in production, Yahoo! Message Boards.
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Also be sure to list items whose creation, editing, or content can be used as input into
your reputation model. Some common types of such items are: 

• Categorization systems, such as folders, albums, or collections

• Tags

• Comments

• Uploads

Spend some time considering more nuanced sources of information, such as historical
activity data, external reputation information, and special processes that provide
application-relevant insight.

As an example, consider a profanity filter applied to user-supplied text messages, re-
placing positive matches with asterisks (****); the real-time results of applying the filter

Figure 6-1. Here, users, threads, and posts are all useful entities to model in a message board context.
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might provide a way to measure the effects of interface changes on this particular user
behavior (the use of profanity).

What Makes for a Good Reputable Entity?
An object that makes a good candidate for tracking as a reputable entity in your system
probably has one or more of the characteristics outlined in the following sections.

People are interested in it

This probably should go without saying, but—what the heck—let’s say it anyway. If
your entire application offering is built around a specific type of object, social or
otherwise, the object is probably a good candidate for tracking as a reputable entity.

And remember, nothing interests people more than…other people. That phenomenon
alone is an argument for at least considering using karma (people reputation) in any
application that you might build. Users will always want every possible edge in under-
standing other actors in a community. What motivates them? What actions have they
performed in the past? How might they behave in the future?

When you’re considering what objects will be of the most interest to your users, don’t
overlook other, related objects that also may benefit users. For example, on a photo-
sharing site, it seems natural that you’d track a photo’s reputation. But what about
photo albums? They may not be the very first application object that you think of, but
in some situations, it’s likely you’ll want to direct users’ attention to high-quality
groupings or collections of photos.

The solution is to track both objects. Each may affect the reputation of the other to
some degree, but the inputs and weightings you’ll use to generate reputation for each
will necessarily differ.

The decision investment is high

Some decisions are easy to make, requiring little investment of time or effort. Likewise,
the cost of recovering from such decisions is negligible. For example, suppose I ask
myself, “Should I read this blog entry?”

If it’s a short entry, and I’m already engaged in the act of reading blogs, and no other
distractions are calling me away from that activity, then, yeah, I’ll probably go ahead
and give it a read. (Of course, the content of the entry itself is a big factor. If neither the
entry’s title nor a quick skim of the body interests me, I’ll likely pass it up.) And, once
I’ve read it, if it turns out not to have been a very good choice? Well, no harm done. I
can recover gracefully, move on to the next entry in my feed reader, and proceed on
my way.

The level of decision investment is important because it affects the likelihood that a
user will make use of available reputation information for an item. In general, the greater
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the investment in a decision, the more a user will expect (and make use of) robust
supporting data (see Figure 6-2).

Figure 6-2. More critical decisions demand more complete information.

So for high-investment decisions (such as purchasing or any other decision that is not
easily rescinded), offer more robust mechanisms, such as reputation information, for
use in decision making.

The entity has some intrinsic value worth enhancing

You can do a lot with design to “ease” the presence of reputation inputs in your
application interface. Sites continue to get more and more sophisticated with incorpo-
rating explicit and implicit controls for stating an entity value. Furthermore, the web-
using public is becoming more and more accepting of, and familiar with, popular voting
and favoriting input mechanisms.

Neither of these facts, however, obviates this requirement: reputable entities them-
selves must have some intrinsic value apart from the reputation system. Ask your users
to participate only in ways that are appropriate in relation to that object’s intrinsic
value. Don’t ask users for contributions (such as reviews or other metadata) that add
value to an object whose intrinsic apparent value is low.

It might be OK, for example, to ask someone to give a thumbs-up rating to someone
else’s blog comment (because the cost to the user providing the rating is low—basically
a click). But it would be inappropriate to ask for a full-blown review of the comment.
Writing the review would require more effort and thought than there was in the initial
comment.

The entity should persist for some length of time

Reputable entities must remain in the community pool long enough for all members
of the community to cast a vote (Figure 6-3). There’s little use in asking users for
metadata for an item if other users cannot come along afterward and enjoy the benefit
of that metadata.

Highly ephemeral items, such as news articles that disappear after 48 or 72 hours,
probably aren’t good candidates for certain types of reputation inputs. For example,
you wouldn’t ask users to author a multi-part review of a news story destined to vanish
in less than a day, but you might ask them to click a “Digg this” or “Buzz this” button.
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Items with a great deal of persistence (such as real-world establishments like restaurants
or businesses) make excellent candidates for reputation. Furthermore, it can be ap-
propriate to ask users for more involved types of inputs for persistent items, because
it’s likely that other users will have a chance to benefit from the work that the com-
munity puts into contributing content.

Determining Inputs
Now that you have a firm grasp of the objects in your system and you’ve elected a
handful as reputable entities, the next step is to decide what’s good and what’s bad.
How will you decide? What inputs will you feed into the system to be tabulated and
rolled up to establish relative reputations among like objects?

User Actions Make Good Inputs
Now, instead of merely listing the objects that a user might interact with in your ap-
plication, we’ll enumerate all the actions that she might take in relation to those objects.
Again, many actions will be obvious and visible right there in your application interface,
as in Figure 6-4, so let’s build on the audit that you performed earlier for objects.

Explicit claims

Explicit claims represent your community’s voice and opinion. They operate through
interface elements you provide that solicit users’ opinions about an entity, good or bad.
A fundamental difference exists between explicit claims and implicit ones (discussed
below), which boils down to user intent and comprehension.

With explicit claims, users should be fully aware that the action they’re performing is
intended as an expression of an opinion. That intent differs greatly from the ones for
implicit claims, in which users mostly just go about their business, generating valuable
reputation information as a side effect.

Figure 6-3. The value of ratings increases with the time value of the content being rated.
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Provide a Primary Value
If you present explicit inputs to your users as only that—a mechanism for generating
reputation information to feed the system and make your site smarter—you may be
inhibiting the community from providing inputs. You are likely to see more input sur-
rendered if the contributors get some primary value from their contributions.

The primary value can be big or small, but it probably will have some of the following
characteristics:

• It provides a benefit to the user for interacting with the system: a self-evident and
recognizable benefit that users themselves obtain from interacting with a widget.
Comments on Digg, for instance, are hidden for a particular user when she “Diggs
[thumbs] them down.” This is immediately useful to the user; it cleans up her
display and makes the current thread easier to read.

Likewise, the 5-star rating system in iTunes is surpassingly useful not because of
any secondary or tertiary reputation benefits it may yield, but primarily because it
offers a well-articulated and extremely flexible way to manage data. iTunes users
can take advantage of stars to sort track listings, build smart playlists, and get
recommendations from the iTunes Store. Star rating widgets in iTunes are full of
primary value.

Figure 6-4. Look at all of the actions users can perform on a YouTube video page. They include a rich
mix of inputs with value as explicit claims and implicit claims (and some with no real reputation value).
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• It provides immediate and evident feedback. Unlike reputation effects that may
not be immediately evident because they happen downstream, the system should
provide some quick acknowledgment that the user has expressed a claim. This just
happens to reinforce good user interface principles as well. (See “Latency Reduc-
tion” in Bruce Tognazzini’s First Principles of Interaction Design: http://www.asktog
.com/basics/firstPrinciples.html.)

Implicit claims

Any time a user takes some action in relation to a reputation entity, it is very likely that
you can derive valuable reputation information from that action. Recall the discussion
of implicit and explicit reputation claims in “The Reputation Statement” on page 6.
With implicit reputation claims, we watch not what the user says about the quality of
an entity but how they interact with that object. For example, assume that a reputable
entity in your system is a text article. You’ll find valuable reputation information in the
answers to the following questions:

• Does the user read the article? To completion?

• Does the user save the article for later use?

— By bookmarking it?

— By clipping it?

• Does the user republish the article to a wider audience?

— By sending it to a friend?

— By publishing to a tweet-stream?

— By embedding it on a blog?

• Does the user copy or clone the article for use in writing another article?

You can construct any number of smart, nuanced, and effective reputation models from
relevant related action-type claims. Your only real limitation is the level and refinement
of instrumentation in your application: are you prepared to capture relevant actions at
the right junctures and generate reputation events to share with the system?

Don’t get too clever with implicit action claims, or you may unduly
influence users’ behavior. If you weigh implicit actions into the formu-
lation of an object or a person’s reputation and you make that fact
known, you’re likely to actually motivate users to take those actions
arbitrarily. This is one of the reasons that many reputation-intensive
sites are coy about revealing the types and weightings of claims in their
systems. (See the section“Keep Your Barn Door Closed (but Expect
Peeking)” on page 91.)
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But Other Types of Inputs Are Important, Too
A reputation system doesn’t exist in a vacuum; it’s part of a bigger application,
which itself is part of a bigger ecosystem of applications. Relevant inputs come from
many sources other than those generated directly by user actions. Be sure to build, buy,
or otherwise include them in your model where needed. Here are some common
examples:

• External trust databases

— Spam IP blacklist.

— Text scanning software that detects profanity or other abusive patterns.

— Reputation from other applications in your ecosystem.

• Social networking relationships

— Relationships may be used to infer positive reputation by proxy.

— In many cases, when surfacing an evaluation of a reputable object, relationship
should be a primary search criterion: “Your brother recommends this camera.”

• Session data

— Browser cookies are good for tracking additional metadata about user visits: is
a user logged-out? Newly registered? Returning after some amount of time away?

— Session cookies can be used to build up a reputation history.

— Identity cookies allow various identities, browsers, and sessions to be linked
together.

• Asynchronous activations

— Just-in-time inputs. Many reputation models are real-time systems in which rep-
utations change constantly, even when users aren’t providing any direct input.
For example, a mail antispam reputation model for IP addresses could handle
irregularly timed, asynchronous inputs about mail volume received over time
from an address to allow the reputation to naturally reflect traffic. In this ex-
ample, the volume of incoming email that isn’t marked as spam would cause
the IPs reputation to improve sporadically.

— Time-activated inputs. Also called cron jobs (for the Unix tool cron that executes
them), these often are used to start a reputation process as part of periodic
maintenance; for example, a timer can trigger reputation scores to decay or
expire. (For one benefit of calculating reputation on a time-delay, see “Decay
and delay” on page 93.) Timers may be periodic or scheduled ad hoc by an
application.

— Customer care corrections and operator overrides. When things go wrong, some-
one’s got to fix it via a special input channel. This is a common reason that many
reputation processes are required to be reversible.
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Of course, the messages that each reputation process outputs also are potential inputs
into other processes. Well-designed karma models don’t usually take direct inputs at
all—those processes always take place downstream from other processes that encode
the understanding of the relationship between the objects and transform that code into
a normalized score.

Good Inputs
Whether your system features explicit reputation claims, implicit ones, or a skillful
combination of both, to maintain the quality of the inputs to the system, strive to follow
the practices described next.

Emphasize quality, not simple activity

Don’t continue to reward people or objects for performing the same action over and
over; rather, try to single out events that indicate that the target of the claim is worth
paying attention to. For instance, the act of bookmarking an article is probably a more
significant event than a number of page views. Why? Because bookmarking something
is a deliberate act—the user has assessed the object in question and decided that it’s
worth further action.

Rate the thing, not the person

The process of creating karma is subtly more complex and socially delicate than creating
reputation for things. For a deeper explanation, see “Karma” on page 176. Yahoo! has
a general community policy of soliciting explicit ratings input only for user-created
content—never having users directly rate other users. This is a good practice for a
number of reasons:

• It keeps the focus of debate on the quality of the content an author produces, which
is what’s of value to your community (instead of on the quality of her character,
which isn’t).

• It reduces ad hominem attacks and makes for a nicer culture within the community.

Reward firsts, but not repetition

It’s often worthwhile to reward firsts for users in your system, perhaps rewarding the
first user to “touch” an object (leave a review, comment on a story, or post a link). Or,
conversely, you might reward a whole host of firsts for a single user (to encourage him
to interact with a wide range of features, for instance).

But once a first has been acknowledged, don’t continue to reward users for more of the
same.
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Pick events that are hard for users to replicate; this combats gaming of the system. But
anticipate these patterns of behavior anyway, and build a way to deal with offenders
into your system.

Use the right scale for the job

In “Ratings bias effects” on page 61, we discussed ratings distributions and why it’s
important to pay attention to them. If you’re seeing data with poorly actionable dis-
tributions (basically, data that doesn’t tell you much), it’s likely that you’re asking for
the wrong inputs.

Pay attention to the context in which you’re asking. For example, if interest in the object
being rated is relatively low (perhaps it’s official feed content from a staid, corporate
source), 5-star ratings are probably overkill. Your users won’t have such a wide range
of opinions about the content that they’ll need five stars to judge it.

Match user expectations

Ask for information in a way that’s consistent and appropriate with how you’re going
to use it. For example, if your intent is to display the community average rating for a
movie on a scale of 1 to 5 stars, it makes the most sense to ask users to enter movie
ratings on a scale of 1 to 5 stars. Of course, you can transform reputation scores and
present them back to the community in different ways (see the sidebar “What Comes
in Is Not What Goes Out” on page 151), but strive to do that only when it makes sense
and in a way that doesn’t confuse your users.

Common Explicit Inputs
In Chapter 7, we’ll focus on displaying aggregated reputation, which is partly con-
structed with the inputs we discuss here, and which has several output formats identical
to the inputs (for example, 5 stars in, 5 stars out). But that symmetry exists only for a
subset of inputs and an ever-smaller subset of the aggregated outputs. For example, an
individual vote may be a yes or a no, but the result is a percentage of the total votes for
each.

In this chapter, we’re discussing only claims on the input side—what does a user see
when she takes an action that is sent to the reputation model and transformed into a
claim?

The following sections outline best practices for the use and deployment of the common
explicit input types. The user experience implications of these patterns are also covered
in more depth in Christian Crumlish and Erin Malone’s Designing Social Interfaces
(O’Reilly).
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The ratings life cycle

Before we dive into all the ways in which users might provide explicit feedback about
objects in a system, think about the context in which users provide feedback. Remem-
ber, this book is organized around the reputation information that users generate—
usable metadata about objects and about other people. But users themselves have a
different perspective, and their focus is often on other matters altogether (see Fig-
ure 6-5). Feeding your reputation system is likely the last thing on their mind.

Figure 6-5. Even though this flow is idealized, it amply demonstrates that the “simple” act of rating
something is actually pretty complex.

Given the other priorities, goals, and actions that your users might possibly be focused
on at any given point during their interaction with your application, here are some good
general guidelines for gathering explicit reputation inputs effectively.

Your application’s interface design can reinforce the
presence of input mechanisms in several ways: 

• Place input mechanisms in comfortable and clear proximity to the target object
that they modify. Don’t expect users to find a ratings widget for that television
episode when the widget is buried at the bottom of the page. (Or at least don’t
expect them to remember which episode it applies to…or why they should click
it…or….)

• Don’t combine too many different rateable entities on a single screen. You may
have perfectly compelling reasons to want users to rate a product, a manufacturer,
and a merchant all from the same page—but don’t expect them to do so consis-
tently and without becoming confused.

• Carefully strike a balance between the size and proportion of reputation-related
mechanisms and any other (perhaps more important) actions that might apply to
a reputable object.

For example, in a shopping context, it’s probably appropriate to make “Add to
Cart” the predominant call to action and keep the Rate This button less
noticeable—even much less noticeable. (Would you rather have a rating, or a sale?)

• Make the presentation and formatting of your input mechanisms consistent. You
may be tempted to try “fun” variations like making your ratings stars different

The interface design of reputation inputs.
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colors in different product categories, or swapping in a little Santa for your thumb-
up and thumb-down icons during the holidays.

In a word: don’t. Your users will have enough work in finding, learning, and coming
to appreciate the benefits of interacting with your reputation inputs. Don’t throw
unnecessary variations in front of them.

Stars, bars, and letter grades

A number of different input mechanisms let users express an opinion about an object
across a range of values. A very typical such mechanism is star ratings. Yahoo! Local
(see Figure 6-6) allows users to rate business establishments on a scale of 1 to 5 stars.

Figure 6-6. Yahoo! design standards specify that the mechanism for entering your own rating must
always look different from the mechanism for displaying the community average rating.

Stars seem like a pretty straightforward mechanism, both for your users to consume
(5-star rating systems seem to be everywhere, so users aren’t unfamiliar with them) and
for you, the system designer, to plan. Tread carefully, though. Here are some small
behavioral and interaction “gotchas” to think about early, during the design phase.

Star ratings often are displayed back to users in a format
very similar to the one in which they’re gathered from users. That arrangement need
not be the case—scores generated by stars can be transformed into any number of
output formats for display—but as we noted earlier (see “Match user expecta-
tions” on page 136), it’s usually what is clearest to users.

As the application designer, you should be wary, however, of making the input-form
for stars match too closely their final display presentation. The temptation is strong to
design one comprehensive widget that accomplishes both: displaying the current com-
munity average rating for an object and accepting user input to cast their own vote.

The schizophrenic nature of stars.
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Slick mouse-over effects or toggle switches that change the state of the widget are some
attempts that we’ve seen, but this is tricky to pull off, and almost never done well. You’ll
either end up with a widget that does a poor job at displaying the community average
or one that doesn’t present a very strong call to action.

The solution that’s most typically used at Yahoo! is to separate these two functions into
two entirely different widgets and present them side by side on the page. The widgets
are even color-coded to keep their intended uses straight. On Yahoo!, red stars are
typically read-only (you can’t interact with them) and always reflect the community
average rating for an entity, whereas yellow stars reflect the rating that you as a user
entered (or, alternately, empty yellow stars wait eagerly to record your rating).

From a design standpoint, the distinction does introduce additional interactive and
visual complexity to any component that displays ratings, but the increase in clarity
more than compensates for any additional clutter.

Though it’s a fairly trivial task to determine numerical
values for selections along a 5-point scale, there’s no widespread agreement among
users on exactly what star ratings represent. Each user applies a subtly different inter-
pretation (complete with biases) to star ratings. Ask yourself the following questions—
they’re the questions that users have to ask each time they come across a ratings system:

• What does “one star” mean on this scale? Should it express strong dislike? Apathy?
Mild “like”? Many star-ratings widgets provide suggested interpretations at each
point along the spectrum, such as “Dislike it,” “Like it,” and “Love it.”

The drawback to that approach is that it constrains the uses that individual users
might find for the system. The advantage is that it brings the community interpre-
tation of the scale into greater agreement.

• What opinion does no rating express? Should the interface provide an explicit op-
tion for “no rating?” Yahoo! Music’s 5-star ratings widget feeds a recommender
system that suggests new music according to what you’ve liked in the past. The
site actually offers a sixth option (not presented as a star) intended to express
“Don’t play this track again.”

• Can the user change a rating already submitted? Adding such functionality—to
change a vote that’s already been cast—is another reason to make an interaction
design distinction between rating an item and reviewing the community average.
If you support undo or change, now your super-sized universal one-size-fits-all vote
and display widget will also need to support that function, too. (Good luck with
that.)

• Can a rating include half-stars? Often, regardless of whether you allow half-step
input for ratings, you will want to allow half-step display of community averages.
In any event, notice that the possibility of half-values for stars effectively doubles
the expressive range of the scale.

Do I like you, or do I “like” like you.
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Two-state votes (thumb ratings)

“Thumb” voting (thumb up or thumb down) lets a user quickly rate content in a fun,
engaging way (see Figure 6-7). The benefit to the user for voting is primarily related to
self-expression (“I love this!” or “I hate this!”). The ratings don’t need to be presented
visually as thumbs (in fact, sometimes they shouldn’t), but in this book, we use
“thumb” as shorthand for a two-state voting mechanism.

Figure 6-7. Yahoo! TV lets viewers rate their favorite episodes with thumb-up or thumb-down votes.
The highly-skewed results shown in this example are typical: it turns out that only series fans go
through the bother of rating individual episodes.

Thumb voting allows users to express strongly polarized opinions about assets. For
example, if you can state your question as simply as “Did you like this or not?”, thumb
voting may be appropriate. If it seems more natural to state your question as “How
much did you like this?”, then star ratings seem more appropriate.

A popular and effective use of two-state voting is as a meta-moderation device for user-
submitted opinions, comments, and reviews, as in Figure 6-8. Wherever you solicit
user opinions about an object, also consider letting the community voice opinions
about that opinion, by providing an easy control such as “Was this helpful?” or “Do
you agree?”

Figure 6-8. Two-state voting works best when the interface presents a clear and concise user prompt.
Leave no doubt about what you’re asking users to decide: “Was this review helpful to you?”

Avoid thumb voting for multiple facets of an entity. For example, don’t provide mul-
tiple thumb widgets for a product review intended to record users’ satisfaction with
the product’s price, quality, design, and features. Generally, a thumb vote should be
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associated with an object in a one-to-one relationship: one entity gets one thumb up
or down. Think of the metaphor, after all: Emperor Nero never would have let a glad-
iator’s arm survive while putting his leg to death. Think of thumb voting as an all-or-
nothing rating.

Consider thumb voting when you want a fun, lightweight rating mechanism. The
context for thumb voting should be appropriately fun and lighthearted, too; don’t use
thumb voting in contexts where it will appear insensitive or inappropriate.

An upraised thumb is considered offensive in some cultures. If your site
has potential international appeal, watch out.

Don’t use thumb ratings when you want to compare qualitative data among assets. For
example, in a long list of movies available for rental, you may want to permit sorting
of the list by average rating. If you have been collecting thumb ratings, such sorting
wouldn’t be very useful to users. (Instead, consider a 5-star scalar rating style.)

Vote to promote: Digging, liking, and endorsing

Vote to promote fulfills a very specific niche in the world of online opinion-gathering.
As users browse a collection or pool of media objects, they mark items as worthwhile
using a control consisting of a simple gesture. This pattern has been popularized by
social news sites such as Digg, Yahoo! Buzz, and Newsvine.

Typically, these votes accumulate and are used to change the rank of items in the com-
munity pool and present winners with more prominence or a higher status, but that’s
not an absolute necessity. Facebook offers an “I like this” link (Figure 6-9 ) that simply
communicates a user’s good will toward an item.

Figure 6-9. Facebook’s “Like” vote is a tiny, personal vote-to-promote-style system. A large part of
its value to you, the user, comes from your social connection to the voters.

The names of users who “like” an item are displayed to other users who encounter the
item (until the list of vote casters becomes cumbersome, when the display switches to
a sort of summary score), but highly liked items aren’t promoted above other items in
the news feed in any obvious or overt way.
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User reviews

Writing a user review demands a lot of effort from users. It is among the most involved
explicit input mechanisms that you can present, usually consisting of detailed, multi-
part data entry (see Figure 6-10).

To get good, usable comparison data from user reviews, try to ensure that the objects
you offer up for review meet all the criteria that we listed above for good reputable
entities (see “What Makes for a Good Reputable Entity?” on page 129). Ask users to
write reviews only for objects that are valuable, long-lived, and that have a high-
investment decision.

Figure 6-10. Amazon’s review-writing process—while streamlined—still asks a lot of review writers.
This barrier to participation may skew involvement from the community.
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Reviews typically are compound reputation claims, with each review made up of a
number of smaller inputs bundled together. You might consider any combination of
the following for your user-generated reviews:

• You can include a freeform comment field (see “Text comments” on page 40) for
users to provide their impressions of the rated object, good or bad. You may impose
some standards on this field (for example, checking for profanity or requiring
length in a certain character range), but generally this field is provided for users to
fill in as they please.

• Optionally, the review may feature a title. Also a freeform text entry, the title lets
users put their “brand” on a review or give it extra appeal and pizazz. Users often
use the title field to grab attention and summarize the tone and overall opinion of
the full review.

• Consider including an explicit scalar ratings widget, such as a 5-star scale (“Stars,
bars, and letter grades” on page 138). It’s almost always a good idea to display one
overall rating for the object in question.

For example, even if you’re asking users to rate multiple facets of, say, a movie
(direction, acting, plot, and effects), you can provide one prominent rating input
for the users’ overall opinion. You could just derive the average from a combination
of the facet reviews, but that wouldn’t be as viscerally satisfying for opinionated
reviewers.

• You may want to let users attach additional media to a review—for example, up-
load a video testimonial or attach URLs for additional resources (Flickr photos or
relevant blog entries). The more participation you can solicit from reviewers, the
better. And to bootstrap a review’s quality reputation, you can consider each ad-
ditional resource as an input.

Common Implicit Inputs
Remember, with implicit reputation inputs, we are going to pay attention to some
subtle and nonobvious indicators in our interface. Actions that—when users take
them—may indicate a higher level of interest (indicative of higher quality) in the object
targeted.

It is difficult to generalize about implicit inputs because they are highly contextual.
They depend on the particulars of your application: its object model, interaction styles,
and screen designs. However, the following inputs represent the types of inputs you
can track.

Favorites, forwarding, and adding to a collection

Any time a user saves an object or marks it for future consideration—either for himself
or to pass along to someone else—that could be a reputable event.
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This type of input has a lot in common with the explicit vote-to-promote input (see
“Vote to promote: Digging, liking, and endorsing” on page 141), but the difference lies
in user intent and perception: in a vote-to-promote system, the primary motivator for
marking something as worthwhile is to publicly state a preference, and the expectation
is that information will be shared with the community. It is a more extrinsic motivation.

By contrast, favorites, forwarding, and adding to a collection are more intrinsically
motivated reputation inputs—actions that users take for largely private purposes.

To mark an item as a favorite, a user activates some simple control (usually
clicking an icon or a link), which adds the item to a list that she can return to later for
browsing, reading, or viewing.

Some conceptual overlap exists between the favorites pattern, which can be semipublic
(favorites often are displayed to the community as part of a user’s profile) and the liking
pattern. Both favorites and liking can be tallied and fed in almost identical ways into
an object’s quality reputation.

You might know this input pattern as “send to a friend.” This pattern fa-
cilitates a largely private communication between two friends, in which one passes a
reputable entity on to another for review. Yahoo! News has long promoted most
emailed articles as a type of currency-of-interest proxy reputation. (See Figure 6-11.)

Figure 6-11. A danger with implicit inputs like send-to-a-friend is that, once the community becomes
accustomed to their presence, they risk becoming a type of explicit statement. Do you suppose Yahoo!
News has to battle email bots designed to artificially inflate articles’ visibility on the site?

Many applications provide ordering mechanisms for users as con-
veniences: a way to group like items, save them for later, edit them en masse. Depending
on the context of your application, and the culture of use that emerges out of how
people interact with collections on your site, you may want to consider each “add to
collection” action as an implicit reputation statement, akin to favoriting or sending to
a friend.

Favorites.

Forwarding.

Adding to a collection.
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Greater disclosure

Greater disclosure is a highly variable input: there’s a wide range of ways to present it
in an interface (and weight it in reputation processes). But if users request “more in-
formation” about an object, you might consider those requests as a measure of the
interest in that object—especially if users are making the requests after having already
evaluated some small component of the object, such as an excerpt, a thumbnail, or a
teaser.

A common format for blogs, for instance, is to present a menu of blog entries, with
excerpts for each, and “read more” links. Clicks on a link to a post may be a reasonably
accurate indicator of interest in the destination article.

But beware—the limitations of a user interface can render such data misleading. In the
example in Figure 6-12, the interface may not reveal enough content to allow you to
infer the real level of interest from the number of clicks. (Weight such input
accordingly.)

Figure 6-12. By clicking “more,” a reader may be indicating a higher level of interest in this review
on Yahoo! Local. (Or a click may simply indicate that the excerpt wasn’t generous enough—tread
carefully.)

Reactions: Comments, photos, and media

One of the very best indicators of interest in an entity is the amount of conversation,
rebuttal, and response that it generates. While we’ve cautioned against using activity
alone as a reputation input (to the detriment of good quality indicators), we certainly
don’t want to imply that conversational activity has no place in your system. Far from
it. If an item is a topic of conversation, the item should benefit from that interest.

The operators of some popular websites realize the value of rebuttal mechanisms and
have formalized the ability to attach a response to a reputable entity. YouTube’s video
responses feature is an example (see Figure 6-13). As with any implicit input, however,
be careful; the more your site’s design shows how your system uses those associations,
the more tempting it will be for members of your community to misuse them.
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Constraining Scope
When you’re considering all the objects that your system will interact with, and all the
interactions between those objects and your users, it’s critical to take into account an
idea that we have been reinforcing throughout this book: all reputation exists within a
limited context, which is always specific to your audience and application. Try to de-
termine the correct scope, or restrictive context, for the reputations in your system.
Resist the temptation to lump all reputation-generating interactions into one score—
the score will be diluted to the point of meaninglessness. The following example from
Yahoo! makes our point perfectly.

Context Is King
This story tells how Yahoo! Sports unsuccessfully tried to integrate social media into
its top-tier website. Even seasoned product managers and designers can fall into the
trap of making the scope of an application’s objects and interactions much broader
than it should be.

Yahoo!’s Sports product managers believed that they should integrate user-generated
content quickly across their entire site. They did an audit of their offering, and started
to identify candidate objects, reputable entities, and some potential inputs.

The site had sports news articles, and the product team knew that it could tell a lot
about what was in each article: the recognized team names, sport names, player names,

Figure 6-13. The video responses on YouTube certainly indicate users’ desire to be associated with
popular videos. However, they may not actually indicate any logical thread of association.
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cities, countries, and other important game-specific terms—in other words, the objects.
It knew that users liked to respond to the articles by leaving text comments—the inputs.

It proposed an obvious intersection of the objects and the inputs: every comment on a
news article would be a blog post, tagged with the keywords from the article, and
optionally by user-generated tags, too. Whenever a tag appeared on another page, such
as a different article mentioning the same city, the user’s comment on the original article
could be displayed.

At the same time, those comments would be displayed on the team- and player-detail
pages for each tag attached to the comment. The product managers even had aspira-
tions to surface comments on the sports portal, not just for the specific sport, but for
all sports.

Seems very social, clever, and efficient, right?

No. It’s a horrible design mistake. Consider the following detailed example from British
football.

An article reports that a prominent player, Mike Brolly, who plays for the Chelsea team,
has been injured and may not be able to play in an upcoming championship football
match with Manchester United. Users comment on the article, and their comments are
tagged with Manchester United, Chelsea, and Brolly.

Those comments would be surfaced—news feed–style—on the article page itself, the
sports home page, the football home page, the team pages, and the player page. One
post, six destination pages, each with a different context of use, different social norms,
and different communities that they’ve attracted.

Nearly all these contexts are wrong, and the correct contexts aren’t even considered:

• There is no all-of-Yahoo! Sports community context. At least, there’s not one with
any great cohesion—American tennis fans, for example, don’t care about British
football. When an American tennis fan is greeted on the Yahoo! Sports home page
with comments about British football, they regard that about as highly as spam.

• The team pages are the wrong context for the comments because the fans of dif-
ferent teams don’t mix. At a European football game, the fans for each team are
kept on opposite sides of the field, divided by a chain link fence, with police wield-
ing billy clubs alongside. The police are there to keep the fan communities apart.

Online, the cross-posting of the comments on the team pages encourages conflict
between fans of the opposing teams. Fans of opposing teams have completely op-
posite reactions to the injury of a star player, and intermixing those conversations
would yield anti-social (if sometimes hilarious) results.

• The comments may or may not be relevant on the player page. It depends on
whether the user actually responded to the article in the player-centric context—
an input that this design didn’t account for.
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• Even the context of the article itself is poor, at least on Yahoo!. Its deal with the
news feed companies, AP and Reuters, limits the amount of time an article may
appear on the site to less than 10 days. Attaching comments (and reputation) to
such transient objects tells users that their contributions don’t matter in the long
run. (See “The entity should persist for some length of time” on page 130.)

Comments, like reputation statements, are created in a context. In the case of com-
ments, the context is a specific target audience for the message. Here are some possible
correct contexts for cross-posting comments:

• Cross-post when the user has chosen a fan or team page and designated it to be a
secondary destination for the comment. Your users will know, better than your
system, what some legitimate related contexts are. (Though, of course, this can be
abused; some decry the ascension of cross-posting to be a significant event in the
devolution of the Usenet community.)

• Cross-post back to the commenter’s user profile (with her permission, of course).
Or allow her to post it to her personal blog, or send it to a friend—all of these
approaches put an emphasis on the user as the context. If someone interests you
enough for you to visit her user profile or blog, it’s likely that you might be inter-
ested in what she has to say over on Yahoo! Sports.

• Cross-post automatically only into well-understood and obviously related contexts.
For example, Yahoo! Sports has a completely different context that is still deeply
relevant: a Fantasy Football league, where 12 to 16 people build their own virtual
teams out of player-entities based on real-player stats.

In this context—where the performance and day-to-day circumstances of real-life
players affect the outcome of users’ virtual teams—it might be very useful infor-
mation to have cross-posted right onto a league’s page.

Don’t assume that because it’s safe and beneficial to cross-post in
one direction, it’s automatically safe to do so in the opposite di-
rection. What if Yahoo! auto-posted comments made in a Fantasy
Sports league over to the more staid Sports community site? That
would be a huge mistake.

The terms of service for Fantasy Football are so much more lax
than the terms of service for public-facing posts. These players
swear and taunt and harass each other. A post such as “Ha, Chris—
you and the Bay City Bombers are gonna suck my team’s dust to-
morrow while Brolly is home sobbing to his mommy!” clearly
should not be automatically cross-posted to the main portal page.

Limit Scope: The Rule of Email
When thinking about your objects and user-generated inputs and how to combine
them, remember the rule of email: you need a “subject” line and a “to” line (an addressee
or a small number of addressees).
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Tags for user-generated content act as subject identifiers, but not as addressees. Making
your addressees as explicit as possible will encourage people to participate in many
different ways.

Sharing content too widely discourages contributions and dilutes content quality and
value.

Applying Scope to Yahoo! EuroSport Message Board Reputation
When Yahoo! EuroSport, based in the UK, wanted to revise its message board system
to provide feedback on which discussions were the highest quality and incentives for
users to contribute better content, it turned for help to reputation systems.

It was clear that the scope of reputation was different for each post and for all the posts
in a thread and, as the American Yahoo! Sports team had initially assumed, that each
user should have one posting karma: other users would flag the quality of a post and
that would roll up to their all-sports-message-boards user reputation.

It did not take long for the product team to realize, however, that having Chelsea fans
rate the posts of Manchester fans was folly: users would employ ratings to disagree with
any comment by a fan of another team, not to honestly evaluate the quality of the
posting.

The right answer, in this case, ended up being a tighter definition of scope for the
context: rather than rewarding “all message boards” participation, or “everything
within a particular sport,” instead an effort was made to identify the most granular,
cohesive units of community possible on the boards, and reward participation only
within those narrow scopes.

Yahoo! EuroSport implemented a system of karma medallions (bronze, silver, and gold)
rewarding both the quantity and quality of a user’s participation on a per-board basis.
This carried different repercussions for different sports on the boards.

Each UK football team has it’s own dedicated message board, so theoretically an active
contributor could earn medallions in any number of football contexts: a gold for par-
ticipating on the Chelsea boards, a bronze for Manchester, etc.

Bear in mind, however, that it’s the community response to a contrib-
utor’s posts that determines reputation accrual on the boards. We did
not anticipate that many contributors would acquire reputation in many
different team contexts; it’s a rare personality that can freely intermix,
and makes friends, among both sides of a rivalry. No, this system was
intended to reward and identify good fans and encourage them to keep
among themselves.

Tennis and Formula 1 Racing are different stories. Those sports have only one message
board each, so contributors to those communities would be rewarded for participating
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in a sport-wide context, rather than for their team loyalty. Again, this is natural and
healthy: different sports, different fans, different contexts.

Many users have only a single medallion, participating mostly on a single board, but
some are disciplined and friendly enough to have bronze badges or better in each of
multiple boards, and each badge is displayed in a little trophy case when you mouse
over the user’s avatar or examine the user’s profile (see Figure 6-14).

Figure 6-14. Each Yahoo! EuroSport message board has its own karma medallion display to keep
reputation in a tightly bound context.

Generating Reputation: Selecting the Right Mechanisms
Now you’ve established your goals, listed your objects, categorized your inputs, and
taken care to group the objects and inputs in appropriate contexts with appropriate
scope. You’re ready to create the reputation mechanisms that will help you reach your
goals for the system.

Though it might be tempting to jump straight to designing the display of reputation to
your users, we’re going to delay that portion of the discussion until Chapter 7, where
we dig into the reasons not to explicitly display some of your most valuable reputation
information. Instead of focusing on presentation first, we’re going to take a goal-
centered approach.
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The Heart of the Machine: Reputation Does Not Stand Alone
Probably the most important thing to remember when you’re thinking about how to
generate reputations is the context in which they will be used: your application. You
might track bad-user behavior to save money in your customer care flow by prioritizing
the worst cases of apparent abuse for quick review. You might also deemphasize cases
involving users who are otherwise strong contributors to your bottom line. Likewise,
if users evaluate your products and services with ratings and reviews, you will build
significant machinery to gather users’ claims and transform your application’s output
on the basis of their aggregated opinions.

For every reputation score you generate and display or use, expect at least 10 times as
much development effort to adapt your product to accommodate it—including the
user interface and coding to gather the events and transform them into reputation in-
puts, and all the locations that will be influenced by the aggregated results.

Common Reputation Generation Mechanisms and Patterns
Though all reputation is generated from custom-built models, we’ve identified certain
common patterns in the course of designing reputation systems and observing systems
that others have created. These few patterns are not at all comprehensive, and never
could be. We provide them as a starting point for anyone whose application is similar
to well-established patterns. We expand on each reputation generation pattern in the
rest of this chapter.

What Comes in Is Not What Goes Out
Don’t confuse the input types with the reputation generation patterns—what comes
in is not always what goes out. In our example in the section “User Reviews with
Karma” on page 75, the inputs were reviews and helpful votes, but one of the generated
reputation outputs was a user quality karma score—which had no display symmetry
with the inputs, since no user was asked to evaluate another user directly.

Roll-ups are often of a completely different claim type from their component parts, and
sometimes, as with karma calculations, the target object of the reputation changes
drastically from the evaluator’s original target; for example, the author (a user-object)
of a movie review gets some reputation from a helpful score given to the review that
the author wrote about the movie-object.

This section focuses on calculating reputation, so the patterns don’t describe the meth-
ods used to display any user’s inputs back to the user. Typically, the decision to store
users’ actions and display them is a function of the application design—for example,
users don’t usually get access to a log of all of their clicks through a site, even if some
of them are used in a reputation system. On the other hand, heavyweight operations,
such as user-created reviews with multiple ratings and text fields, are normally at least
readable by the creator, and often editable and/or deletable.
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Generating personalization reputation

The desire to optimize their personal experience (see the section “Fulfillment incen-
tives” on page 119) is often the initial driver for many users to go through the effort
required to provide input to a reputation system. For example, if you tell an application
what your favorite music is, it can customize your Internet radio station, making it
worth the effort to teach the application your preferences. The effort required to do
this also provides a wonderful side effect: it generates voluminous and accurate input
into aggregated community ratings.

Personalization roll-ups are stored on a per-user basis and generally consist of prefer-
ence information that is not shared publicly. Often these reputations are attached to
very fine-grained contexts derived from metadata attached to the input targets and
therefore can be surfaced, in aggregate, to the public (see Figure 6-15). For example, a
song by the Foo Fighters may be listed in the “alternative” and “rock” music categories.

When a user marks the song as a favorite, the system would increase the personalization
reputation for this user for three entities: “Foo Fighters,” “alternative,” and “rock.”
Personalization reputation can require a lot of storage, so plan accordingly, but the
benefits to the user experience, and your product offering, may make it well worth the
investment. See Table 6-1.

Table 6-1. Personalization reputation mechanisms

Reputation models Vote to promote, favorites, flagging, simple ratings, and so on.

Inputs Scalar.

Processes Counters, accumulators.

Common uses Site personalization and display.

Input to predictive modeling.

Personalized search ranking component.

Pros A single click is as low-effort as user-generated content gets.

Computation is trivial and speedy.

Intended for personalization, these inputs can also be used to generate aggregated community ratings
to facilitate nonpersonalized discovery of content.

Cons It takes quite a few user inputs before personalization starts working properly, and until then the user
experience can be unsatisfactory. (One method of bootstrapping is to create templates of typical user
profiles and ask the user to select one to autopopulate a short list of targeted popular objects to rate quickly.)

Data storage can be problematic. Potentially keeping a score for every target and category per user is very
powerful but also very data intensive.
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Generating aggregated community ratings

Generating aggregated community ratings is the process of collecting normalized nu-
merical ratings from multiple sources and merging them into a single score, often an
average or a percentage of the total, as in Figure 6-16. See Table 6-2.

Table 6-2. Aggregated community ratings mechanisms

Reputation models Vote to promote, favorites, flagging, simple ratings, and so on.

Inputs Quantitative (normalized, scalar).

Processes Counters, averages, and ratios.

Common uses Aggregated rating display.

Search ranking component.

Quality ranking for moderation .

Pros A single click is as low-effort as user-generated content gets.

Computation is trivial and speedy.

Figure 6-15. Netflix uses your movie preferences to generate recommendations for other movies that
you might want to watch. It also averages your ratings against other movies you’ve rated in that
category, or by that director, or….
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Cons Too many targets can cause low liquidity.

Low liquidity limits accuracy and value of the aggregate score. See “Liquidity: You Won’t Get Enough
Input” on page 58.

Danger exists of using the wrong scalar model. See “Bias, Freshness, and Decay” on page 60.

Figure 6-16. Recommendations work best when they’re personalized, but how do you help someone
who hasn’t yet stated any preferences? You average the opinions of those who have.

One specific form of aggregate community rat-
ings requires special mechanisms to get useful results: when an application needs to
rank a large data set of objects completely and only a small number of evaluations can
be expected from users. For example, a special mechanism would be required to rank
the current year’s players in each sports league of an annual fantasy sports draft. Hun-
dreds of players would be involved, and there would be no reasonable way that each
individual user could evaluate each pair against the others. Even rating one pair per
second would take many times longer than the available time before the draft. The same
is true for community-judged contests in which thousands of users submit content.
Letting users rate randomly selected objects on a percentage or star scale doesn’t help
at all. (See “Bias, Freshness, and Decay” on page 60.)

Ranking large target sets (preference orders).
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This kind of ranking is called preference ordering. When this kind of ranking takes
place online, users evaluate successively generated pairs of objects and choose the most
appropriate one in each pair. Each participant goes through the process a small number
of times, typically less than 10.

The secret sauce is in selecting the pairings. At first, the ranking engine looks for pairs
that it knows nothing about, but over time it begins to select pairings that help users
sort similarly ranked objects. It also generates pairs to determine whether the user’s
evaluations are consistent or not. Consistency is good for the system, because it indi-
cates reliability; if a users evaluations fluctuate wildly or don’t have a consistent pattern,
this indicates a pattern of abuse or manipulation of the ranking.

The algorithms for this approach are beyond the scope of this book, but if you are
interested, you can find out more in Appendix B. This mechanism is complex and
requires expertise in statistics to build, so if a reputation model requires this function-
ality, we recommend using an existing platform as a model.

Generating participation points

Participation points are typically a kind of karma in which users accumulate varying
amounts of publicly displayable points for taking various actions in an application.
Many people see these points as a strong incentive to drive participation and the crea-
tion of content. But remember, using points as the only motivation for user actions can
push out desirable contributions in favor of lower-quality content that users can submit
quickly and easily (see “First-mover effects” on page 63). Also see “Leaderboards Con-
sidered Harmful” on page 194 for a discussion of the challenges associated with com-
petitive displays of participation points.

Participation points karma is a good example of a pattern in which the inputs (various,
often trivial, user actions) don’t match the process of reputation generation (accumu-
lating weighted point values) or the output (named levels or raw score); see Tables
6-3 and 6-4.

Table 6-3. ShareTV.org is one of many web applications that uses participation points karma as
incentive for users to add content

Activity Point award Maximum/time

First participation +10 +10

Log in +1 +1 per day

Rate show +1 +15 per day

Create avatar +5 +5

Add show or character to profile +1 +25

Add friend +1 +20

Be friended +1 +50

Give best answer +3 +3 per question
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Activity Point award Maximum/time

Have a review voted helpful +1 +5 per review

Upload a character image +3 +5 per show

Upload a show image +5 +5 per show

Add show description +3 +3 per show

Table 6-4. Participation points karma mechanisms

Reputation models Points

Inputs Raw point value (this type of input is risky if disparate applications provide the input; out-of-range values
can do significant social damage to your community).

An action-type index value for a table lookup of points (this type of input is safer; the points table stays
with the model, where it is easier to limit damage and track data trends).

Processes (Weighted) accumulator.

Common uses Motivation for users to create content.

Ranking in leaderboards to engage the most active users.

Rewards for specific desirable actions.

Corporate use: identification of influencers or abusers for extended support or moderation.

In combination with quality karma in creating robust karma (see “Robust karma” on page 73).

Pros Setup is easy.

Incentive is easy for users to understand.

Computation is trivial and speedy.

Certain classes of users respond positively and voraciously to this type of incentive. See “Egocentric
incentives” on page 118.

Cons Getting the points-per-action formulation right is an ongoing process, while users continually look for
the sweet spot of minimum level of effort for maximum point gain. The correct formulation takes into
account the effort required as well as the value of the behavior. See “Egocentric incentives”
on page 118.

Points are a discouragement to many users with altruistic motivations. See “Altruistic or sharing incen-
tives” on page 113 and “Leaderboards Considered Harmful” on page 194.

Point systems are increasingly being used as game currencies. Social
games offered by developers such as Zynga generate participation points that users can
spend on special benefits in the game, such as unique items or power-ups that improve
the experience of the game. (See Figure 6-17.) Such systems have exploded with the
introduction of the ability to purchase the points for real money.

Points as currency.
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Figure 6-17. Many social games, such as Mafia Wars by Zynga, earn revenue by selling points. These
points can be used to accelerate game progress or to purchase vanity items.

If you consider any points-as-currency scheme, keep in mind that because the points
reflect (and may even be exchangeable for) real money, such schemes place the moti-
vations for using your application further from altruism and more in the range of a
commercial driver.

Even if you don’t officially offer the points for sale and your application allows users
to spend them only on virtual items in the game, a commercial market may still arise
for them. A good historical example of this kind of aftermarket is the sale of game
characters for popular online multiplayer games, such as World of Warcraft. Character
levels in a game represent participation or experience points, which in turn represent
real investments of time and/or money. For more than a decade, people have been
power-leveling game characters and selling them on eBay for thousands of dollars.

We recommend against turning reputation points into a currency of any kind unless
your application is a game and it is central to your business goals. More discussion of
online economies and how they interact with reputation systems is beyond the scope
of this book, but an ever-increasing amount of literature on the topic of real-money
trading (RMT) is readily available on the Internet.

Generating compound community claims

Compound community claims reflect multiple separate, but related, aggregated claims
about a single target and include patterns such as reviews and rated message board
posts. But the power of attaching compound inputs of different types from multiple
sources lets users understand multiple facets of an object’s reputation.

For example, ConsumerReports.org generates two sets of reputation for objects: the
scores generated as a result of the tests and criteria set forth in the labs, and the average
user ratings and comments provided by customers on the website. (See Figure 6-18.)
These scores can be displayed side by side to allow the site’s users to evaluate a product
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both on numerous standard measures and on untested and unmeasured criteria. For
example, user comments on front-loading clothes washers often mention odors, be-
cause former users of top-loading washers don’t necessarily know that a front-loading
machine needs to be hand-dried after every load. This kind of subtle feedback can’t be
captured in strictly quantitative measures.

Figure 6-18. Consumer Reports combines ratings from external sources, editorial staff, and user
reviews to provide a rich reputation page for products and services.

Though compound community claims can be built from diverse inputs from multiple
sources, the ratings-and-reviews pattern is well established and deserves special com-
ment here (see Table 6-5). Asking a user to create a multipart review is a very heavy-
weight activity—it takes time to compose a thoughtful contribution. Users’ time is
scarce, and research at Yahoo! and elsewhere has shown that users often abandon the
process if extra steps are required, such as logging in, registration for new users, or
multiple screens of input.
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Even if it’s necessary for business reasons, these barriers to entry will significantly in-
crease the abandon rate for your review creation process. People need a good reason
to take time out of their day to create a complex review. Be sure to understand your
model (see the section “Incentives for User Participation, Quality, and Modera-
tion” on page 111) and the effects it may have on the tone and quality of your content.
For an example of the effects of incentive on compound community claims, see
“Friendship incentives” on page 114.

Table 6-5. Compound community claims mechanisms

Reputation models Ratings-and-reviews, eBay merchant feedback, and so on.

Inputs All types from multiple sources and source types, as long as they all have the same target.

Processes All appropriate process types apply; every compound community claim is custom built.

Common uses User-created object reviews.

Editor-based roll-ups, such as movie reviews by media critics.

Side-by-side combinations of user, process, and editorial claims.

Pros This type of input is flexible; any number of claims can be kept together.

This type of input provides easy global access; all the claims have the same target. If you know the target
ID, you can get all reputations with a single call.

Some standard formats for this type of input—for example, the ratings-and-reviews format—are well
understood by users.

Cons If a user is explicitly asked to create too many inputs, incentive can become a serious impediment to
getting a critical mass of contributions on the site.

Straying too far from familiar formatting, either for input or output, can create confusion and user fatigue.

There is some tension between format familiarity and choosing the correct input scale. See “Good In-
puts” on page 135.

Generating inferred karma

What happens when you want to make a value judgment about a user who’s new to
your application? Is there an alternative to the general axiom that “no participation
equals no trust”? In many scenarios, you need an inferred reputation score—a lower-
confidence number that can be used to help make low-risk decisions about a user’s
trustworthiness until she can establish an application-specific karma score. (See Fig-
ure 6-19.)

In a web application, proxy reputations may be available even for users who have never
created an object, posted a comment, or clicked a single thumb-up. The user’s browser
possesses session cookies that can hold simple activity counters even for logged-out
users; the user is connected through an IP address that can have a reputation of its own
(if it was recently or repeatedly used by a known abuser); and finally the user may have
an active history with a related product that could be considered in a proxy reputation.
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Remembering that the best karma is positive karma (see the next section “Practitioner’s
Tips: Negative Public Karma” on page 161), when an otherwise unknown user eval-
uates an object in your system and you want to weight the user’s input, you can use
the inferences from weak reputations to boost the user’s reputation from 0 to a rea-
sonable fraction (for example, up to 25%) of the maximum value.

A weak karma score should be used only temporarily while a user is establishing robust
karma, and, because it is a weak indicator, it should provide a diminishing share of the
eventual, final score. (The share of karma provided by inferred karma should diminish
as more trustworthy inputs become available to replace it.) One weighting method is
to make the inferred share a bonus on top of the total score (the total can exceed 100%)
and then clamp the value to 100% at the end. See Table 6-6.

Table 6-6. Inferred karma mechanisms

Reputation models Models are always custom; inferred karma is known to be part of the models in the following applications:

• Yahoo! Answers and uses inferred karma to help evaluate contributions by unknown users when
their posts are flagged as abusive by other users; see the case study in Chapter 10.

• WikiAnswers.com uses inferred karma to limit access to potentially abusive actions, such as erasing
the contributions of other users.

Inputs Application external values; examples include the following:

• User account longevity

• IP address abuse score

• Browser cookie activity counter or help-disabled flag

• External trusted karma score

Processes Custom mixer

Common uses Partial karma substitute: separating the partially known from the complete strangers

Figure 6-19. If a user comes to your application “cold” (with no prior history of interacting with it),
you may be able to infer much information about him from external contexts.
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Help system display, giving unknown users extra navigation help

Lockout of potentially abused features, such as content editing, until the user has demonstrated familiarity
with the application and lack of hostility to it

Deciding when to route new contributions to customer care for moderation

Pros Allows for a significantly lower barrier for some user contributions than otherwise possible, for example,
not requiring registration or login.

Provides for corporate (internal use) karma. No user knows this score, and the site operator can change
the application’s calculation method freely as the situation evolves and new proxy reputations become
available.

Helps render your application impervious to accidental damage caused by drive-by users.

Cons Inferred karma is, by construction, unreliable. For example, since people can share an IP address over time
without knowing it or each other, including it in a reputation can undervalue an otherwise excellent user
by accident. However, though it might be tempting for that reason to remove IP reputation from the
model, IP address is the strongest indicator of bad users; such users don’t usually go to the trouble of
getting a new IP address whenever they want to attack your site.

Inferred karma can be expensive to generate. How often do you want to update the supporting reputations,
such as IP or cookie reputation? It would be too expensive to update them at very single HTTP roundtrip,
so smart design is required.

Inferred karma is weak. Don’t trust it alone for any legally or socially significant actions.

Practitioner’s Tips: Negative Public Karma
Because an underlying karma score is a number, product managers often misunder-
stand the interaction between numerical values and online identity. The thinking goes
something like this:

• In our application context, the user’s value will be represented by a single karma,
which is a numerical value.

• There are good, trustworthy users and bad, untrustworthy users, and everyone
would like to know which is which, so we will display their karma.

• We should represent good actions as positive numbers and bad actions as negative,
and we’ll add them up to make karma.

• Good users will have high positive scores (and other users will interact with them),
and bad users will have low negative scores (and other users will avoid them).

This thinking—though seemingly intuitive—is impoverished, and is wrong in at least
two important ways:

• There can be no negative public karma—at least for establishing the trustworthi-
ness of active users. A bad enough public score will simply lead to that user’s
abandoning the account and starting a new one, a process we call karma bank-
ruptcy. This setup defeats the primary goal of karma—to publicly identify bad
actors. Assuming that a karma starts at zero for a brand-new user that an
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application has no information about, it can never go below zero, since karma
bankruptcy resets it. Just look at the record of eBay sellers with more than three
red stars. You’ll see that most haven’t sold anything in months or years, either
because the sellers quit or they’re now doing business under different account
names.

• It’s not a good idea to combine positive and negative inputs in a single public karma
score. Say you encounter a user with 75 karma points and another with 69 karma
points. Who is more trustworthy? You can’t tell; maybe the first user used to have
hundreds of good points but recently accumulated a lot of negative ones, while the
second user has never received a negative point at all. If you must have public
negative reputation, handle it as a separate score (as in the eBay seller feedback
pattern).

Even eBay, with the most well-known example of public negative karma, doesn’t rep-
resent how untrustworthy an actual seller might be; it only gives buyers reasons to take
specific actions to protect themselves. In general, avoid negative public karma. If you
really want to know who the bad guys are, keep the score separate and restrict it to
internal use by moderation staff.

The Dollhouse Mafia, or “Don’t Display Negative Karma”
The Sims Online was a multiplayer version of the popular Sims games by Electronic
Arts and Maxis in which the user controlled an animated character in a virtual world
with houses, furniture, games, virtual currency (called Simoleans), rental property, and
social activities. You could call it playing dollhouse online.

One of the features that supported user socialization in the game was the ability to
declare that another user was a trusted friend. The feature involved a graphical display
that showed the faces of users who had declared you trustworthy outlined in green,
attached in a hub-and-spoke pattern to your face in the center.

People checked each other’s hubs for help in deciding whether to take certain in-game
actions, such as becoming roommates in a house. Decisions like these are costly for a
new user—the ramifications of the decision stick with a newbie for a long time, and
“backing out” of a bad decision is not an easy thing to do. The hub was a useful decision-
making device for these purposes.

That feature was fine as far as it went, but unlike other social networks, The Sims
Online allowed users to declare other users untrustworthy, too. The face of an untrust-
worthy user appeared circled in bright red among all the trustworthy faces in a user’s
hub.

It didn’t take long for a group calling itself the Sims Mafia to figure out how to use this
mechanism to shake down new users when they arrived in the game. The dialog would
go something like this:

“Hi! I see from your hub that you’re new to the area. Give me all your Simoleans or my
friends and I will make it impossible to rent a house.”
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“What are you talking about?”

“I’m a member of the Sims Mafia, and we will all mark you as untrustworthy, turning
your hub solid red (with no more room for green), and no one will play with you. You
have five minutes to comply. If you think I’m kidding, look at your hub—three of us
have already marked you red. Don’t worry, we’ll turn it green when you pay….”

If you think this is a fun game, think again. A typical response to this shakedown was
for the user to decide that the game wasn’t worth $10 a month. Playing dollhouse
doesn’t usually involve gangsters. It’s hard to estimate the final cost to EA & Maxis for
such a simple design decision, in terms of lost users, abandoned accounts, and cancelled
subscriptions.

In your own community and application design, think twice about overtly displaying
negative reputation, or putting such direct means in the hands of the community to
affect other’s reputations. You risk enabling your own mafias to flourish.

Draw Your Diagram
With your goals, objects, inputs, and reputation patterns in hand, you can draw a draft
reputation model diagram and sketch out the flows in enough detail to generate the
following questions: what data will I need to formulate these reputation scores cor-
rectly?; how will I collect the claims and transform them into inputs?; which of those
inputs will need to be reversible, and which will be disposable?

If you’re using this book as a guide, try sketching out a model now, before you consider
creating screen mock-ups. One approach we’ve often found helpful is to start on the
right side of the diagram—with the reputations you want to generate—and work your
way back to the inputs. Don’t worry about the calculations at first; just draw a process
box with the name of the reputation inside and a short note on the general nature of
the formulation, such as aggregated acting average or community player rank.

Once you’ve drawn the boxes, connect them with arrows where appropriate. Then
consider what inputs go into which boxes, and don’t forget that the arrows can split
and merge as needed.

Then, after you have a good rough diagram, start to dive into the details with your
development team. Many mathematical and performance-related details will affect
your reputation model design. We’ve found that reputation systems diagrams make
excellent requirements documentation and make it easier to generate the technical
specification, while also making the overall design accessible to nonengineers.

Of course, your application will consist of displaying or using the reputations you’ve
diagrammed (Chapters 7 and 8). Project engineers, architects, and operational team
members may want to review Chapter 9 first, as it completes the schedule focused,
development-cycle view of any reputation project.
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CHAPTER 7

Displaying Reputation

In Chapter 6, we described how to create a custom reputation model by identifying the
objects in your application, selecting appropriate inputs, and developing the processes
you’ll need to generate your reputations. But your work doesn’t end there. Far from it.
Now you have decisions to make about how to use the reputations that your system is
tabulating.

In this chapter and the next, we discuss the many options for using reputation to im-
prove the user experience of your site, enrich content quality, and provide incentives
for your users to become better, more active participants. In this chapter specifically,
we discuss options for displaying reputation, to whom to display it, how to display it,
and help you decide which display forms are right for your application.

How to Use a Reputation: Three Questions
For each reputation you are creating to display or use, you should ask each of these
questions before proceeding:

1. Who will be able to see the reputation?

• Is it personal—hidden from other users but visible to the reputation holder?

• Is it public—displayed to friends or strangers, or visible to search engines?

• Is it corporate—limited to internal use—for improving the site or discreetly rec-
ognizing outliers in ways that may not be visible to the community?

2. How will the reputation be used to modify your site’s output?

• Will you use the reputation to filter the lowest- or highest-quality items in a set?

• Will you use the reputation to sort or rank items?

• And/or will this score be used to make other decisions about how the site flows
or your business operates?

3. Is this reputation for a content item or a person? Each requires a fundamentally
different approach.
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Though you may choose multiple answers from this list for each reputation, try to keep
it simple at first: don’t try to do too much with a single reputation. Confounding the
purposes of a reputation—by, for example, surfacing participation points in a public
karma score—can encourage undesirable user behavior and may even backfire by dis-
couraging participation. Read Chapters 7 and 8 completely for a solid understanding
of the issues related to overloading a single reputation.

Resist the temptation to treat a single reputation score as the cure-all for
your user-generated content incentive ills. Remember the lesson of the
FICO score in “FICO: A Study in Global Reputation and Its Chal-
lenges” on page 10.

Who Will See a Reputation?
So far, the reputation you’re calculating is little more than a cold numerical score rolled
up from the aggregate actions of people interacting with your site. You’ve carefully
determined the scope of the reputation, chosen the inputs that contribute to it, and
thought at length about the effect that you want the reputation to generate in the
community.

Now you must decide whether it makes sense to display the reputation on your site at
all and, if so, to whom. How you display reputation information—how much and how
prominently—will influence the actions that users take on your site, their trust in your
site and one another, and their long-term satisfaction with your community.

To Show or Not to Show?
Compelling reasons exist to keep reputations hidden from users. In fact, in some cir-
cumstances, you may want to obscure the fact that you’re tracking them at all. It may
sound rather Machiavellian, but the truth of the matter is this: a community under
public scrutiny behaves differently (and, in many ways, less honestly) than one in bliss-
ful ignorance.

Several trade-offs are involved. Displaying reputations takes up significant page real
estate, requires user interface design and testing, and can compete with your content
for the user’s attention and understanding. Quickly, show Digg.com (Figure 7-1) to 10
of your friends and ask them, “What kind of site is this? News? Entertainment? Com-
munity?” Odds are good that at least a few of them will answer: “This appears to be
some sort of contest.”

The impression that Digg makes is not a bad thing; it just demonstrates that Digg made
a conscious decision to display content reputation prominently. In fact, the display of
reputation is the central interaction mechanism on the site. It’s practically impossible
to interact with Digg, or get any use out of it, without some understanding of how
community voting affects the selection and display of popular items on the site. (Digg
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is perhaps the most well-known example of a site that employs the Vote-to-Promote
pattern. See Chapter 6.)

Juxtapose Digg’s approach with that of Flickr. The popular photo-sharing and discov-
ery service also makes use of reputation to surface quality content, but it does not
display explicit reputations, rather it prominently displays items that achieve a certain
reputation and that can be browsed (daily, weekly, or monthly) in the “Explore” gallery
(at http://www.flickr.com/explore); see Figure 7-2. The result is a very consistent and
impressive display of high-quality photos with very little indication of how those photos
were selected.

Flickr’s interestingness algorithm determines which photos make it into the “Explore”
gallery and which don’t. The same algorithm lets users sort their own photos by
interestingness.

Figure 7-1. Digg’s site design puts overt reputation scores front and center.
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Digg and Flickr represent two very different approaches to reputation display, but the
results are very much the same. Theoretically, you can always glance at the front page
of Digg or Flickr’s “Explore” gallery to see where the good stuff is—what people are
watching, commenting on, or interacting with the most on the site.

How do you decide whether to display reputations on your site? And how prominently?
Generally, follow the rule of least disclosure: do not display a reputation that doesn’t
add specific value to the objects being evaluated.

Figure 7-2. Flickr’s “Explore” gallery is also based on reputation, but you never see a score associated
with a photo.
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Likewise, don’t bother asking users for reputation input (see Chapter 6) that you’ll
never use; you’ll confuse users and encourage undesired patterns of “invented signifi-
cance,” including abuse.

Avoid collecting reputation for display only. Orkut allowed users to rate
other users explicitly on iconic criteria like “trusty,” “cool,” and “sexy”
for no use other than display. This use of reputation caused all kinds of
social backlash.

People were either disappointed that they weren’t rated “cool” by more
people, or they were creeped out by people of the same gender calling
them sexy. Eventually, Orkut removed the display of individual friends’
ratings and kept only the aggregate scores.

Irrelevant reputations are meaningless and consume valuable resources. If you don’t
have a relevant use for a reputation, beware of sticking yourself later with the tough
choice of either awkwardly removing a failed feature or having to support it as a costly
legacy element.

Personal Reputations: For the Owner’s Eyes Only
Are you tracking a reputation primarily to keep users informed about how well they or
their creations are performing in the community? Consider displaying that reputation
only to its owner, as a personal communication between site and user.

Personal Reputation Is Not Private
We use the word personal very deliberately here, distinguishing it from private. No
reputation system is truly private; at least one other party (typically the site operator)
will almost always have access to the actions, inputs, and roll-ups that formulate a user’s
score. In fact, you may store internally used reputations (see “Corporate Reputations
Are Internal Use Only: Keep Them Hush-hush” on page 172) that are largely based
on the exact same data.

In other words, reputations may be displayed in a personal context, but that’s no guar-
antee that they’re private. As a service provider, you should acknowledge that distinc-
tion and account for it in your terms of service.

Personal reputations are used extensively for applications such as social bookmarking,
lists of favorites, training recommendation systems, sorting and filtering news feeds,
providing content quality and feedback, fine-grained experience point tracking, and
other performance metrics. Most of the same user interface patterns for displaying
public reputation apply to personal ones, too, but take care to ensure that each user
knows when her reputations will and will not be displayed to others.
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Keep a reputation personal when its owner gains some significant ben-
efit from it—when it either improves his experience of the site (that is,
personalizes it) or provides a tool for increasing self-satisfaction. For
example, by selecting news stories about various sports teams over time,
a user might generate a geographic region reputation that can be used
to target advertising displayed to the user. Clearly that reputation should
not be public information, but it might be surfaced privately so that the
user can correct it—“I’m a fan of Northern California sports teams, but
I’m going to MIT and I really want ads for electronics stores in the Bos-
ton area.”

Google Analytics (see Figure 7-3) is an example of rich personal reputation information.
It provides detailed information about the performance of your website, across a known
range of score types, and it is available only to you, the site owner (or others to whom
you grant access). While that information is invaluable to you in gauging the response
of a community (in this case, the entire Web) to your content, exposing it to everyone
would offer very little practical benefit. In fact, it would be a horrible idea.

Figure 7-3. Google’s Analytics interface shows information that is clearly best kept between you and
Google. It’s personal.
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Personal and Public Reputations Combined
Some reputation display patterns provide both a personal and a public representation.
In the named-levels display pattern “Named levels” on page 188 the personal repre-
sentation of the reputation score often is numeric, showing the exact score, whereas
the public representation obscures exactly where in the level the target’s score actually
is. Online games usually report only the level to other users and the exact experience
points to the player.

Public Reputations: Widely Visible
When the whole community would benefit from knowing the reputations of either
people or content, consider displaying public reputations. Public reputations may be
displayed to everyone in the community or only to users who are members of a group,
are connected through a social network, or have achieved status as senior, trusted
members of the community by surpassing some reputation threshold.

When is it a good idea to display public reputations? Remember our original definition:
reputation is information used to make a value judgment about a person or an object in
a given context for a specific time. Consider the following questions:

• What decisions am I asking users to make on my site?

— Compare items’ quality against one another?

— Determine someone’s credibility or trustworthiness?

— Decide whether something’s worth reading?

• Am I asking users to make time-sensitive decisions or decisions in which additional,
well-placed information would save them heartache?

• Can I present the reputation in a way that is fair and comprehensible and doesn’t
overwhelm the presentation of the content?

Public reputations are used for hundreds of purposes on the Web: to compare items in
a list on the basis of community member feedback, evaluate particular targets for online
transaction trustworthiness, filter and display top-rated message board posts, rank the
best local Indonesian restaurants, show today’s gallery of the most interesting photos,
to display leaderboards of the top-scoring reputation targets, and much more.

Over time, public reputations can evolve to represent your community’s understanding
of its own zeitgeist. And there’s the rub: depending on how you use public reputation,
you can alienate users who aren’t part of the in crowd. For example, Yelp is all about
public ratings and reviews of local restaurants, but it isn’t used extensively by people
over 50. Most of the reviews are written by twentysomethings (most “Yelpers” are
between the ages of 26 and 35) who seem to be mostly interested in a restaurant’s
potential as a dating hangout.
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Public reputations are helpful for allowing users to compare like items.
Public karma reputations also serve as an effective extension of a per-
son’s identity.

Corporate Reputations Are Internal Use Only: Keep Them Hush-hush
Almost every website with a large volume of user-generated content is using hidden
reputation scores internally—as a means of tracking exactly who is saying what about
a content item or another user:

• When users click the Spam button in a webmail application, they contribute to a
database of IP addresses for abusive mail servers.

• Web crawlers constantly scan the Web to examine what sites link to what other
sites and to calculate a hidden score such as Google’s PageRank.

• Yahoo! Answers tracks corporate reputation for users who are particularly good at
identifying bad content and gives them more power to hide bad content quickly.

And internally used reputation scores need not always be acted on immediately by
scripts or bots; they can also be a very helpful tool for human decision making. Com-
munity managers often use corporate reputation reports on the most active, connected,
and highest-quality user contributions and creators. They might use the information
to generate high-quality best-of galleries to promote a site, or they might invite top
contributors to participate in early testing of new designs, products, or features. Finally,
user actions often are aggregated into reputations for behavioral targeting of advertis-
ing, customer care planning and budgeting, product feature needs assessment, and even
legal compliance.

Even if your site wouldn’t benefit from any public or personal form of
reputation display, you probably need to track corporate (internal) rep-
utation scores to understand what your users are doing, tune your site
development, and optimize support costs.

How Will You Use Reputation to Modify Your Site’s Output?
After deciding which reputation scores to display to whom, you’ll need to decide how
to use the scores to change the way your application works. It’s easy to think that all
you need to do is display a few stars here or a few points there—but if you stopped
there, you wouldn’t capture the most value from reputation.

To use reputation without displaying it, focus on how to identify the outlying reputable
entities (users and content) to improve the quantity and quality of interaction on your
site. When you’re selecting patterns, review the goals you set for your system (see
Chapter 5). If you’re primarily concerned about identifying abusive behavior, focus on
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filtering and decisions. If you’re going to display a lot of public reputation over many
entities, focus on ranking and sorting to help users explore your content.

We’ll cover patterns for making use of the reputation of entities in Chapter 8.

Reputation Filtering
At its simplest, filtering consists of sorting by one or more reputation dimensions and
looking only at the first or last entries in the list to identify the highest and lowest scoring
entities for further, even automatic, action. In reality, many reputations used for filter-
ing are often made of more numerous and complex inputs than reputations built for
public display in rankings or sorted lists.

Consider Flickr’s interestingness filter reputation: it is corporate (used internally and
not displayed to any user), it is complex (made up of many inputs: views, favorites,
comments, and more), and it is used to automatically and continuously generate a
public gallery. But the score is never displayed to users; you cannot query a photo to
get its interestingness score. Perhaps the easiest way to think about a filter reputation
is that, if it is not ever displayed to users, they don’t have to understand what it’s made
up of. If users can see a reputation indicator, they’ll want to know what it means and
how it’s calculated.

In fact, algorithm speculation has become almost a spectator sport on
the Web. Name any popular reputation-heavy site (Digg, Amazon,
YouTube, and many others), and odds are good that you’ll find any
number of threads or forums dedicated to figuring out exactly how its
algorithm works.

The reputation usage patterns related to filtering are: user threshold, public gallery,
guided learning, recommendations, bookmarks/favorites, similar items, content by
author karma, and friends filtering.

Reputation Ranking and Sorting
By far the most common displays of reputation are in the form of explicit lists of rep-
utable entities, such as the restaurants in the local neighborhood with the highest aver-
age overall rating, or the list of players with the highest Elo ranks for chess or even
which keyword search marketing terms are generating the most clicks per dollar spent.

Typically, the reputation score is used alone or in conjunction with other metadata
filters, such as geographic location, to make it easy for users to sort between multiple
entities at a glance. For example, to list top-rated hotels in a five mile radius of a zip
code, one would combine the distance and reputation into a rank-score before dis-
playing the list.
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The primary purpose of allowing such sorting is to enable users to select an item to
examine in more detail. Note that the reputation score need not be displayed to allow
sorting or ranking entities. For example, to avoid encouraging abuse, public search
engines typically hide search ranking scores.

Any time you sort or rank reputable entities, you’re helping users to sort
data into the good and the bad. This is creating value—and wherever
value exists, people will be interested in capturing as much of it as pos-
sible using whatever means are available. The more successful your rep-
utation ranking is, the more value it creates, and the more some people
will want to game your design for their own benefit.

The lesson is a reputation-based display that may work well when a
community is small may need to be modified over time, as it becomes
more successful. This is a success paradox: the more popular your rep-
utation system becomes, the more likely you’ll see reputation abuse.
Keep an eye out for use patterns that don’t contribute to your business
and community goals.

Recommender systems use reputation to make suggestions about similarities between
user tastes (“People who like the same things as you do you also like…”) and discover
taste similarities between items (“People who liked this item also like…”). They use
reputation in the form of confidence scores and typically display multiple entities in
rank order when making recommendations. When the user selects a suggested item,
that selection itself is also entered in the reputation system to further improve the qual-
ity of future results.

The specific reputation usage patterns related to ranking and sorting are quality-sort
search results, leaderboards, related items, recommendations, search relevance (such
as Google’s PageRank), corporate community health metrics, and advertising perform-
ance metrics.

Reputation Decisions
This entire class of use patterns often is overlooked because it typically happens behind
the scenes, out of users’ sight. Though you may not be aware of it, more hidden deci-
sions are made on the basis of reputation than are actually reflected directly to users,
either with filtering or ranking.

Billions of email messages are processed daily across the world. ISPs secretly track the
IP addresses of the senders; they use this reputation to decide whether the item should
be dropped, put in a bulk folder, or sent on to another content-based reputation check
before being delivered to your inbox. This is only one example of many patterns used
by Web 2.0 site operators around the world to manage user-generated content without
exposing the scores or the methods for their calculations. When used for abuse miti-
gation, the value of the reputation score can be directly correlated with cost savings
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from increased efficiency in customer care and community management, as well as in
hardware and other operational costs. Each year, the IP reputation system for Yahoo!
Mail saves tens of millions of dollars in real costs for servers, storage, and overhead.

When a reputation score is complex, such as karma (see the next section), it may be
suitable for public display as a standalone score so that others can make specific,
context-sensitive decisions. eBay’s feedback and other reputation scores are a good
example of a publicly shared karma. Since the transactions for items are often one of a
kind, content filtering and ranking don’t provide enough information for anyone to
make a decision about whether to trust the seller or buyer.

Of course, some reputation is nonnumeric and can’t be ranked at all—for example,
comments, reviews, video responses, and personal metadata associated with source
users who evaluate your entities. These forms of input must be displayed so that users
can interpret the input directly. For instance, a 20-year-old single woman in Los Angeles
who is looking for a new sweater might want to discount the ratings given by a 50-year-
old married man living in Alaska. Nonnumeric reputation often provides just enough
additional context for people to make more informed judgments about entities.

Here are the specific reputation usage patterns related to decisions: critical threshold,
automatic rejection, flag for moderation, flag for promotion, and reviews and
comments.

Content Reputation Is Very Different from Karma
Reputable entity refers to everything in a database, including users and content items,
with one or more reputations attached to it. All kinds of reputation score types and all
kinds of displays and use patterns might seem equally valid for content reputation and
karma, but usually they’re not. To highlight the differences between content reputation
and karma, we’ve categorized them by the ways in which they’re typically calculated:

Simple reputation
Simple reputation is any reputation score that is generated directly by user evalu-
ation of a reputable entity and that is subject to an elementary aggregation calcu-
lation, such as simple average. For example, simple reputation is used on most
ratings-and-reviews sites. Simple reputation is direct and easy to understand.

Complex reputation
Complex reputation is a score aggregated from multiple evaluations, including
evaluations of different but related targets, calculated with an opaque method.
Email IP spammer, Google PageRank, and eBay feedback reputations are examples
of complex reputation. It’s an indirect evaluation, and users may not understand
how it was calculated, even if the score is displayed.
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Content Reputation
Content reputation scores may be simple or complex. The simpler the score is—that
is, the more it directly reflects the opinions or values of users—the more ways you can
consider using and presenting it. You can use them for filters, sorting, ranking, and in
many kinds of corporate and personalization applications. On most sites, content
reputation does the heavy lifting of helping you to find the best and worst items for
appropriate attention.

When displaying content reputation, avoid putting too many different
scores of different types on a page. For example, on the Yahoo! TV
episode page, a user can give an overall star rating to a TV program and
a thumb vote on an individual episode of the program. Examination of
the data showed that many visitors to the page clicked the thumb icons
when they meant to rate the entire show, not just an episode.

Karma
Content reputation is about things—typically inanimate objects without emotions or
the ability to directly respond in any way to its reputation.

But karma represents the reputation of users, and users are people. They are alive, they
have feelings, and they are the engine that powers your site. Karma is significantly more
personal and therefore sensitive and meaningful. If a manufacturer gets a single bad
product review on a website, it probably won’t even notice. But if a user gets a bad
rating from a friend—or feels slighted or alienated by the way your karma system
works—she might abandon an identity that has become valuable to your business.
Worse yet, she might abandon your site altogether and take her content with her.
(Worst of all, she might take others with her.)

Take extreme care in creating a karma system. User reputation on the Web has under-
gone many experiments, and the primary lesson from that research is that karma should
be a complex reputation and it should be displayed rarely.

Karma is complex, built of indirect inputs

Sometimes making things as simple and explicit as possible is the wrong choice for
reputation:

• Rating a user directly should be avoided. Typical implementations require a user
to click only once to rate another user and are therefore prone to abuse. When
direct evaluation karma models are combined with the common practice of stream-
lining user registration processes (on many sites opening a new account is an easier
operation than changing the password on an existing account), they get out of hand
quickly. See the example of Orkut in “Numbered levels” on page 186.
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• Asking people to evaluate others directly is socially awkward. Don’t put users in
the position of lying about their friends.

• Using multiple inputs presents a broader picture of the target user’s value.

• Economics research into “revealed preference,” or what people actually do, as op-
posed to what they say, indicates that actions provide a more accurate picture of
value than elicited ratings.

Karma calculations are often opaque

Karma calculations may be opaque because the score is valuable as status, has revenue
potential, and/or unlocks privileged application features.

Display karma sparingly

There are several important things to consider when displaying karma to the public:

• Publicly displayed karma should be rare because, as with content reputation, users
are easily confused by the display of many reputations on the same page or within
the same context.

• Publicly displayed karma should be rare because it can create the wrong incentives
for your community. Avoid sorting users by karma. See “Leaderboards Considered
Harmful” on page 194.

• If you do display it publicly, make karma visually distinct from any nearby content
reputation. Yahoo!’s EU message board displays the karma of a post’s author as a
colored medallion, with the message rated with stars. But consider this: Slashdot’s
message board doesn’t display the karma of post authors to anyone. Even the dis-
play of a user’s own karma is vague: “positive,” “good,” or “excellent.” After orig-
inally displaying karma publicly as a number, over time Slashdot has shifted to an
increasingly opaque display.

• Publicly displayed karma should be rare because it isn’t expected. When Yahoo!
Shopping added Top Reviewer karma to encourage review creation, it displayed a
Top Reviewer badge with each review and rushed it out for the Christmas 2006
season. After the New Year had passed, user testing revealed that most users didn’t
even notice the badges. When they did notice them, many thought they meant
either that the item was top rated or that the user was a paid shill for the product
manufacturer or Yahoo!.

Karma caveats

Though karma should be complex, it should still be limited to as narrow a context as
possible. Don’t mix shopping review karma with chess rank. It may sound silly now,
but you’d be surprised how many people think they can make a business out of creating
an Internet-wide trustworthiness karma.
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Yahoo! holds reputation for karma scores to a higher standard than reputation for
content. Be very careful in applying terminology and labels to people, for a couple of
reasons:

• Avoid labels that might appear as attacks. They set a hostile tone that will be
amplified in users’ responses. This caution applies both to overly positive labels
(such as “hotshot” or “top” designations) or negative ones (such as “newbie” or
“rookie”).

• Avoid labels that introduce legal risks. What if a site labeled members of a health
forum “experts,” and these “experts” then gave out bad advice?

These are rules of thumb that may not necessarily apply to a given context. In role-
playing games, for example, publicly shared simple karma is displayed in terms of ex-
perience levels, which are inherently competitive.

Reputation Display Formats
Reputation data can be displayed in numerous formats. By now, you’ve actually already
done much of the work of selecting appropriate formats for your reputation data, so
we’ll simply describe pros and cons of a handful of them—the formats in most common
use on the Web.

The formats you select will depend heavily on the types of inputs that you decided on
Chapter 6. If, for instance, you’ve opted to let users make explicit judgments about a
content item with 5-star ratings, it’s probably appropriate to display those ratings to
the community in a similar format.

However, that consistency won’t work when the reputation you want to display is an
aggregation or transformation of scores derived from very different input methods. For
instance, Yahoo! Movies provides a critic’s score as a letter grade compiled from scores
from many professional critics, each of whom uses a different scale (some use 4- or 5-
star ratings, some thumb votes, and still others use customized iconic scores). Such
scores are all transformed into normalized scores, which can then be displayed in any
form.

Here are the four primary data classes for reputation claims:

Normalized score
Most composite reputations are represented as decimal numbers from 0.0 to 1.0,
with all inputs converted, or normalized, to this range. (See Chapter 6 for more on
the specific normalization functions.) Displaying a reputation in the various forms
presented in the remainder of this chapter is also known as denormalization: the
process of converting reputation data into a presentable format.

Summary count, raw score, and other transitional values
Sometimes a reputation must hold other numeric values to better represent
the meaning of the normalized score when it is displayed. For example, in a
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simple-mean reputation, the summary count of the inputs that contribute to the
reputation are also tracked, allowing a display patterns that can override or modify
the score. For example, a pattern could require a minimum number of inputs (see
“Liquidity: You Won’t Get Enough Input” on page 58).

In cases where information may be lost during the normalization process, the orig-
inal input value, or raw score, should also be stored. Finally, other related or tran-
sitional values may also be available for display, depending on the reputation
statement type. For example, the simple average claim type keeps the rolling sum
of the previous ratings along with a counter as transitional values in order to rapidly
recompute the average when new ratings arrives.

Freeform content
Freeform inputs provided by users may be constrained along certain dimensions,
such as format or length, but they are otherwise completely up to the users’ dis-
cretion. Some examples of this class of data are user comments and video respon-
ses. Notice that items like the title of a product review (if the review writer is given
the option to provide one) is also a freeform element; it gives review writers an
opportunity to provide an opinion about a target. Content tags are also a type of
freeform content element.

Freeform content is a notable class of data because, although deriving computable
values from them is more difficult, users themselves can derive a lot of qualitative
benefit from it.

At Yahoo! study after study has shown that when users read reviews
by other community members—whether the reviews cover movies,
albums, or other products—it’s the body of the review that users
pay the most attention to. The stars and the number of favorable
votes matter, but people trust others’ words first and foremost.
They want to trust an opinion based on shared affinity with the
writer, or how well they express themselves. Only then will they
give attention to the other stuff.

Metadata
Sometimes, machine-understood information about an object can yield insight into
its overall quality or standing within a community. For comparative purposes, for
example, you might want to know which of two different videos was available first
on your site. Examples of metadata relevant to reputation include the following:

• Timestamp

• Geographical coordinates

• Format information, such as the length of audio, video, or other media files

• The number of links to an item or the number of times the item itself has been
embedded in another site
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Reputation Display Patterns
Once you’ve decided to display reputation, your decision does not end there. There are
a number of possible display patterns for showing reputation (and they may even be
used in combination). Some of the more common patterns are discussed in the up-
coming sections.

Normalized Score to Percentage
A normalized score ranges from 0.0 to 1.0 and represents a reputation that can be
compared to other reputations no matter what forms were used for input. When dis-
playing normalized scores to users, convert them to percentages (multiply by 100.0),
the numeric form most widely understood around the world. From here on, we assume
this transformation when we discuss display of a percentage or normalized score to
users.

The percentage may be displayed as a whole number or with fixed decimal places,
depending on the statistical significance of your reputation and user interface and lay-
out considerations. Remember to include the percent symbol (%) to avoid confusion
with the display of either points or numbered levels.

Things to consider before displaying percentages:

• Use this format when the normalized reputation score is reasonably precise and
accurate. For example, if hundreds or thousands of votes have been cast in an
election, displaying the exact average percentage of affirmative and negative votes
is easier to understand than just the total of votes cast for and against.

• Be careful how you display percentages if the input claim type isn’t suitable for
normalized output of the aggregated results. For example, consider displaying the
results of a series of thumb votes; though you can display the thumb graphic that
got the majority of votes, you’ll probably still want to display either the raw votes
for each or the percentages of the total up votes and down votes.

Figure 7-4 displays content reputation as the percentage of thumbs-up ratings given
on Yahoo! Television for a television episode. Notice that the simple average cal-
culation requires that the total number of votes be included in the display to allow
users to evaluate the reliability of the score.

• Consider that a graphical sliding scale or thermometer view will make the reputa-
tion easier to understand at a glance. If necessary, also display the numeric value
alongside the graphic.

Figure 7-5 shows a number of Okefarflung’s karma scores as percentage bars, each
representing his reputation with various political factions on World of Warcraft.
Printed over each bar is one of the current named levels (see the next section
“Named levels” on page 188) in which his current reputation falls.
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Pros Cons

• Percentage displays of normalized
scores are universally understood.

• Is Web 2.0 API- and
spreadsheet-friendly.

• Implementation is trivial. This is often
the primary reason this approach is
considered.

• Percentages aren’t accurate for very small sample sizes and therefore
can be misleading. One yes vote shouldn’t be expressed as “100.00%
of votes tallied are in favor....” Consider suppressing percentage dis-
play until a reasonable number of inputs have accumulated, adjusting
the score, or at least displaying the number of inputs alongside the
average.

• As with accuracy, precision entails various challenges: displaying too
many decimal digits can lead users to make unwarranted assumptions
about accuracy. Also, if the input was from level-based or nonlinear
normalization or irregular distributions, average scores can be
skewed.

• Lots of numbers on a page can seem impersonal, especially when
they’re associated with people.

Figure 7-4. Content example: normalized percentages with summary count.

Figure 7-5. Karma example: percentage bars with named levels.

Reputation Display Patterns | 181



Points and Accumulators
Points are a specific example of an accumulator reputation display pattern: the score
simply increases or decreases in value over time, either monotonically (one at a time)
or by arbitrary amounts. Accumulator values are almost always displayed as digits,
usually alongside a units designation, for example, 10,000XP or Posts: 1,429. The ag-
gregation of the Vote-to-Promote input pattern is an accumulator.

If an accumulator has a maximum value that is understood by the reputation system,
an alternative is to display it using any of the display patterns for normalized scores,
such as percentages and levels.

Using points and accumulators:

• Display counts of actions collected from many users, such as voting and favorites.

Figure 7-6 shows an entry from Digg.com, which displays two different accumu-
lators: the number of Diggs and Comments. Note the Share and Bury buttons.
Though these affect the chance that an entity is displayed on the home page, the
counts for these actions are not displayed to the users.

• Publicly display points when you wish to encourage users to take actions that in-
crease or decrease the value for an entity.

Figure 7-7 shows a typical participation-points-enabled website, in this case Yahoo!
Answers. Points are granted for a very wide range of activities, including logging
in, creating content, and evaluating other’s contributions. Note that this minipro-
file also displays a numbered level (see “Numbered levels” on page 186) to simplify
comparison between users. The number of points accumulated in such systems
can get pretty large.

• Alternatively, consider keeping a point value of personal and presenting any public
display as either a numbered or a named level.

Pros Cons

• Explicitly displayed point
amounts that the user can in-
fluence can be a powerful
motivator for some users to
participate.

• Is easy to understand in
ranked lists.

• Implementation is trivial.

• First-mover effect. If your accumulator has no cap, awards effectively deflate
over time as the leading entities continue to accumulate points and increase
their lead. New users become frustrated that they can’t catch up, and new—
often more interesting—entities receive less attention. Consider either caps
and/or decay for your point system.

• Encourages the minimum effort for the maximum benefit behavior. The system
tells you exactly how many points are associated with your actions in real time.
Yahoo! Answers gives 10 points for an answer chosen as the best, and 1 point
each to users who rate other people’s answers. Too bad that writing the best
answer takes more than 10 times as long as it does to click a thumb icon 10 times.

• If you do cap your points, when the most of your users reach that cap, you will
need to add new activities to justify moving the cap to move higher. For example,
online role-playing games typically extend the level-cap along with expanded
content for the users to explore.
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Figure 7-6. Content example: Digg shows the number of times an item has been “Dugg.” Another
example is the count of comments for an item.

Figure 7-7. Karma example: Yahoo! Answers awards points mostly for participation.

Statistical Evidence
One very useful strategy for reputation display is to use statistical evidence: simply
include as many of the inputs in a content item’s reputation as possible, without at-
tempting to aggregate them in visible scores. Statistical evidence lets users zero in on
the aspects of a content item that they consider the most telling. The evidence might
consist of a series of simple accumulator scores:

• Number of views

• Number of links

• Number of comments

• Number of times marked as a favorite or voted on

Using statistical evidence:

• Use this display format when a variety of data points would provide a well-rounded
view of an entity’s worth or performance.

Figure 7-8 shows YouTube.com’s many different statistics associated with each
video, each subject to different subjective interpretation. For example, the number
of times a video is Favorited can be compared to the total number of Views to
determine relative popularity.

• Use statistical evidence in displays of counts of actions collected from many users,
such as voting and favorites.
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Yahoo! Answers provides a categorical breakdown of statistics by contributor, as
shown in Figure 7-9. This allows readers to notice whether the user is an answer-
person (as shown here) or a question-person or something else.

• Optionally, you might extend statistical evidence to include even more information
about how a particular score was derived.

Figure 7-10 shows how Yahoo! Answers displays not only how many people have
“starred” a question (that is, found it interesting), it also shows exactly who starred
it. However, displaying that information can have negative consequences: among
other things, it may create an expectation of social reciprocity (for example, your
friends might become upset if you opted not to endorse their contributions).

Pros Cons

• Does not attempt to mediate
or frame the experience for
users. Lets them decide which
reputation elements are rele-
vant for their purposes.

• Can tend to overwhelm an interface, with a dozen factoids and statistics about
every piece of content.

• Giving too much prominence or weight to statistical evidence in a reputation
display may overemphasize the information’s importance—for example, Twit-
ter’s follower-counts encourage the hording of meaningless connections. (See
“Leaderboards Considered Harmful” on page 194.)

Figure 7-8. Content Example: with YouTube’s very powerful “Statistics and Data” you can track a
video’s rise in popularity on the site. (Sociologist and researcher Cameron Marlow calls it an
“Epidemiology Interface.”)
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Levels
Levels are reputation display patterns that remove insignificant precision from the
score. Each level is a bucket holding all the scores in a range. Levels allow you to round
off the results and simplify the display. Notice that the range of scores in each level
need not be evenly distributed, as long as the users understand the relative difficulty of
reaching each level.

Common display patterns for levels include numbered levels and named levels.

When using levels:

• Use levels when the reputation is an average and inputs are limited to a small, fixed
set, such as 5 stars.

Figure 7-9. Karma example: answers enhanced point and level information with statistical detail.

Figure 7-10. Yahoo! Answers displays the sources for statistical evidence.

Reputation Display Patterns | 185



• Levels are helpful when the reputation is an average and may be calculated from a
very small number of inputs. Levels will hide irrelevant precision.

• Most applications use levels when reputation accumulates at a nonlinear rate. For
example, in many role-playing games, each experience level requires twice as many
experience points as the previous level.

• Use levels if some features of your application are unlocked depending on the rep-
utation score; users will want to know that they’ve achieved the required threshold.

• Be careful using levels when the input was gathered using a different scale. If the
user clicks a thumb icon, displaying the resulting score as 5 stars will be confusing.

• Be careful when listing entities by level not to surface relative position within a
level. Doing so can encourage undesired competition for specific page positions.
Sort by the lower precision level value, not the high precision normalized value.

Numbered levels

Numbered levels are the most basic form of level display. This display pattern consists
of a simple numeric value or a list of repeated icons representing the level that the
reputation score falls into. Usually levels are 0 or 1 to n, though arbitrary ranges are
possible as long as they make sense to users. The score may be an integer or a rounded
fraction, such as 3½ stars. If the representation is unfamiliar to users, consider adding
an element to the interface to explain the score and how it was calculated. Such an
element is mandatory for reputations with nonlinear advancement rates.

Using numbered levels:

• Assign numbered levels if the reputation will be displayed in a rank-ordered sort a
list of entities.

Figure 7-11 shows a typical Stars-and-Bars display pattern for ratings and reviews.
Stars and Bars are numbered levels, which happen to be displayed as graphics. In
this example, each has a numbered level of 0 to 5. Though each review’s ratings
are useful when displayed alongside the entity, the average of the overall score is
used to rank-order results on search results pages.

• It is typical to use numbered levels to display aggregate reputation if the inputs were
also numbered levels. Did you input stars? Then output stars.

Figure 7-12 shows the karma ratings from Orkut.com. The Fans indicator is an
accumulator (see “Points and Accumulators” on page 182), and the Trusty, Cool,
and Sexy ratings are numeric levels. The users simply click on the smiling faces,
ice cubes, and hearts next to their friends’ profiles to influence their scores. Many
sites don’t allow direct karma ratings such as these with good reason (see
“Karma” on page 176).

• If you need to display more than 10 levels, use numbered levels. Consider using
numbered levels instead of named levels if you display more than five levels.
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Figure 7-13 displays two forms, out of many, of numbered levels for the game
World of Warcraft. The user controls a character whose name is shown in the
Members column. The first numbered level is labeled “Level” and ranges from 1
to 80, representing the amount of time and skill the user has dedicated to this
character. The Guild Rank is a reverse-rank numbered level that represents the
status of the user in the guild. This score is assigned by the guild master, who has
the lowest guild rank.

Pros Cons

• Is easy to read.

• Accommodates unlimited values.
You can always add more levels
at the top.

• In ranked lists, relative value is
easy to see.

• Numeric format doesn’t convey limits or global value. Is level 20 good? What
about 40? Often requires “What’s this?” user interface elements to explain
levels to new users.

• Lots of numbers on a page can seem impersonal, especially when they’re
associated with people.

• For karma, numbered levels can be perceived as fostering an undesirable
competitive spirit.

Figure 7-11. Content example: stars and bars (iconic numbered levels).

Figure 7-12. Karma example: Orkut profile with an accumulator and iconic number levels.
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Figure 7-13. Karma example: Experience levels and guild rank (sortable).

Named levels

In a named levels display pattern, a short, readable string of characters is substituted
for a level number.

The name adds semantic meaning to each level so that users can more easily recognize
the entity’s reputation when the reputation is displayed separately. Is the user a “silver
contributor” or is the beef prime, choice, select, or standard?

Using named levels:

• Named levels are useful when the number of labels is five or less, so that each level
can have a name that accurately expresses its meaning.

Table 7-1 and Figure 7-14 show the meat grading levels used by the United States
Department of Agriculture. The labels are descriptive, representing existing in-
dustry terms, and several are shared across different animal species—providing
consumers a consistent standard for comparison.

Table 7-1. Content example: USDA meat grades

Species Quality grades

Beef Prime, choice, select, standard, utility, cutter, canner

Lamb and yearling mutton Prime, choice, good, utility, cull

Mutton Choice, good, utility, cull

Veal and calf Prime, choice, good, standard, utility
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Figure 7-14. Content example: USDA prime, choice, and select stamps.

• Named levels are particularly useful when numeric levels are too impersonal or
encourage undesired competition.

• If you’re considering using numeric levels but find that the top and bottom levels
should feel closer together than the numeric distance between them would other-
wise indicate—consider using named levels instead. This is especially useful with
karma scores so that new participants don’t get stuck with a demeaning level in-
dicator, like “Level 1 of 10.”

Figure 7-15 displays the current named levels used by WikiAnswers.com for user
contributions. The original three categories were Bronze, Silver, and Gold—named
after competitive medals. They are granted when nonlinearly increasing thresholds
are met. Over time, the system has been expanded on three separate occasions to
reward the nearly compulsive contributions of a handful of users.

Pros Cons

• Hiding level numbers allows for more
expressiveness.

• Level names can be thematically appropriate to,
and vary by, your application(s).

• Common hierarchies work well—for example,
poor, average, good, and excellent.

• This pattern is usually stronger when the named
levels are displayed alongside other ratings, such
as stars, points, and raw scores, to clarify them.

• Care must be taken when setting up the level names if you
ever expect to add more to either end of the scale.

• Something else for your user to learn.

• Cultural bias can be a problem, especially if your site has
an international audience. For example, the letter grading
system of F, D, C, B, A is not internationally understood.

• Ambiguous names are more confusing than simple level
numbers. Is the Ruby level better than Gold?

Ranked Lists
A ranked list is based on highest or lowest reputation scores. Ranking systems are by
their very nature comparative, and—human nature being what it is—the online com-
munity is likely to perceive this design choice as an encouragement of competition
between users.

Leaderboard ranking

A leaderboard is a rank-ordered listing of reputable entities within your community or
content pool. Leaderboards may be displayed in a grid, with rows representing the
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entities and columns describing those entities across one or more characteristics (name,
number of views, and so on). Leaderboards provide an easy and approachable way to
display the best performers in your community.

• Use leaderboards for content liberally. Provide filtered views of the boards to slice
and dice by time (“Popular Today/This Week/All Time”) or by reputation type
(“Most Viewed/Top Rated”).

Figure 7-16 shows YouTube’s leaderboard ranking for most viewed videos as a
grid. With numbers this high, it’s hard for potential reputation abusers to push
inappropriate content onto the first page. Note that there are several leaderboards,
one each for Today, This Week, This Month, and All Time.

• Use leaderboards for people sparingly, and only in contexts that are competitive by
nature. Consider giving people leaderboards narrow scope (for example, only
ranking me against my friends, to keep the comparisons fun and the stakes low).

Figure 7-17 displays Yahoo! Answer’s leaderboard. The original version of this page
was based solely on the number of points accumulated by participation, and users
quickly figured out which actions produced the most points for the least effort.
When the user’s best-answer percentage was eventually added to the profile dis-
play, it was discovered that the top-ranked users all had quality scores of less than
10%!

Pros Cons

• Clear and browsable way to compare
items for specific qualities

• Data-intensive display: leaderboards
satiate demand from information
junkie users

• May incite unhealthy competition to reach (or stay at) the top of the
leaderboard.

• When used with accumulators, leaderboards can get stale as a few
popular items move to the top and get stuck there, since nothing makes
something more popular than its appearance on the list of most popular
things.

Figure 7-15. Karma example: The contributor levels on WikiAnswers have seen several awkward
expansions.
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Figure 7-16. Content example: YouTube’s most viewed videos.

Figure 7-17. Karma example: Yahoo! Answers leaderboard.
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Top-X ranking

This is a specialized type of leaderboard where top-ranking entities are grouped into
numerical categories of performance. Achieving top-10 status (or even top-100) should
be a rare and celebrated feat.

When using Top-X ranking:

• Use top-X leaderboards for content to highlight only the best of the best contribu-
tions in your community.

Figure 7-18 shows a Top-X display for content: Billboard’s Hot 100’s list of top
recordings. The artists themselves have very little, if any, direct influence over their
song’s rank on this list.

• Use top-X designations for people sparingly, and only in contexts that are compet-
itive by nature. Because available categories in a top-X system are bounded, they
will have greater perceived value in the community.

Figure 7-19 displays the new index of Top-X karma for Amazon.com review writ-
ers. The very high number of reviews written by each of these leaders creates value
both for Amazon and the reviewers themselves. Authors and publishers seek them
out to review/endorse their book—sometimes for a nominal fee. The original ver-
sion of this reputation system, now known as “Classic Reviewer Rank,” suffered
deeply from first-mover effects (see “First-mover effects” on page 63) and other
problems detailed in this book. This eventually lead to the creation of the new
model, as pictured.

Pros Cons

• Highly motivating for top perform-
ers. The prestige of earning a top-10
or top-100 designation may make
contributors work twice as hard to
keep it.

• Yields a small, bounded set of en-
tities to promote as high quality.

• May incite unhealthy competition to reach (or stay at) the top of the ranks.

• For top-X karma based on accumulators, if a user’s reputation falls just
below a category dividing line and the user knows his score, these cate-
gories often lead to minimum/maximum gaming, in which the user en-
gages in a flurry of low-quality activity just to advance his top-X category.

• Top-X karma badges are unfamiliar to users who don’t contribute content.
Don’t expect passive users to understand or even notice a top-X badge
displayed alongside content reputation. Top-X badges are for content
producers, not consumers.
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Figure 7-18. Content example: Billboard’s Hot 100.

Figure 7-19. Karma example: Amazon’s top reviewer rankings.
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Practitioner’s Tips

Leaderboards Considered Harmful
It’s still too early to speak in absolutes about the design of social-media sites, but one
fact is becoming abundantly clear: ranking the members of your community—and
pitting them against one another in a competitive fashion—is typically a bad idea. Like
the fabled djinni of yore, leaderboards on your site promise riches (comparisons! in-
centives! user engagement!!) but often lead to undesired consequences.

The thought process involved in creating leaderboards typically goes something like
this: there’s an activity on your site that you’d like to promote; a number of people are
engaged in that activity who should be recognized; and a whole bunch of other people
won’t jump in without a kick in the pants. Leaderboards seem like the perfect solution.
Active contributors will get their recognition: placement at the top of the ranks. The
also-rans will find incentive: to emulate leaders and climb the boards.

And that activity you’re trying to promote? Site usage should swell with all those ear-
nest, motivated users plugging away, right? It’s the classic win-win-win scenario. In
practice, employing this pattern has rarely been this straightforward. Here are just a
few reasons why leaderboards are hard to get right.

What do you measure?

Many leaderboards make the mistake of basing standings only on what is easy to meas-
ure. Unfortunately, what’s easy to measure often tells you nothing at all about what is
good. Leaderboards tend to fare well in very competitive contexts, because there’s a
convenient correlation between measurability and quality. (It’s called
“performance”—number of wins versus losses within overall attempts.)

But how do you measure quality in a user-generated video community? Or a site for
ratings and reviews? It should have very little to do with the quantities of simple activity
that a person generates (the number of times an action is repeated, a comment given
or a review posted). But such measurements—discrete, countable, and objective—are
exactly what leaderboards excel at.

Whatever you do measure will be taken way too seriously

Even if you succeed in leavening your leaderboard with metrics for quality (perhaps
you weigh community votes or count send-to-a-friend actions), be aware that—because
a leaderboard singles out these factors for praise and reward—your community will
hold them in high esteem, too. Leaderboards have a kind of “Code of Hammurabi”
effect on community values: what’s written becomes the law of the land. You’ll likely
notice that effect in the activities that people will—and won’t—engage in on your site.
So tread carefully. Are you really that much smarter than your community, that you
alone should dictate its character?
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If it looks like a leaderboard and quacks like a leaderboard…

Even sites that don’t display overt leaderboards may veer too closely into the realm of
comparative statistics. Consider Twitter and its prominent display of community
members’ stats.

The problem may not lie with the existence of the stats but in the prominence of their
display (see Figure 7-20). They give Twitter the appearance of a community that values
popularity and the sheer size of a participant’s social network. Is it any wonder, then,
that a whole host of community-created leaderboards have sprung up to automate just
such comparisons? Twitterholic, Twitterank, Favrd, and a whole host of others are the
natural extension of this value-by-numbers approach.

Figure 7-20. You’d be completely forgiven if you signed into Twitter and mistook this dashboard for
a scoreboard!

Leaderboards are powerful and capricious

In the earliest days of Orkut (Google’s also-ran entry in social networking), the product
managers put a fun little widget at the top of the site: a country counter, showing where
members were from. Cute and harmless, right? Google had no way of knowing, how-
ever, that seemingly the entire population of Brazil would make it a point of national
pride to push their country to the top of that list. Brazilian blogger Naitze Teng wrote:

Communities dedicated to raising the number of Brazilians on Orkut were following the
numbers closely, planning gatherings and flash mobs to coincide with the inevitable.
When it was reported that Brazilians had outnumbered Americans registered on Orkut,
parties…were thrown in celebration.

Brazil has maintained its number one position on Orkut (as of this writing, 51% of
Orkut users are Brazilian; the United States and India are tied for a distant second with
17% apiece). Orkut today is basically a Brazilian social network. That’s not a bad
“problem” for Google to have, but it’s probably not an outcome that it would have
expected from such a simple, small, and insignificant thing as a leaderboard widget.

Who benefits?

The most insidious artifact of a leaderboard community may be that the very presence
of a leaderboard changes the community dynamic and calls into question the motiva-
tions for every action that users take. If that sounds a bit extreme, consider Twitter:
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friend counts and followers have become the coins of that realm. When you get a
notification of a new follower, aren’t you just a little more likely to believe that it’s just
someone fishing around for a reciprocal follow? Sad, but true. And this despite the fact
that Twitter itself never has officially featured a leaderboard; it merely made the sta-
tistics known and provided an API to get at them. In doing so, it may have let the genie
out of the bottle.

“Leaderboards Considered Harmful” first appeared as an essay in
Designing Social Interfaces (O’Reilly) by Christian Crumlish and Erin
Malone, also available online at DesigningSocialInterfaces.com.

Going Beyond Displaying Reputation
This entire chapter has focused on the explicit display of reputation, usually directly
to users. Though important, this isn’t typically the most valuable use for this informa-
tion. Chapter 8 describes using reputation to modify the utility of an application—to
separate the best entities from the pack, and to help identify and destroy the most
harmful ones.
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CHAPTER 8

Using Reputation: The Good, The Bad,
and the Ugly

Reputation is a lens for filtering the content you need.

—Clay Spinuzzi, professor of rhetoric,
University of Texas at Austin

While Chapter 7 explained various patterns for displaying reputation, this chapter fo-
cuses on using it to improve the application’s user experience by ordering and sifting
your objects.

Envision your application’s data splayed out across a vast surface, like a jumble of photo
negatives spread out on a light table. As you approach this ill-disciplined mess of in-
formation, you might be looking for different things at different times. On a Saturday,
diversion and entertainment are your goals: “Show me those awesome photos we took
at the Grand Canyon last year.” Come Monday morning, you’re all business: “I need
my corporate headshot for that speaking engagement!” Your goals may shift, but it’s
likely that there are some dimensions that remain fairly consistent.

It’s likely, for instance, that—regardless of what you’re looking for in the pile—you’d
prefer to see only the good stuff when you approach your light table. There’s some stuff
that is obviously good: they’re the best photos you’ve ever taken (all your friends agree).
There’s some stuff that is arguably good, and you’d like to see it to decide for yourself.
And then there’s some stuff that is flat-out bad: oops, your thumb was obscuring the
lens. Or…that one was backlit. You may not want to destroy these lesser efforts, but
you certainly don’t want to see them every time you look at your photos.

Think of reputation as an extremely useful lens that you can hold up to the content of
your application (or its community of contributors). A lens that reveals quality, ob-
scures noise, and is powered by the opinions of those who’ve sifted through the jumble
before you. In this chapter, we propose a number of strategies for employing this lens,
including where to point it, how to hold it, and how to read the information that it
reveals.
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And, as with our light table, these strategies will approach this problem from any num-
ber of different angles. But the end goal is generally the same: to improve the quality
of contributions to your application (across the dimensions that you and your com-
munity deem valuable). These strategies perform two basic functions: emphasize en-
tities with higher, positive reputation and deemphasize (or hide, or remove altogether)
entities with lower, negative reputation.

Up with the Good
We’re positive people, by nature. We really do want to find the good in others. So let’s
start with some of the more affirmative strategies for using the reputations that your
contributors and their contributions have earned.

Accentuate the Positive
Why is it a good idea to showcase high-quality contributions, front and center? Let’s
discuss the value of imprinting on your visitors and the effects it can have on their
subsequent interactions with your site.

We’ve already discussed Dan Ariely’s Predictably Irrational (Harper Perennial) in ref-
erence to incentives (see “Incentives for User Participation, Quality, and Modera-
tion” on page 111). Ariely also explores the idea of imprinting—a phenomenon first
studied in goslings, who “not only […] make initial decisions based on what’s available
in their environment, but […] stick with a decision once it has been made.”

This tendency is prevalent in humans as well, and Ariely explains how imprinting can
explain our somewhat-irrational tendency to fixate on anchor prices for goods and
services. An anchor is the ideal valuation that we hold in our minds for something: it
is the price that we judge all other prices against for that thing. And it is largely a function
of our first exposure to that thing. (Maybe the old Botany Suits ads were right all along—
“You’ll never get a second chance to make a first impression!”)

How does this matter in the Web 2.0 world of user-generated content? When someone
comes to your site, there are many indicators—everything from the visual design of the
site to the editorial voice presented to, heck, even the choice of domain name—that
communicate to them the type of place it is, and the type of activities that people engage
in there. We would argue that one indicator that speaks loudly (perhaps loudest of all)
is the type of content that visitors see on display.

It is this type of evaluation, especially early on, that anchors a user’s opinion of your
site. And remember that anchoring and imprinting aren’t just short-lived dynamics:
they will persist for as long as your users have a relationship with your site. If their initial
valuation of your offering is high, they’re far more likely to become good citizens down
the road—to contribute good content, with some attention payed to its creation and
presentation. (And respect others who are doing so as well.)

If their valuation of your offering is low? Well…did you ever date someone that you
didn’t see much of a future with? You might have had other compelling reasons to stay
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in the relationship, but you probably didn’t put a lot of effort into it, right? This is what
you don’t want for your community-based website: an influx of half-hearted, lackluster
nonenthusiasts. Maybe you want visitors to come to your video-sharing site for its gen-
erous storage limits, but you certainly don’t want them stay for that reason alone. This
does not make for a vibrant and engaged community.

Rank-Order Items in Lists and Search Results
Ordering items in listings always presents something of a problem. Whether the list
presented is the result of a search query or just represents a natural ordering of items
in a taxonomy, you generally have to wrestle with issues of scale (too many items in
the list) and relevance (what do you show first?). Users are impatient and probably
won’t want to scroll or page through too many items in the list to find exactly what
they want.

Simple ordering schemes get you only so far—take alphabetic, for instance. True, it
does enjoy a certain internal logic and may appear to be imminently predictable and
useful. But it’s no good if your users don’t know what items they’re looking for. Or
what those users are named. Or where, in a paginated results listing of 890 items, the
“J”s might start.

Ideally, then, you’d know something about your users’ desires and direct them quickly
and efficiently to that exact thing in a listing. This is the type of stuff—personalization
based on past habits—that Amazon does so well. But a personalized recommendation
approach assumes a lot as well; users probably have to be registered with your site or
at least have a cookied history with it. But more importantly, they have to have been
there before. After all, you can’t serve up recommendations based on past actions if
there are no past actions to speak of.

So, once again, your reputation system can come to the rescue. Reputation-ranked
ordering is available regardless of a visitor’s prior relationship with your site. In fact,
community-based reputation can compensate for a whole lot of contextual deficiencies
in a search setting. Figure 8-1 shows a typical search result listing on Yelp.

The query provided was a fairly broad one (the term “pizza” scoped to Columbus,
Ohio) and lacks a certain amount of context about what I might want to see. I might
have, for instance, given a more specific search term like “bbq pizza” and gotten a very
different set of results. Or I could have been more specific in neighborhood locale. And
remember, I’m just any old visitor, not a registered Yelp user, so there’s no real context
to be gleaned from my past history.

With a bare minimum of context to scope on, Yelp does a pretty good job of showing
me pizza restaurants that I might want to consider. They do this by rank-ordering search
results based on establishments’ reputations (their community average ratings). In fact,
they present another facet by which you can order results: “Highest Rated,” which is
even more explicitly powered by community reputation. In an example like this—one
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with a broad enough context—there’s very little difference in the presentation of these
two facets.

Beware of confusing your users with an overabundance of ambiguously
derived filtering mechanisms based on reputation. Most users will be
hard-pressed to understand the difference between “Best Match,”
“Highest Rated,” and “Most Popular.” Either limit the number of op-
tions or make sure that you select the best default filter for users: the
one most likely to reveal the highest-quality options with the least
amount of user-provided context.

Content Showcases
One of the lowest-effort but highest-reward features you can include on your site is a
gallery or a showcase that highlights excellent contributions from the community. Give
this showcase a place of prominence, so that first-time visitors can’t help but notice it.
A handful of high-quality content should be one of the first things a new user sees on
your site. (See “Accentuate the Positive” on page 198.)

Notice the view that greets you when you arrive at Vimeo (Figure 8-2), a well-designed
video-sharing site. There are not one but three different ways to browse the site’s best
content—“Videos We Like,” “Explore,” and “Right Now.” These tabs present three
different types of reputation for video content: “Videos We Like” is an editor-influenced
view (see “The human touch” on page 203); “Explore” appears to be quality-driven

Figure 8-1. If I want a pizza in Columbus, odds are good I want the best pizza, right? Best Match
results on Yelp are flavored with reputation from user ratings.
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(probably based on usage patterns on the site, and the number of “Likes” that videos
receive); and “Right Now” puts an emphasis on current, fresh content by incorporating
decay. (See “Freshness and decay” on page 63.)

Content showcases are not only useful at the front door of your site. Smaller, contex-
tually appropriate showcases placed at strategic locations throughout the site can con-
tinue to communicate an expectation of quality and show the best contributions within
that section of the site.

Figure 8-3 features wireframe designs for a minishowcase, “Buzz on the Boards,” that
never went live on Yahoo! UK’s sports pages. The widget was designed to pull
contextually-relevant conversations out of sports message boards and surface them on
daily sports news articles. The goal was to educate casual, visiting article readers about
the availability of community features on the site. Hopefully, to pull them into the
conversation—as participants—at exactly the moment when they’re most opinionated
and ready to engage with others.

Figure 8-2. Vimeo goes out of its way to welcome new visitors, including not one but three different
Greeting Galleries.
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There’s a danger with showcases: if your design gives them too much
prominence (or if your community embraces them too eagerly) then you
run the risk of creating a Leaderboard situation. (See “Leaderboards
Considered Harmful” on page 194.) Placement in the showcase will take
on a certain currency with members of the community, and their desire
to see their content featured there may lead to some less than ideal be-
haviors. See Richard’s Notes on Flickr Explore for the contra-viewpoint
on how reputation-based showcases may be a detriment to that
community.

You can also highlight your best and brightest community members in a showcase.
Figure 8-4 shows a “Community Stars” module, also planned but never released for
Yahoo! UK Sports. This module first pulls active and high-quality contributors from
the system based on poster reputation, and then does a secondary sort based on those
users’ posts reputation. This guarantees that—not only will the best contributors ap-
pear here—but only their top contributions will be considered for inclusion.

Figure 8-3. Buzz on the Boards highlights message board threads based on activity (where are hot
conversations happening), then sorts based on quality (which individual posts are highest-rated).
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The rules for people showcases are no different than for content showcases, but you
may want to alter your approach to the design and presentation of this type of showcase.
Labels that apply easily and comfortably to content may invoke the wrong effects when
applied to the people in your community.

Don’t shower featured contributors with effusive praise—“Best & Brightest,” for in-
stance. Remember, for every person you single out for praise on your site—however
well deserved that praise may be—you are simultaneously ignoring a much greater
number of contributors. Don’t dis-incent a large number of your community. No one
likes to feel that they’re laboring in anonymity, especially when others seem to be
basking in praise.

The human touch

The idea of a completely algorithmically-determined showcase may give you pause.
After all, you’re placing these elements in high-profile, high-traffic locations on your
site. They’re bound to draw out the spammers and ne’er-do-wells , right?

You’re probably right to worry. As we cautioned earlier—and throughout this book—
if placement in the showcase becomes a motivation for some of your contributors, they

Figure 8-4. This module is based on contributor reputation and the quality of the posts featured, but
the language downplays this. No reason to create a popularity contest, right?
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will undoubtedly figure out ways to achieve that placement. You may want to design
some safeguards.

At a minimum, the models that power your showcase should include consideration of
the creator’s karma, to ensure that content showcased comes primarily from long-
standing and mostly reputable contributors. You should also provide controls for quick
removal of abusive content that somehow makes it through the reputation filters. (See
Chapter 10 for a detailed case study on community-driven abuse moderation.) And, to
keep the content fresh and lively (and ensure that more contributors have the oppor-
tunity to be featured) also consider flavoring the model with decay. (See “Decay and
delay” on page 93.)

If you’re still anxious, there’s no reason that a showcase gallery can’t be completely
editor-determined. And your reputation system can still play a big part in this workflow.
Your human editors can use any combination of strategies outlined in this chapter to
find the good stuff on the site. Perhaps they just do a search, and rank the results based
on various reputations. Or maybe they have access to some internal, eyes-only tools
that leverage corporate reputations you may be keeping to quickly ferret out all of the
showcase-worthy content. It’s still a lot of work, but it’s worlds easier with a good
reputation system in place.

Down with the Bad
Reputation is no guarantee that all of the content on your site will be phenomenal.
Once you’ve employed some of the strategies just described for promoting and surfac-
ing good content, you may still need to obscure the lesser stuff.

Remember our discussion from Chapter 1 (“There’s a Whole Lotta Crap Out
There” on page 13) on the levels of content quality that your site may encounter. With
these strategies, we’re addressing content that falls on the lower end of the spectrum—
content that is at best OK, but generally tends toward the poor-to-illegal end. Different
tactics are appropriate at different points along the spectrum.

You may ask yourself: do I really need to actively police content quality at the midpoints
of the scale? Content that is OK, or even poor, certainly doesn’t need to be punished,
right? Isn’t it enough to promote the good, and let the mediocre stuff just kind of vanish?
Just let it slide into obscurity off the reputation-ranked end of the long-content tail?

Perhaps, but you may want to be mindful of the community effects of allowing poor
content to pile up.
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Broken Windows and Online Behavior
At the community level, disorder and crime are usually inextricably linked, in a
kind of developmental sequence. Social psychologists and police officers tend to
agree that if a window in a building is broken and is left unrepaired, all the rest of
the windows will soon be broken. This is as true in nice neighborhoods as in
rundown ones. Window-breaking does not necessarily occur on a large scale be-
cause some areas are inhabited by determined window-breakers, whereas others
are populated by window-lovers; rather, one unrepaired broken window is a signal
that no one cares, and so breaking more windows costs nothing.

—http://www.theatlantic.com/doc/198203/broken-windows

Does the broken windows theory apply to online spaces?

Much of the tone of discourse online is governed by the level of moderation and to
what extent people are encouraged to “own” their words. When forums, message
boards, and blog comment threads with more than a handful of participants are
unmoderated, bad behavior follows. The appearance of one troll encourages others.
Undeleted hateful or ad hominem comments are an indication that this is allowable
behavior and encourages more of the same. Those commenters who are normally re-
spectable participants are emboldened by the uptick in bad behavior and misbehave
themselves. More likely, they’re discouraged from helping with the community mod-
eration process of keeping their peers in line with social pressure. Or they stop visiting
the site altogether.

Unchecked comment spam signals that the owner or moderator of the forum or blog
isn’t paying attention, stimulating further improper conduct. Anonymity provides
commenters with immunity from being associated with their speech and actions, mak-
ing the whole situation worse…how does the community punish or police someone
they don’t know? Very quickly, the situation is out of control and your message board
is the online equivalent of South Central Los Angeles in the 1980s, inhabited by roving
gangs armed with hate speech, fueled by the need for attention, making things difficult
for those who wish to carry on useful conversations.

—Jason Kottke

Configurable Quality Thresholds
One of the dangers inherent in controlling content display by reputation is that of being
overly presumptuous; who’s to say that the decisions you make for your community
about what content they do or don’t want to see are the right ones? Why not let each
user decide for himself what level of conversational noise he prefers? For
information-rich displays (listings, comment threads, search results), consider provid-
ing a quality threshold interface element that lets users “ratchet up” or “ratchet down”
the signal-to-noise ratio that they’re prepared to accept. Another common pattern is
allowing users to reverse the sort order of the content, with worst evaluations first.
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The granddaddy of reputation-based content moderation is Slashdot, and it employs
this strategy to great effect. Figure 8-5 illustrates Slashdot’s multiple levels of content
obscurity: comments below a certain score are abbreviated in a thread—just enough
content from the post is left “peeking out” to preserve context and invite those who
are curious to read more. Those comments that dip below an even lower score are
hidden altogether and no longer sully the reader’s display.

Figure 8-5. Slashdot seemingly hides more posts than it displays. It’s a system that favors your rights
as a discriminating information consumer over everyone else’s desire to be heard.

To avoid the presumption trap, make these controls user-configurable. Let users choose
the quality-level that they’d like to see. Don’t bury this setting as a user-preference.
Make it evident and easily accessible right in the main information display; otherwise,
it will probably never be discovered or changed. (A bonus to keeping the control easily
accessible: users who want to change it frequently can do so with ease.)

You may be concerned that providing a quality threshold will unfairly punish new
contributors or new contributions that haven’t had enough exposure to the community
to surpass the level of the threshold for display. Consider pairing this strategy with
Inferred Reputation (see the section “Inferred Reputation for Content Submis-
sions” on page 210) to give those new entrants a leg up on the quality game.

Expressing Dissatisfaction
Remember The Gong Show? It was a popular American game show in the 1970s—
contestants would come on and display a “talent” of their choosing to celebrity judges,
any one of whom, at any point during the performance (OK, there were time limits,
but that’s beside the point), could strike an enormous gong to disqualify that contest-
ant. Trust us, it was great entertainment.
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Today’s Web has a smaller, quieter (and, sadly, less satisfying) equivalent to that show’s
“gong.” It is a judgmental little widget—the Thumbs Up/Thumbs Down vote—that
often accompanies user-contributed entities as a form of participatory crowd judgment.
(See the section “Two-state votes (thumb ratings)” on page 140.) Consider providing
at least this level of explicit user voting for content on your site.

It’s probably best to provide your users with some means of expressing an opinion about
content. Otherwise, they will likely co-opt whatever other mechanisms are available to
do so; either user comments (and threads) will quickly fill up with back-and-forth
bickering over peoples’ spelling abilities and “+1” type posts or abuse reports (dis-
cussed in the next section). And we don’t want to encourage inappropriate abuse re-
porting. Sometimes arming the community with a simple, satisfying mechanism to say
“I disagree” is enough.

Out with the Ugly
And then there’s just some stuff that you don’t want to keep around. At all. It’s offensive
and violates your TOS. Or it’s illegal and violates common taste. This is the stuff that
should very quickly acquire a bad reputation. You’ll want your community to be able
to identify this stuff swiftly and effectively, and you’ll want your system to be able to
act on it efficiently.

Reporting Abuse
Reporting abuse is serious business. It is an explicit input into your reputation system
unlike any other: it potentially has legal repercussions. It is basically a user-to-user
reputation claim (which we generally discourage; see “Good Inputs” on page 135).
Users should not think of it as an evaluative act, i.e., is this content good or bad—rather
it should feel like a straightforward act of discovery: “Whoa! This shouldn’t be here!”

Your interface design should attempt to reduce the likelihood that users will conflate
abuse reporting with other, more evaluative, reputation inputs. Discourage users from
reporting anything that is not actual abuse. Figure 8-6 demonstrates a number of design
changes that the Yahoo! Answers team enacted to clarify the intent of all the controls,
and—as a side benefit—to reduce the likelihood that users would erroneously file re-
ports against undeserving questions or answers.

In general, here are some good guidelines for maintaining the fidelity of your abuse
reports, to ensure that they remain good inputs that produce high-confidence content
reputations:

• Keep the Report Abuse mechanism clear and distinct from other reputation inputs
that could be easily confused. Place it at a noticeable distance from the piece of
content that it acts upon. (Though, of course, this is a design balance. It should be
close enough that the mechanism and the entity still appear associated.)
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• Require reporters to be signed in (which, of course, requires that they be registered).
You can assure reporters that their identities won’t be revealed to others in the
community, but they should understand that you will have access to it. There are
two benefits to this: it will help keep folks honest, and you can use a user’s history
of abuse reports to track their reputation as well. (See the section “Who watches
the watchers?” on page 209.)

• Put just enough of a “gateway” in place to discourage flippant reports. Ask for
enough supporting information for staff to make a judgment, but don’t ask for a
bunch of information that your application could just capture contextually. For
instance, pass along any content UIDs or user-identifying information that the
report may need.

• In general, try to maintain a fine balance between ease-of-reporting and too much
ease. Make it too hard, and concerned users may just opt to leave the site after
viewing too much objectionable content. Make it too easy and it’ll tempt the com-
munity to hurl sticks and stones unnecessarily.

Just can’t get enough abuse? The Report Abuse pattern is also covered
in Designing Social Interfaces (O’Reilly). See its online discussion at http:
//www.designingsocialinterfaces.com/patterns.wiki/index.php?title=Re
port_Abuse.

Figure 8-6. Yahoo! Answers redesigned a number of reputation input mechanisms, both to make their
semantic meanings more clear (adding labels to most of the icons, for instance) but also to remove the
proximity of one of the most critical inputs, Report It.
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Who watches the watchers?

You’ve probably already spotted a potential for abuse of another kind here. How can
you guard against spurious and malicious use of Report Abuse mechanisms? Inevitably,
some in your community will decide that tarring others’ content with the suspicion of
abuse is an easy path to making their own content stand out. Or they’ll use abuse reports
to carry out a personal vendetta, or further their own political viewpoint, or…well, you
get the point.

The concern is a valid one. Depending on your abuse mitigation process, the costs can
vary. If all abuse reports are vetted by staff, then—at the very least—you’ve lost the
time and effort of a staff intervention and investigation. If your application is designed
to immediately act on abuse reports and make some mechanistic determination about
the content, then you run the risk of punishing content unnecessarily and unfairly. If
left to persist, that situation will harm your site’s credibility over time.

This is a compelling reason to keep accurate karma scores for all parties involved.
Whether your mitigation process is hands-on, highly automated, or some combination
of the two, swift and good judgments can only be aided by having as much information
as possible about both “sides.” Consider keeping a secret corporate reputation (call it
Abuse Reporter reputation) that tracks users’ past performance at finding and reporting
abusive content. There are a variety of inputs that could weigh into this karma score:

• The reporter’s own past contributions to the site or length of membership (or other
indicators of her value to the community).

• The reporter’s “success rate” at identifying abusive content: from past reports, how
many were legitimate? How many ended up being overturned or denied by quali-
fied staff?

• The volume of reports that the user files. (Note that, depending on the context, a
high volume of reports can be considered a positive or a negative.)

A karma score based on these inputs will be invaluable for decision making about the
accuracy of any individual report, when compared to the reputations of the reported
content and/or the karma scores of the person who posted the disputed content.

Teach Your Users How to Fish
Up to now in this chapter, we’ve focused on reputation-related strategies for improving
the perceived quality of content on your site. (Promote this, demote that, whoops, let’s
hide this one altogether....) The hope is that, by shaping the perceptions of quality,
you’ll influence your users’ behavior and actually see real improvements in the quality
of contributions. You’ll somewhat have to take it on faith that this will work, and—to
be fair—the Virtuous Circle (“The Reputation Virtuous Circle” on page 17) is, at best,
an indirect and eventual method for positively influencing your community.
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Aren’t there some more direct ways? Why yes, there are. As it turns out, the methods
and methodology of gathering reputation provide an excellent set of tools to help ed-
ucate your users, and teach them how to be better contributors (or editors or readers
or…). Using these techniques, you will be able to:

• Let contributors know “how they’re doing” on an ongoing basis.

• Give them specific and—in some cases—quantifiable feedback on the commun-
ity’s response to their contributions.

• Suggest new and different strategies to them, in order to continually improve their
content quality.

Inferred Reputation for Content Submissions
An approach that serves a number of different ends is the concept of Inferred Reputa-
tion for content submissions. With this approach, your application presumes a level of
quality for a submission based on the karma of the content submitter and an appraisal
of the intrinsic qualities of the submission itself. This appraisal may take any number
of factors into consideration: the presence of profanity; the completeness of accompa-
nying metadata, the length or brevity of the submission, and other community- or
application-specific evaluations that make sense within the given context.

Once evaluated, the content submission is given an initial reputation. This can be dis-
played alongside the submission until it’s garnered enough attention to display an ac-
tual, earned reputation, as in Figure 8-7. (How will you know when to switch over to
display the actual reputation? When enough community members have rated the item
that it’s surpassed the liquidity threshold. See “Liquidity: You Won’t Get Enough In-
put” on page 58.)

Figure 8-7. In the absence of any specific knowledge of this post (only one person has rated it), Yahoo!
Message Boards assumes that it’s a 3-star post.

Why would you want to use inferred reputations? For a number of reasons.

Inferred reputation is all but mandatory if your application features a Configurable
Quality Threshold (see “Configurable Quality Thresholds” on page 205). When users
have their threshold for content visibility set too high, then—unless you show Initial
Ratings—new postings will, by default, not appear at all in content listings, which, of
course, means that no one will rate those items, which means that no one will see those
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items…you can see the problem here. You will have created a self-referential feedback
loop. (See “Beware Feedback Loops!” on page 226.)

Inferred reputations can also help influence contributor behavior in positive ways.
Their simplest, but perhaps most critical, function is to educate your users that the
quality of their contributions have consequences. Put simply: if they post better stuff,
more people will see it. A visible and tangible initial rating makes this case more strongly
than any number of admonitions or reminders would.

Just-in-time reputation calculation

A powerful enhancement to inferred reputation is the idea of showing the assumed
rating to the content contributor even before she has contributed it. This amplifies the
positive-modeling benefits mentioned earlier.

Then, you can allow the contributor to modify her content submission before posting
it, in an effort to improve the quality, improve the initial rating assigned, and be featured
more prominently on the site. The facets for improvement can be any of a number of
things: simple formatting fixes, community-standards violations (e.g., SHOUTING IN
ALL CAPS), or perhaps modifying a submission to be less derivative or repetitive of a
submission that’s come before it.

Figure 8-8 shows one such embodiment of these just-in-time principles. This draft of
a design for Yahoo! Message Boards affords the person posting the message an oppor-
tunity to reflect on what he’s about to post, validate it against community standards,
and—if desired—change the message to improve its standing.

Figure 8-8. Don’t like the rating that your new post is about to display? Fix it!

Teach Your Users How to Fish | 211



A Private Conversation
In the last chapter, we discussed personal reputations (see “Personal Reputations: For
the Owner’s Eyes Only” on page 169) and hinted at some of their utility. But you may
still have questions: why keep a personal reputation? If you have no intent to display
it to the community (a “public” reputation), shouldn’t a completely hidden (a “corpo-
rate”) reputation suffice? Why would you keep a reputation, and go to the bother of
displaying it but only for the person to whom it applies?

Personal reputations have great utility as a type of “running internal dialog” between
a site and its users, showing personal reputations to users to let them know how they’re
doing with respect to certain facets of their engagement with the community. Upon
login, for example, you might show users the Learning Level they’ve achieved toward
a certain task so that they may track their growth progression and understand what
actions are necessary—or what skills must be mastered— to reach the next level on the
scale.

LinkedIn keeps a very simple, but compelling, type of reputation that serves this end
(see Figure 8-9). It shows you the degree of completeness that your LinkedIn Profile
has achieved.

Figure 8-9. Your LinkedIn profile is only 25% complete?!? Better get crackin’!

The motivational benefits of this feature are enormous. There is a certain compulsive,
game-like quality to its presence. Author and online community authority Amy Jo Kim
has written and presented about the appeal of “collecting” (and the power of complet-
ing a set) in game mechanics, and the applicability of these impulses to online experi-
ence. This LinkedIn widget deftly takes advantage of these deep underlying impulses
that motivate us all.
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It’s almost impossible to see that partially empty progress bar and not want to fill it up.
LinkedIn takes the additional step of providing hints about the exact ways to accom-
plish this.

So what, then, is the advantage of handling this as a personal conversation between site
and user? Notice that LinkedIn doesn’t show you other people’s profile completeness
scores. Leaving this as a personal reputation means that the user is never stigmatized.
She is free to advance and proceed at her own pace, but is never branded or labeled in
a public fashion. Her interaction with your site remains hers and hers alone. Even on
a largely social site, not everything needs to belong to the commons. Many times, rep-
utation is better kept discrete.

Course-Correcting Feedback
Creating content to share online can be a lonely business. Sometimes it’s hard to know
exactly how you’re doing. This is a beneficial side effect of gathering inputs for content
reputation: you can package up the results of those inputs, and present them back to
content contributors in educational and motivational ways. Give them detailed direc-
tion on how well the community is accepting their contributions and even suggest ways
to increase that acceptance.

This, again, can function within the realm of personal, site-to-user, reputations and
need not be a public affair. Of course, any reputations that are public will benefit con-
tributors as well; they are free to review and compare their standings against those of
their peers. But you should also feel free to give even more feedback to a contributor
about how they’re doing in a personal and confidential fashion. Flickr presents a rich
dashboard of statistics about your photos, including many details of how the com-
munity has responded (see Figure 8-10).

Figure 8-10. Favorites, comments, and views all feed your photos reputation on Flickr. The “Stats”
feature breaks them down for you.
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Reputation Is Identity
Imagine you’re at a party, and your friend Ted wants you to meet his friend Mary. He
might very well say something like: “I want you to meet my friend Mary. She’s the
brunette over by the buffet line.” A fine, beginning, to be sure. It helps to know who
you’re dealing with.

But now imagine that Ted ended there as well. He doesn’t take you by the hand, walk
you over to Mary, and introduce you face to face. Maybe he walks off to get another
drink. Um…this does not bode well for your new friendship with Mary.

Sadly, until fairly recently, this has been the state of identity on much of the Web. When
people were represented at all, they were often nothing more than a meager collection
of sparse data elements: a username, maybe an avatar, just enough identifying charac-
teristics that you might recognize them again later, but not much else.

With the advent of social on the Web, things have improved. Perhaps the biggest im-
provement has been that now people’s relationships formulate a sizable component of
their identity and presence on most sites. Now, mutual friends or acquaintances can
act as a natural entrée to forming new relationships. So at least Ted now will go that
extra step and walk you over to that buffet table for a proper introduction.

But, you still won’t know much about Mary, will you? Once introductions are out of
the way, what will you possibly have to talk about? The addition of reputation to your
site will provide that much needed final dimension to your users’ identities, depth.
Wouldn’t it be nice to review a truly rich and deep view of Mary’s identity on your site
before deciding what you and she will or won’t have in common?

Here are but a few reasons why user identities on your site will be stronger with repu-
tation than they would be without:

• Reputation is based on history and the simple act of recording those histories—a
user’s past actions, or voting history, or the history of their relationship to the site—
provides you with a lot of content (and context) that you can present to other users.
This is a much richer model of identity than just a display-name and an avatar.

• Visible histories reveal shared affinities and allow users with common interests to
find one another. If you are a Top Contributor in the Board Games section of a
site, then like-minded folks can find you, follow you, or invite you to participate
in their activities.

You’ll find contexts where this is not desirable. On a question-and-
answer site like Yahoo! Answers, for instance, don’t be surprised to find
out that many users won’t want their questions about gonorrhea or
chlamydia to appear as part of their historical record. Err on the side of
giving your users control over what appears, or give them the ability to
hide their participation history altogether.
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• A past is hard to fake. Most site identities are cheap. In and of themselves, they just
don’t mean much. A couple of quick form fields, a Submit button, and practically
anyone (or no one—bots welcome!) can become a full-fledged member of most
sites. It is much harder, however, to fake a history of interaction with a site for any
duration of time.

We don’t mean to imply that it can’t be done—harvesting “deep” identities is
practically an offshoot industry of the MMORPG world. (See Figure 8-11.) But it
does provide a fairly high participatory hurdle to jump. When done properly, user
karma can assure some level of commitment and engagement from your users (or
at least help you to ascertain those levels quickly).

• Reputation disambiguates identity conflicts. Hopefully, you’ve moved away from
publicly identifying users on your site by their unique identifier. (You have read
the Tripartite Identity Pattern, right? See http://habitatchronicles.com/2008/10/the
-tripartite-identity-pattern/.) But this introduces a whole new headache: identity
spoofing. If your public namespace doesn’t guarantee uniqueness (or even if it
does, it’ll be hard to guard against similar-appearing-speak equivalents and the
like), you’ll have this problem.

Once your community is at scale, trolls will take great delight in appropriating
others’ identities—assuming the same display name, uploading the same avatar—
purely in an effort to disrupt conversations. It’s not a perfect defense, but always
associate a contributor’s identity with her participation history or reputation to
help mitigate these occurrences. You will, at least, have armed the community with
the information they need to decide who’s legit and who’s an interloper.

Figure 8-11. People will pay more for a developed identity on World of Warcraft than they paid for
the game itself. (Even when you factor in 12 months of subscription fees!)
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These are some of the reasons that extending user identities with reputation is useful.
What follows is a series of considerations for how to do so most effectively. Some
methods for surfacing reputation at the right spots in your interface to most effectively
aid users in making good judgments about each other.

On the User Profile
The User Profile is an invaluable asset in your social strategy. In many ways, it provides
the most “tangible” and visible presence for the users on your site. It functions as the
locus of a user’s identity and, as such, can accommodate a number of different repu-
tation display patterns. Consider showing each of the following on user profiles.

My Affiliations

By now, you should be aware that reputation is earned within a context. While indi-
vidual actors are probably the last person you should ask about their reputation, each
of us does control one very important component of our reputations: the contexts we
choose to affiliate ourselves with. Sometimes, the degree of reputation you’ve earned
somewhere says less than the fact that you chose to frequent that context in the first
place.

Surfacing the breadth and variety of reputable contexts that a user frequents can be
crucial information for other users to make value judgments about that person. You
should, of course, allow the profile-holder some degree of control over exactly which
affiliations they choose to display or obscure. Some models allow for displaying only
those associated contexts that a user has requested to appear on his profile.

Figure 8-12 shows a typical LinkedIn profile with group affiliations displayed. These
can be considered self-selected reputable contexts; the particular combination of them
can tell an evaluator a lot about a person, and provides opportunities for establishing
shared interests.

Earned reputations can also provide deeper insight into a user’s affiliations and inter-
ests. Figure 8-13 shows a user and the participation medals he’s earned on Yahoo!
Message Boards. Here, affiliation information is a powerful tool for assessing this user’s
competencies.
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Figure 8-12. You’re judged by the company you keep. Even a simple list of groups that you’ve joined
on LinkedIn says a lot about your interests and how you choose to use your time and energy.

Figure 8-13. Participation history adds another dimension to your affiliations. Now you can see not
only where Jonny Reb spends his time, but exactly how much he’s invested in each context.
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My History

An extremely popular piece of reputation information to disclose on a user profile (and
a profoundly powerful one) is simple a user’s “Member Since” date. Like a business
establishment that boasts of its decades- or centuries-old history, once users on your
site have achieved a certain seniority will want others to know and honor their status
of longevity.

There are other important pieces of historical information that you should consider
providing. Perhaps just a simple listing of a user’s last N contributions to the site. Yahoo!
Answers uses the user profile as a centralized, easy-access “dashboard view” into a
person’s history of contributions. (See Figure 8-14.)

Figure 8-14. Let your users’ words speak for themselves. Yahoo! Answers lets you review a user’s
Questions and Answers from the profile, regardless of which context the question was originally posted
in.

My Achievements

First popularized by the Xbox 360 gaming platform, the notion of rewarding specific
user achievements is catching on. Figure 8-15 shows one such embodiment on the
software programming Q&A site StackOverflow.com. Once they’re earned, Achieve-
ments can be displayed on a users profile in perpetuity, providing a fun, engaging, and
browsable history of that user’s interaction with the site.
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At the Point of Attribution
It can be very powerful to display a user’s reputation directly within the context of her
contribution. Amazon identifies “Top Reviewers” in situ, right at the point where
you’re reading one of her reviews. (See Figure 8-16.) If done discretely, this approach
is useful for a couple of different reasons.

It provides some differentiation between items. In a long scrolling page of product
reviews, or music playlists, or video contributions, it can be a nice, quick visual scanning
aid to see certain contributors called out for special attention.

Figure 8-16. There’s no need to leave the page to see this reviewer’s bona fides.

Figure 8-15. Stack Overflow awards badges for any number of user achievements; “woot!,” for
instance, celebrates users who have “visited the site each day for 30 days.”
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To Differentiate Within Listings
In a long scannable list of user-generated content, it may be useful to visually “tag” or
identify contributions that have achieved a certain level of reputation (or whose con-
tributors have). The goal is to aid in scannability, so do this only if the complexity of
the interface allows for it.

It helps, when doing this, if you’ve set reasonable boundaries for the exclusivity of
reputations (see “Keep great reputations scarce” on page 239). Otherwise, everything
will be tagged as special and nothing will stand out. Figure 8-17 is probably on the
borderline of how much reputation information you should attempt to codify into your
content listings.

Figure 8-17. Sporting News assigns contributor ranks to each blogger, and annotates lists of blog-
entries with their Star Rank. (But, boy, that’s a whole lot of stars!)
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Putting It All Together
We’ve helped you identify all of the reputation features for an application: the goals,
objects, scope, inputs, outputs, processes, and the sorts filters. You’re armed with a
rough reputation model diagram and design patterns for displaying and using your
reputation scores. These make up your reputation product requirements. In Chap-
ter 9, we describe how to turn these plans into action: building and testing the model,
integrating with your application, and performing the early reputation model turning.
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CHAPTER 9

Application Integration, Testing,
and Tuning

If you’ve been following the steps provided in Chapters 5 through 8, you know your
goals; have a diagram of your reputation model with initial calculations formulated;
and have a handful of screen mock-ups showing how you will gather, display, and
otherwise use reputation to increase the value of your application. You have ideas and
plans, so now it is time to reduce it all to code and to start seeing how it all works
together.

Integrating with Your Application
A reputation system does not exist in a vacuum; it is small machine in your larger
application. There are a bunch of fine-grained connections between it and your various
data sources, such as logs, event streams, identity db, entity db, and your high-
performance data store. Connecting it will most likely require custom programming to
connect the wires between your reputation engine and subsystems that were never
connected before.

This step is often overlooked in scheduling, but it may take up a significant amount of
your total project development time. There are usually small tuning adjustments that
are required once the inputs are actually hooked up in a release environment. This
chapter will help you understand how to plan for connecting the reputation engine to
your application and what final decisions you will need to make about your reputation
model.

Implementing Your Reputation Model
The heart of your new reputation-infused application is the reputation model. It’s that
important. For the sake of clarity, we refer to the software engineers that turn your
model into operational code as the reputation implementation team and those who are
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going to connect the application input and output as the application team. In many
contexts, there are some advantages to these being the same people, but consider that
reputation, especially shared reputation, is so valuable to your entire product line that
it might be worth having a small dedicated team for the implementation, testing, and
tuning full time.

Engage Engineering Early and Often
One of the hard-learned lessons of deploying reputation systems at Yahoo! is the en-
gineering team needs to be involved at every major milestone during the design process.
Even if you have a separate reputation implementation team to build and code the
model, the gathering of all the inputs and integrating the outputs is significant new
work added to their already overtaxed schedule.

As the result of reputation, the very nature of your application is about to change sig-
nificantly, and those on the engineering team are the ones who will turn all of this
wonderful theory and the lovely screen mock-ups into code. Reputation is going to
touch code all over the place.

Besides, who knows your reputable entities better than the application team? It builds
the software that gives your entities meaning. Engaging these key stakeholders early
allows them to contribute to the model design and prepares them for the nature of the
coming changes.

Don’t wait to share details about the reputation model design process until after screen
mocks are distributed to engineering for scheduling estimates. There’s too much hap-
pening on the reputation backend that isn’t represented in those images.

Appendix A contains a deeper technical-architecture-oriented look at how to define
the reputation framework: the software environment for executing your reputation
model. Any plan to implement your model will require significant software engineering,
so sharing that resource with the team is essential. Reviewing the framework require-
ments will lead to many questions from the implementation team about specific trade-
offs related to issues such as scalability, reliability, and shared data. The answers will
put constraints on your development schedule and the application’s capabilities. One
lesson is worth repeating here: the process boxes in the reputation model diagram are
a notational convenience and advisory; they are not implementation requirements.

There is no ideal programming language for implementing reputation
models. In our experience, what matters most is for the team to be able
to create, review, and test the model code rigorously. Keeping each rep-
utation process’s code tight, clean, and well documented is the best
defense against bugs and vastly simplifies testing and tuning the model.
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Rigging Inputs
A typical complex reputation model, such as those described in Chapters 4 and 10, can
have dozens of inputs, spread throughout the four corners of your application. Often
implementors think only of the explicit user-entered inputs, when many models also
include nonuser or implicit inputs from places such as logfiles or customer care agents.
As such, rigging inputs often involves engineers from differing engineering teams, each
with their own prioritized development schedule. This means that the inputs will be
attached to the model incrementally.

This challenge requires that the reputation model implementation be resilient in the
face of missing inputs. One simple strategy is to have the reputation processes that
handle inputs have reasonable default values for every input. Inferred karma is an ex-
ample (see “Generating inferred karma” on page 159). This approach also copes well
if a previously reliable source of inputs becomes inactive, either through a network
outage or simply a localized application change.

Explicit inputs, such as ratings and reviews, take much longer to implement as they
have significant user-interface components. Consider the overhead with something as
simple as a thumbs-up/thumbs-down voting model. What does it look like if the user
hasn’t voted? What if he wants to change his vote? What if he wants to remove his vote
altogether?

For models with many explicit reputation inputs, all of this work can cause a waterfall
effect on testing the model. Waiting until the user interface is done to test the model
causes the testing period to be very short because of management pressure to deliver
new features—“The application looks ready, so why haven’t we shipped?”

We found that getting a primitive user interface in place quickly for testing is essential.
Our voting example can be quickly represented in a web application as two text-links:
“Vote Yes,” “Vote No,” and text next to it that represented the tester’s previous vote:
“(You [haven’t] voted [Yes|No].)” Trivial to implement, no art requirements, no
mouse-overs, no compatibility testing, no accessibility review, no pressure to ship early,
but completely functional. This approach allows the reputation team to test the input
flow and the functionality of model. This sort of development interface is also amenable
to robotic regression testing.

Applied Outputs
The simplest output is reflecting explicit reputation back to users—showing their star-
rating for a camera back to them when they visit the camera again in the future, or on
their profile for others to see. The next level of output is the display of roll-ups, such
as the average rating from all users about that camera. The specific patterns for these
are discussed in detail in Chapter 7. Unlike the case with integrating inputs, these
outputs can be simulated easily by the reputation implementation team on its own, so
there isn’t a dependency on other application teams to determine if a roll-up result is
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accurate. One practice during debugging a model is to simply log every input with the
changes to the roll-ups that were generated, giving a historical view of the model’s state
over time.

But, as we detailed in Chapter 8, these explicit displays of reputation aren’t usually the
most interesting or valuable; using reputation to identify and filter the best (and worst)
reputable entities in your application is. Using reputation output to perform these tasks
is more deeply integrated with the application. For example, search results may be
ranked by a combination of a keyword search and reputation score. A user’s report of
TOS-violating content might want to compare the karma of the author of the content
to the reporter. These context-specific uses require tight integration with the
application.

This leads to an unusual suggested implementation strategy—code the complex rep-
utation uses first. Get the skeleton reputation-influenced search results page working
even before the real inputs are built. Inputs are easy to simulate, the reputation model
needs to be debugged as well as the application-side weights used for the search will
need tuning. This approach will also quickly expose the scaling sensitivities in the
system—in web applications, search tends to consume the most resources by far. Save
the fiddling over the screen presentation of roll-ups for last.

Beware Feedback Loops!
Remember our discussion of credit scores, way back in Chapter 1? Though over-
reliance on a global reputation like FICO is generally bad policy, some particular uses
are especially problematic. The New York Times recently pointed out a truly insidious
problem that has arisen as employers have begun to base hiring determinations on job
applicants’ credit scores. Matthew W. Finkin, law professor at the University of Illinois,
who fears that the unemployed and debt-ridden could form a luckless class said:

How do you get out from under it [a bad credit rating]? You can’t re-establish your credit
if you can’t get a job, and you can’t get a job if you’ve got bad credit.

This mis-application of your credit rating creates a feedback loop. This is a situation in
which the inputs into the system (in this case, your employment) are dependent in some
part upon the output from the system.

Why are feedback loops bad? Well, as the Times points out, feedback loops are self-
perpetuating and, once started, nigh-impossible to break. Much like in music produc-
tion (Jimi Hendrix notwithstanding), feedback loops are generally to be avoided
because they muddy the fidelity of the signal.

Plan for Change
Change may be good, but your community’s reaction to change won’t always be pos-
itive. We are, indeed, advocating for a certain amount of architected flexibility in the
design and implementation of your system. We are not encouraging you to actually

226 | Chapter 9: Application Integration, Testing, and Tuning



make such changes lightly or liberally. Or without some level of deliberation and scru-
tiny before each input-tweak or badge addition.

Don’t overwhelm your community with changes. The more established the community
is, the greater the social inertia that will set in. People get used to “the way things work”
and may not embrace frequent and (seemingly random) changes to the system. This is
a good argument for obscuring some of its details. (See “Keep Your Barn Door Closed
(but Expect Peeking)” on page 91.)

Also pay some heed to the manner in which you introduce new reputation-related
features to your community:

• Have your community manager announce the features on your product blog, along
with a solicitation for public feedback and input. That last part is important be-
cause, though these may be feature additions or changes like any other, oftentimes
they are fundamentally transformative to the experience of engaging with your
application. Make sure that people know they have a voice in the process and their
opinion counts.

• Be careful to be simultaneously clear—in describing what the new features are—
and vague in describing exactly how they work. You want the community to be-
come familiar with these fundamental changes to their experience, so that they’re
not surprised or, worse, offended when they first encounter them in the wild. But
you don’t want everyone immediately running out to “kick the tires” of the new
system, poking prodding and trying to earn reputation to satisfy their “thirst for
first.” (See “Personal or private incentives: The quest for mastery” on page 119.)

• There is a certain class of changes that you probably shouldn’t announce at all.
Low-level tweaking of your system—the addition of a new input, readjusting the
weightings of factors in a reputation model—can usually be done on an ongoing
basis and, for the most part, silently. (This is not to say that your community won’t
notice, however; do a web search on “YouTube most popular algorithm” to see
just how passionately and closely that community scrutinizes every reputation-
related tweak.)

Testing Your System
As with all new software deployment, there are several phases of testing recommended:
bench testing, environmental testing (aka alpha), and predeployment testing (aka beta).
Note that we don’t mean web-beta, which has come to mean deployed applications
that can be assumed, by the users, to be unreliable; we mean pre- or limited deployment.
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Bench Testing Reputation Models
A well-coded reputation model should function with simulated inputs. This allows the
reputation implementation team to confirm that the messages flow through the model
correctly and provides a means to test the accuracy of the calculations and the per-
formance of the system.

Rushed development budgets often cause project staff to skip this step to save time and
to instead focus the extra engineering resources on rigging the inputs or implementing
a new output—after all, nothing like real data to let you know if everything’s working
properly, right? In the case of reputation model implementations, this assumption has
been proven both false and costly every single time we’ve seen it deployed. Bench testing
would have saved hundreds of thousands of dollars in effort on the Yahoo! Shopping
Top Reviewer karma project.

Bench Test Your Model with the Data You Already Have. Always.
The first reputation team project at Yahoo! was intended to encourage Yahoo! Shop-
ping users to write more product reviews for the upcoming fall online shopping season.

It decided to create a karma that would appeal to people who already write reviews and
respond to ego-based rewards: Top Reviewer karma. A small badge would appear next
to the name of users who wrote many reviews, especially those that received a large
number of helpful votes. This was intended to be a combination of quantitative and
qualitative karma. The badges would read Top 100, Top 500, and Top 1000 reviewers.
There would also be a leaderboard for each badge, where the members of each group
were randomized before display to discourage people trying to abuse the system. (See
“Flickr Interestingness Scores for Content Quality” on page 88.)

Over several weeks and dozens of meetings, the team defined the model using a pro-
totype of the graphical grammar presented in this book. The final version was very
similar to that presented in “User Reviews with Karma” on page 75 in Chapter 5. The
weighting constants were carefully debated and set to favor quality with a score four
times higher than the value of writing a review. The team also planned to give users
backdated credit to reviewers by writing an input simulator by reading the current
ratings-and-reviews database and running them through the reputation model.

The planning took so long that the implementation schedule was crushed—the only
way to get it to deployment on time was to code it quickly and enable it immediately.
No bench testing, no analysis of the model or the backdated input simulator. The
application team made sure the pages loaded and the inputs all got sent, and then
pushed it live in early October.

The good news was that everything was working. The bad news? It was really bad:
every single user on the Top Reviewer 100 list had something in common. They all
wrote dozens or hundreds of CD reviews. All music users, all the time. Most of the
reviews were “I liked it” or “SUX0RZ,” and the helpful scores almost didn’t figure into
the calculation at all. It was too late to change anything significant in the model and so
the project failed to accomplish its goal.
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A simple bench test with the currently available data would have revealed the fatal flaw
in the model. The presumed reputation context was just plain wrong—there is no such
thing as a global “Yahoo! Shopping” context for karma. The team should have imple-
mented per-product category reviewer karma: who writes the best digital camera re-
views? Who contributes the classical CD reviews that others regard as the most helpful?

Besides accuracy and determining suitability of the model for its intended purposes,
one of the most important benefits of bench testing is stress testing of performance.
Almost by definition, initial deployment of a model will be incremental—smaller
amounts of data are easier to track and debug and there are less people to disappoint
if the new feature doesn’t always work or is a bit messy. In fact, bench testing is
the only time the reputation team will be able to accurately predict the performance of
the model under stress until long after deployment, when some peak usage brings it to
the breaking point, potentially disabling your application.

Do not count on the next two testing phases to stress test your model. They won’t,
because that isn’t what they are for.

Professional-grade testing methodologies, usually using scripting languages such as
JavaScript or PHP, are available as open source and as commercial packages. Use one
to automate simulated inputs to your reputation model code as well as to simulate the
reputation output events of a typical application, such as searches, profile displays, and
leaderboards. Establish target performance metrics and test various normal- and peak-
operational load scenarios. Run it until it breaks and either tune the system and/or
establish operational contingency plans with the application engineers. For example,
say that hitting the reputation database for a large number of search results is limited
to 100 requests per second and the application team expects that to be sufficient for
the next few months—after which either another database request processor will be
deployed, or the application will get more performance by caching common searches
in memory.

Environmental (Alpha) Testing Reputation Models
After bench testing has begun and there is some confidence that the reputation model
code is stable enough for the application team to develop against, crude integration can
begin in earnest. As suggested in “Rigging Inputs” on page 225, application developers
should go for breadth (getting all the inputs/outputs quickly inserted) instead of depth
(getting a single reputation score input/output working well). Once this reputation
scaffolding is in place, both the application team and the reputation team can test the
characteristics of the model in it’s actual operating environment.

Also, any formal or informal testing staff that are available can start using the new
reputation features while they are still in development allowing for feedback about
calculation and presentation. This is when the fruits of the reputation designer’s labor
begin to manifest: an input leads to a calculation leads to some valuable change in the

Testing Your System | 229



application’s output. It is most likely that this phase will find minor problems in cal-
culation and presentation, while it is still inexpensive to fix them.

Depending on the size and duration of this testing phase, initial reputation model tun-
ing may be possible. One word of warning though: testers at this phase, even if they
are from outside your formal organization, are not usually representative of your post-
deployment users, so be careful what conclusions you draw about their reputation
behavior. Someone who is drawing a paycheck or was given special-status access is
not a typical user, unless your application is for a corporate intranet.

Once the input rigging is complete and placeholder outputs are working, the reputation
team should adjust its user-simulation testing scripts to better match the actual use
behavior they are seeing from the testers. Typically this means adjusting assumptions
about the number and types of inputs versus the volume and composition of the rep-
utation read requests. Once done, rerun the bench tests, especially the stress tests, to
see how the results have changed.

Predeployment (Beta) Testing Reputation Models
The transformation the predeployment stage of testing is marked by at least two im-
portant milestones:

• The application/user interface is now nominally complete (meets specification);
it’s no longer embarrassing to allow noninsiders to use it.

• The reputation model is fully functional, stable, performing within specifications,
and is outputting reasonable reputation statement claim values, which implies that
your system has sufficient instrumentation to evaluate the results of a larger scale
test.

A predeployment testing phase is important when introducing a new reputation system
to an application as it enables a very different and largely unpredictable class of user
interactions driven by diverse and potentially conflicting motivations. See “Incentives
for User Participation, Quality, and Moderation” on page 111. The good news is that
most of the goals typical for this testing phase also apply to testing reputation models,
with a few minor additions.

Performance: Testing scale

Although the maximum throughput of the reputation system should have been deter-
mined during the bench-testing phase, engaging a large number of users during the
beta test will reveal a much more realistic picture of the expected use patterns in de-
ployment. The shapes of peak usage, the distribution of inputs, and especially the rep-
utation query rates should be measured and the bench tests should be rerun using these
observations. This should be done at least twice: halfway through the beta, and a week
or two before deployment, especially as more testers are added over time.
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Confidence: Testing computation accuracy

As beta users contribute to the reputation system, an increasingly accurate picture of
the nature of their evaluations will emerge. Early during this phase the accuracy of the
model calculations should be manually confirmed, especially double-checking an in-
dependently logged input stream against the resulting reputation claim values. This is
an end-to-end validation process, and particular attention should be paid to reputation
statements that contain inputs that were reversed or manually changed (due to abuse
mitigation or other circumstances). Once a reputation model is in full deployment, this
verification process will become significantly more expensive, so the beta test is usually
the last chance to cheaply find bugs and conversely reinforce confidence in the system.

Application optimization: Measuring use patterns

Reputation systems change the way applications display content. Those changes add
elements to the user interface that require additional space and new user behavior
learning, and change the flow of the application significantly. A good example of this
effect is when search URL reputation (page ranking) replaced hand-built directories as
the primary method for finding content on the Web.

When a reputation-enabled application enters predeployment testing, tracking the ac-
tions of users—their clicks, evaluations, content contributions, and even their eye
movements—provides important information to optimize the effectiveness of the
model and the application as a whole.

Feedback: Evaluating customer’s satisfaction

Despite our focus on measuring the performance and flow of user interaction, we’d like
to caution that pure quantitative testing can lead to faulty conclusions about the ef-
fectiveness of your application, especially if the metrics are not as positive as you ex-
pected. Everyone knows that when metrics are bad, all the tell you is that you’ve done
something wrong, not what it is. But that is also often true for good metrics—a lot of
page-views doesn’t always mean you have a healthy or profitable product. Sometimes
it’s quite the contrary, controversial objects generate a lot of heat (in the form of online
discussion) but can create negative value to the provider.

In the beta phase, explicit feedback is required to help understand how users perceive
the application, especially the reputation system. Besides multiple opt-in feedback
channels, such as email or a message boards, guided surveys are strongly recommended.
In our experience, opt-in message formats don’t accurately represent the opinions of
the largest group of users—the lurkers—those that only consume reputation and never
explicitly evaluate anything. At least in applications that are primarily advertising sup-
ported, the lurkers actually produce the largest chunk of revenue.
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Value: Measuring ROI

During the predeployment phase the instrumentation is used to regularly measure the
effect on revenue and/or other critical success metrics, such as engagement and cus-
tomer satisfaction. After deployment the daily, weekly, and monthly reports of these
business metrics will become the bible for driving the application and model designs
forward, so getting them established during this phase is critical to getting management
to understand why the investment in reputation is worthwhile. The beta test phase will
not demonstrate that reputation has been successful/profitable, but it will establish the
means for determining when it becomes so.

Tuning Your System
Sometime in the latter half of the testing phase, the reputation system begins to operate
sufficiently well enough to gauge the general effect it will have on the application and
early indications of its likely success against the original goals. This is when the ongoing
process of reputation model tuning can begin.

Tuning for ROI: Metrics
The most important thing the reputation team can do when implementing and de-
ploying a reputation system is to define the key metrics for success. What are the nu-
merical measures that a reputation-enabled application is contributing to the goals set
out for it? For each measure, what are the target values? Is there a predicted lift in user
contributions? Should there be more page-views? Is there an expected direct effect on
product revenues? Is the model expected to decrease customer care costs? By how
much? All of these metrics allow both the application and reputation teams to identify
areas for tuning. Sometimes just the application will need to be adjusted, other times
just the model will, and (especially early on) sometimes it will all need tuning.

Certainly the reputation team should have metrics for performance, such as the number
of reputation statement writes per second and a maximum latency of such-and-such
milliseconds for 95% of all reputation queries, but those are internal metrics for the
system and do not represent the value of the reputation itself to the applications that
use it.

Every change to the reputation model and application should be measured against all
corporate and success-related metrics. Resist the desire to tune things unless you have
a specific goal to change one or more of your most important metrics.
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Beware Excessive Tuning: The Hawthorne Effect
In 1924, the Western Electric company commissioned a multiyear study for their Haw-
thorne Works facility to see whether its workers would become more productive in
higher or lower levels of light. In 1955, Henry A. Landsberger analyzed the data gath-
ered and observed an interesting pattern, now known as the Hawthorne effect.

He noticed that the employees provided short-lived productivity increases in response
to the fact that they were being studied. It did not seem to matter if the lighting was raised
or lowered. He concluded that the fact that the study was communicated to the workers
made it clear that management was paying attention had a greater morale effect than
particular changes to the environment. Other changes that showed similar effects also
included moving workstations, clearing the floors, and maintaining work areas.

On this insight alone, it should be clear that reputation model tuning should not only
be judged by goal-centric objectives, but also that any model changes should be given
ample time to stabilize. A spike in activity immediately after the release of a reputation
change is not, necessarily, an indication that the change is working as intended. It is
good to assume the Hawthorne effect is in play until things stabilize.

But, the story of this effect gets even more interesting and relevant.

The Wikipedia entry for the Hawthorne Effect has a rather large section entitled In-
terpretations and criticisms of the Hawthorne studies that quotes many modern scholars
challenging many of the details in Landsberger’s two decades delayed analysis. From
that entry: “A psychology professor at the University of Michigan, Dr. Richard Nisbett,
calls the Hawthorne Effect ‘a glorified anecdote.’ ‘Once you’ve got the anecdote,’ he
said, ‘you can throw away the data.’”

The existence of significant questions surrounding this effect reinforces the fact that,
when it comes to human behavior, there is a tendency to over-extrapolate from the
available data, while ignoring all of the factors that aren’t even quantitative measured
or even measurable.

This problematic simplified extrapolation can also happen while tuning reputation
models. It’s easy to say, “Oh! I know what they’re doing.” That’s fine as far as it goes,
but the school of hard knocks has taught us that for every behavior we posit, there are
at least two more we are missing. If you really want to know how your model is working,
you’ll have to do both qualitative and quantitative research. Use your metrics to create
groups based on similar activity patterns and then reach out and ask them why they do
what they do.

Model tuning

Initially any moderately complex reputation model will need tuning. Plan for it in the
first weeks of the post-deployment period. Best guesses at weighting constants used in
reputation calculations, even when based on historical data, will prove to be inaccurate
in the light of real-user interaction.
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Tune public reputation, especially karma, as early as possible.

This does two useful things:

• If the changes required are significant, such as making large ad-
justment to incentive weights, the change will have the smallest
impact on your community as possible.

• Establishing the pattern that reputation can, and will, be changing
over time helps set expectations with the early adopters. Getting
them used to changes will make future tuning cause less of a com-
munity disruption.

End users won’t see much of the tuning to the reputation models. For example, cor-
porate reputations (internal-only) such as Spammer-IP can be tuned and returned with
impunity—actually it should be tuned regularly to compensate for improved knowl-
edge and as abusers learn to work their way around the system.

When tuning, an A-B test where the proposed changes and the old model can be tested
side by side would be ideal, but most application and metrics environments make this
cost-prohibitive. Alternatively, when tuning a reputation model, keep a backup snap-
shot of both the model code and the values of the critical metrics of the original for
comparison. If after a few days or weeks, the tuned model under-performs against the
previous version, it will be less painful to return to the backup.

Application tuning

There are a number of application- and reputation-system related problems that will
probably come to light only once a community of real users has been using the appli-
cation for an extended duration of time. You might see hints of these misunderstandings
or mis-comprehensions during early-stage user testing, but you’ll have little means of
gauging their severity until you analyze the data in bulk. Forgive us an extended
example, again from the world of Yahoo! Answers. But it illustrates the kind of back-
and-forth tune-observe-tune rhythm that you may need to fall into to improve the per-
formance of the reputation-related elements of your application.

Once upon a time, the Yahoo! Answers interface featured a simple, plain
“Star”mechanism associated with a question. The original design intent for the star was
to act as a sort of lightweight endorsement of an item, somewhat akin to Facebook’s
“Like” control. Star-vote totals were to be displayed next to questions in listings, and
also feed into a “Most Starred” widget (actually, a tab on a widget, displayed alongside
Recent and Popular questions) at the top of the site. When viewing a particular ques-
tion, you could see a listing of all other users that had “starred” that question.

As a convenience for users, there was one more feature: Answers would keep a list of
all the questions that you had “starred,” and display those on your Profile for others to
see (or, you could opt to keep them private, for your eyes only). It was this final feature
that may have tipped the utility for some users away from seeing stars primarily as a
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voting mechanism and instead toward seeing them as a kind of quasi-bookmark for
questions.

Up to this point, a user’s profile had only ever displayed questions that she’d asked or
answered. There was no facility for saving an arbitrary question posed by anyone on
the site. Stars finally gave this functionality to Answers users. One might think that this
shouldn’t be a problem, right? It’s just a convenient and emergent use of the Star feature.
As William Gibson said, “The street finds it own use for things.” (See more about
emergence in “Emergent effects and emergent defects” on page 236.)

But the ancillary, downstream reputation effects of those star-votes were still being
compiled, and still being applied to some very prominent listings on the site. Remem-
ber, those stars votes completely determined the placement of questions in the Most
Starred listing. Over time, a disconcerting effect started to take place: users who were,
in good faith, reporting bad content as abusive (see “Reporting Abuse” on page 207)
would subsequently Star those very same questions, to save them for later review.
(Probably to come back later and determine whether their complaints had been acted
upon by Yahoo! moderators.)

As a result, the Most Starred tab, featured at a high and prominent level of the site,
was—with alarming regularity—filling up with the absolute worst content on the site!
In fact, the worst of the worst, this was the stuff that users felt strongly enough about
to report it to Yahoo!. And, given the unbearable time-lags between reporting and
moderation on Answers in those days, these horrible questions were actually being
rewarded with higher visibility on the site for a prolonged period of time.

The Star feature had backfired entirely. When measured against the original metrics
laid out for the project (to encourage easier identification of high-quality content on
the site), it was evident that a redesign was called for.

In response, the Answers team put some features in place to actually facilitate this
report-then-save behavior that it was noticing, but in a way that did not have down-
stream reputation ramifications. The approach was two-pronged: first, they clarified
the purpose and intent of the star-vote (adding the simple label “Interesting!” to the
Star button was a huge improvement); second, they provided a different facility for
saving a question—one intended to be personal-only, and not displayed back to the
community. (And with no observable downstream reputation ramifications.) “Watch-
lists” on Answers now let a user mark something for future reference, but doesn’t
assume any specific judgment about the quality of the question being watched (Fig-
ure 9-1).

Conditions like these are unlikely to be uncovered during early-stage design and plan-
ning, nor will their gravity be easily assessed from small-scale user testing. These are
truly application tweaks that will only start to come to light under the load of a public
beta. (Though they may crop up again at any time once the application is in produc-
tion!) Stay nimble, keep an eye on metrics, and pay attention to how folks are actually
using the features you’ve provided.
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See Chapter 10 for an in-depth case study on a more comprehensive project to not only
keep bad content on Answers subdued, but actually clean it up and remove it altogether,
with much greater accuracy and speed.

Tuning for Behavior
There are many useful sources for reputation input, but source stands out among all
others: the user. The vast majority of content on the Web is user-generated, and user
feedback generates the reputation that powers the Web. Even every search engine is
built on evaluations in the form of links provided not by algorithms, but by people.

In an effort to optimize all of this people-powered value, reputation systems have come
to play a large part in creating incentives for user behavior: participation points, top
contributor awards, etc. Users then respond to these incentives, changing their behav-
ior, which then requires the reputation systems to be tuned to optimize newer and more
sophisticated behavior (including adjustments for undesirable side effects: aka abuse).
The cycle then repeats, if you’re lucky.

Emergent effects and emergent defects

It’s quite possible that—even during the beta period of your deployment—you’re no-
ticing some strange effects starting to take hold. Perhaps content items are rising in the
ranks that don’t entirely seem…deserving somehow. Or maybe you’re noticing a pre-
dominance of a certain kind of content at the expense of other types. What you’re seeing
is the character of your community shaking itself out, finding its edges, and defining
itself. Tread carefully before deciding how (and if) to intervene.

Check out Delicious’s Popular Bookmarks ranking for any given week; we bet you’ll
see a whole lot of “Top N” blog articles (see Figure 9-2). Why might this be? Technology
essayist Paul Graham posits that it may be the users of the service, and their motiva-
tional mindset, that explain it: “Delicious users are collectors, and a list of N things
seems particularly collectible because it’s a collection itself.” (Graham explores the
“List of N Things” phenomenon to some depth at http://www.paulgraham.com/nthings
.html.) The preponderance of lists on Delicious is a natural offshoot of its context of

Figure 9-1. By giving users a simple, private “Watchlist,” the Answers designers responded to the
needs of Abuse Reporters who wanted to check back in on bad content.
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use—an emergent effect—and is probably not one that you would worry about, nor
try to control in any way.

But you may also be seeing the effects of some design decisions that you’ve made, and
you may want to tweak those designs now before wider deployment. Blogger and social
media maven Muhammad Saleem noticed one such problem with voting on socially
driven news sites such as Digg:

We are beginning to see a trend where people make assumptions about the contents of
an article based on the meta-data associated with the submission rather than reading the
article itself. Based on these (oft-flawed) assumptions, people then vote for or against the
stories, and even comment on the stories without having read the stories themselves.

—http://web.archive.org/web/20061127130645/http://themulife.com/?p=256

We’ve noticed a similar tendency on some community-voting sites we’ve worked on
at Yahoo! and have come to consider behavior like this to be a type of emergent de-
fect: behavior that is homegrown within the community and may even become a de
facto standard for interacting, but is not necessarily valued. In fact, it’s basically a
bug and a failing of your system or—more likely—user interface design.

In instances like these, you should consider tweaking your design, to encourage the
proper and appropriate use of the controls you’re providing. In some ways, it’s not

Figure 9-2. What are people saving on Delicious? Lists, lists and more lists…(and there’s nothing
wrong with that).
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surprising that Digg users are voting on articles based on only surface appraisals; the
application’s very design in fact encourages this (see Figure 9-3).

Figure 9-3. The design of Digg enables (one might argue, encourages) voting for articles at a high level
of the site. This excerpted screen is the front page of Digg—users can vote for (Digg) an article, or
against (bury) it, with no need to read further.

Of course, one should not presuppose that the Digg folks think of this behavior (if it’s
even as widespread as Saleem indicates) as a defect. Again, it’s a careful balance between
the actual observed behavior of users and your own predetermined goals and aspira-
tions for the application.

It’s quite possible that Digg feels that high voting levels—even if some percentage of
those votes are from uninformed users—are important enough to promote voting at
higher and higher levels of the site. From a brand perspective alone, it certainly would
be odd to visit Digg.com, and not see a single place to Digg something up, right?

It’s hard to anticipate all emergent defects until they…
well…emerge. But there are certainly some good principles of design that you can follow
that may defend your system against some of the most common ones:

Encourage consumption
If your system’s reputations are intended to capture the quality of a piece of con-
tent, you should make a good-faith attempt to ensure that users are qualified to
make that assessment. Some examples:

• Early on in its lifetime, Apple’s iPhone App Store allowed any visitor to rate an
application, whether they’d purchased it or not! You can probably see the po-
tential for bad data to arise from this situation. A subsequent release addressed
this problem, ensuring that only users who’d installed the program would have

Defending against emergent defects.
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a voice. It doesn’t guarantee perfection, but a gating mechanism for rating does
help dampen noise.

• Digg and other social voting sites provide a toolbar that follows logged-in users
out to external sites, encouraging them to actually read linked articles before
clicking the toolbar-provided voting mechanism. Your application could even
require an interaction like this for a vote to be counted. (More likely, you’ll
simply want to weight votes more heavily when they’re cast in a guaranteed-
better fashion like this.)

• Think of ways to check for consumption in a media-specific way. With videos,
for example, perhaps you should give more weight to opinions cast about a video
only once the user has passed a certain time-threshold of viewing (or, perhaps,
disable voting mechanisms altogether until that time).

Avoid ambiguous controls
Try not to lard too much input overhead onto reputable entities, and try to keep
the purpose and primary value of each clear, concise, and nonconflicting. If your
design already calls for a Bookmarking or Favorites features, carefully consider
whether you also need a Thumbs Up or “I Like It.”

In any event, provide some cues to users about the utility of those controls. Are
they strictly for expressing an opinion? Sharing with a friend? Saving for later? The
downstream effects may, in fact, be that one control does all three of these things,
but sometimes it’s better to suggest clear and consistent uses for controls than let
the community muddle along, inventing its own utilities and rationales for things.
If a secondary or tertiary use for a control emerges, consider formalizing that func-
tion as a new feature.

Keep great reputations scarce

Many of the benefits that we’ve discussed for tracking reputation (the ability to high-
light good contributions and contributors, the ability to “tag” user profiles with awards
or recognition, even the simple ability to motivate contributors to excel) can be un-
dermined if you make one simple mistake with your reputation system: being too gen-
erous with positive reputations. Particularly, if you hand out reputations at the higher
end of the spectrum too widely, they will no longer be seen as valuable and rare ach-
ievements. You’ll also lose the ability to call out great content in long listings; if every-
thing is marked as special, nothing will stand out.

It’s probably OK to wait until the tuning phase to address the question of distribution
thresholds. You’ll need to make some calculations—based on available data for current
use of the application—to determine how heavily or lightly to weight certain inputs
into the system. A good example is the Gold/Silver/Bronze medal system that we de-
veloped at Yahoo! to reward active, quality contributors to UK Sports Message Boards.

We knew that we wanted certain inputs to factor into users’ badge-holder reputations:
the number of posts posted, how well the community received the posts (i.e., how
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highly the posts were rated, and so on. But, at first, our guesses at the appropriate
thresholds for these activities were just that—guesses.

Take, for instance, one input that was included to indicate dedication to the commun-
ity: the number of posts that a user had rated. (In general, we caution against simple
activity-level indicators for karma, but remember—this is but one input into the
model—weighted appropriately against other quality-indicators like community re-
sponse to your own postings.) We arbitrarily settled on the following minimum thresh-
olds for badge-earners:

• Bronze Badge—5 posts rated

• Silver Badge—20 posts rated

• Gold Badge—100 posts rated

These were simply stabs in the dark—placeholders, really—that we fully expected to
tune as we got closer to deployment.

And, in fact, once we’d done an in-depth calculation of project badge numbers in the
community (based on Message Board activity levels that were already evident before
the addition of badges), we realized that these estimates were way too low. We would
be giving out millions of Bronze badges, and, heck, still thousands of Golds. This felt
way too liberal, given the goals of the project: to identify and reward only the most
active and valued contributors to boards.

By the time the feature went into production, these minimum thresholds for rating
others postings were made much higher (orders of magnitude higher) and, in fact, it
was several months before the first message board Gold badge actually surfaced in the
wild! We considered that a good thing, and perfectly in-line with the business and
community metrics we’d laid out at the project’s outset.

So…How Much Is Enough?
When you’re trying to plan out these distribution thresholds for reputations, your cal-
culations will (of course!) vary with the context of use.

Is this karma (people reputation) or content reputation?
Be more mindful of the distribution of karma. It’s probably OK to have an over-
abundance of “Trophy-winning videos” floating around your site, but too many
top-flight experts risks devaluing the reward altogether.

Honor the presentation pattern
Some distribution thresholds will be super easy to calibrate; if you’re honoring the
Top 100 Reviewers on your site, for example, the number of users awarded
should be fairly self-evident. It’s only with more ambiguous patterns that thresh-
olds will need to be actively tuned and massaged to get the desired distributions.

Power-law is your friend
When in doubt, try to award reputations along a power-law distribution. (Go to
http://en.wikipedia.org/wiki/Power_law.) Great reputations should be rare, good
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ones scarce, and mediocre ones should be the norm. This will naturally mimic the
natural properties of most networks, so—really—your reputations should reflect
those values also.

Tuning for the Future
There are sometimes pleasant surprises when implementing reputation systems for the
first time. When users begin to interact with reputation-powered applications, the very
nature of the application can change significantly; it often becomes communal—
control of the reputable entities shifts from the company to the people.

This shift from a content-centric to a community-centric application often leads to
inspirational application designs to be built on the lessons drawn from the existing
reputation system. Simply put, if reputation works well for one application, all of the
other related applications will want to integrate it, yesterday!

Though new reputation models can be added only as fast as they can be developed,
tested, integrated, and deployed, the application team can release new uses for exist-
ing reputations without coordination and almost instantaneously—it already has
access to the reputation API calls. This suggests that the reputation team should con-
tinuously optimize for performance against its internal metrics. Expect significant
growth, especially in the number of reputation queries. Even if the primary application,
as originally implemented, doesn’t grow daily users by an unexpected rate, expect the
application team to add new types of uses, such as more reputation-weighted searches,
or to add more pages that display a reputation score.

Tuning reputation systems for ROI, behavior, and future improvements is a never-
ending process. If you stop this required maintenance, the entire system will lose value
as it becomes abused, slow, noncompetitive, broken, and eventually irrelevant.

Learning by Example
It’s one thing to describe and critique currently deployed reputation systems—after
they’ve already been deployed. It’s another to prescribe a detailed set of steps that are
recommended for new practitioners, as we have done in this book.

Talk is easy; action is difficult. But, action is easy; true understanding is difficult!

—Warrior Proverb

The lessons we presented here are the direct result of many attempts—some succeeded,
some failed—at reputation system development and deployment. The book is the result
of successive refinement of those lessons, especially as we refined it at Yahoo!. Chap-
ter 10 is our proof-in-the-pudding that this methodology works in practice; it covers
each step as we applied them during the development of a community moderation
reputation model for Yahoo! Answers.
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CHAPTER 10

Case Study: Yahoo! Answers
Community Content Moderation

This chapter is a real-life case study applying many of the theories and practical advice
presented in this book. The lessons learned on this project had a significant impact on
our thinking about reputation systems, the power of social media moderation, and the
need to publish these results in order to share our findings with the greater web appli-
cation development community.

In the summer of 2007, Yahoo! tried to address some moderation challenges with one
of its flagship community products: Yahoo! Answers. The service had fallen victim to
its own success and drawn the attention of trolls and spammers in a big way. The Yahoo!
Answers team was struggling to keep up with harmful, abusive content that flooded
the service, most of which originated with a small number of bad actors on the site.

Ultimately, a clever (but simple) system that was rich in reputation provided the answer
to these woes: it was designed to identify bad actors, indemnify honest contributors,
and take the overwhelming load off of the customer care team. Here’s how that system
came about.

What Is Yahoo! Answers?
Yahoo! Answers debuted in December of 2005 and almost immediately enjoyed mas-
sive popularity as a community driven website and a source of shared knowledge.

Yahoo! Answers provides a very simple interface to do, chiefly, two things: pose ques-
tions to a large community (potentially, any active, registered Yahoo! user—that’s
roughly a half-billion people worldwide); or answer questions that others have asked.
Yahoo! Answers was modeled, in part, from similar question-and-answer sites like Ko-
rea’s Naver.com Knowledge Search.

The appeal of this format was undeniable. By June of 2006, according to Business 2.0,
Yahoo! Answers had already become “the second most popular Internet reference site
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after Wikipedia and had more than 90% of the domestic question-and-answer market
share, as measured by comScore.” Its popularity continues and, owing partly to excel-
lent search engine optimization (SEO), Yahoo! Answers pages frequently appear very
near the top of search results pages on Google and Yahoo! for a wide variety of topics.

Yahoo! Answers is by far the most active community site on the Yahoo! network. It
logs more than 1.2 million user contributions (questions and answers combined) each
day.

A Marketplace for Questions and Yahoo! Answers
Yahoo! Answers is a unique kind of marketplace—one not based on the transfer of
goods for monetary reward. No, Yahoo! Answers is a knowledge marketplace, where
the currency of exchange is ideas. Furthermore, Yahoo! Answers focuses on a specific
kind of knowledge.

Micah Alpern was the user experience lead for early releases of Yahoo! Answers. He
refers to the unique focus of Yahoo! Answers as “experiential knowledge”—the
exchange of opinions and sharing of common experiences and advice (see Fig-
ure 10-1). While verifiable, factual information is indeed exchanged on Yahoo! An-
swers, a lot of the conversations that take place there are intended to be social in nature.

Micah has published a detailed presentation that covers this project in
some depth. You can find it at http://www.slideshare.net/malpern/wiki
mania-2009-yahoo-answers-community-moderation.

Yahoo! Answers is not a reference site in the sense that Wikipedia is; it is not based on
the ambition to provide objective, verifiable information. Rather, its goal is to encour-
age participation from a wide variety of contributors. That goal is important to keep in
mind as we delve further into the problems that Yahoo! Answers was undergoing and
the steps needed to solve them. Specifically, keep the following in mind:

• The answers on Yahoo! Answers are subjective. It is the community that determines
what responses are ultimately “right.” It should not be a goal of any metamoder-
ation system to distinguish right answers from wrong or otherwise place any im-
portance on the objective truth of answers.

• In a marketplace for opinions such as Yahoo! Answers, it’s in the best interest of
everyone (askers, answerers, and the site operator) to encourage more opinions,
not fewer. So the designer of a moderation system intended to weed out abusive
content should make every attempt to avoid punishing legitimate questions and
answers. False positives can’t be tolerated, and the system must include an appeals
process.
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Attack of the Trolls
So, exactly what problems was Yahoo! Answers suffering from? Two factors—the time
lines with which Yahoo! Answers displayed new content and the overwhelming number
of contributions it received—had combined to create an unfortunate environment that
was almost irresistible to trolls. Dealing with offensive and antagonistic user content
had become the number one feature request from the Yahoo! Answers community.

The Yahoo! Answers team first attempted a machine-learning approach, developing a
black-box abuse classifier (lovingly named the “Junk Detector”) to prefilter abuse re-
ports coming in. It was intended to classify the worst of the worst content and put it
into a prioritized queue for the attention of customer care agents.

The Junk Detector was mostly a bust. It was moderately successful at detecting obvious
spam, but it failed altogether to identify the subtler, more insidious contributions of
trolls.

Do Trolls Eat Spam?
What’s the difference between trolling behavior and plain old spam? The distinction is
subtle, but understanding it is critical when you’re combating either one. We classify

Figure 10-1. The questions asked and answers shared on Yahoo! Answers are often based on
experiential knowledge rather than authoritative, fact-based information.
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communications that are unwanted, make overtly commercial appeals, and are broad-
cast to a large audience as spam.

Fortunately, the same characteristics that mark a communication as spam also make it
stand out. You probably can easily identify spam after just a quick inspection. We can
teach these same tricks to machines. Although spammers constantly change their tac-
tics to evade detection, spam generally can be detected by machine methods.

Trollish behavior, however, is another matter altogether. Trolls may not have financial
motives—more likely, they crave attention and are motivated by a desire to disrupt the
larger conversation in a community. Trolls quickly realize that nonobvious means are
the best way to accomplish these goals. An extremely effective means of trolling, in fact,
is to disguise your trollish intentions as real conversation.

Accomplished trolls can be so subtle that even human agents are hard pressed to detect
them. In the section “Applying Scope to Yahoo! EuroSport Message Board Reputa-
tion” on page 149, we discussed a kind of subtle trolling in a sports context: a troll
masquerading as a fan of the opposing team. For these trolls, pretending to be faithful
fans is part of the fun, and it renders them all the more disruptive when they start to
trash-talk the home team.

How do you detect for that? It’s hard for any single human—and near impossible for a
machine—but it’s possible with a number of humans. Adding consensus and reputa-
tion-enabled methods makes it easier to reliably discern trollish behavior from sincere
contributions. Because a reputation system to some degree reflects the tastes of a com-
munity, it also has a better than average chance at catching behavior that transgresses
those tastes.

Engineering manager Ori Zaltzman recalls the exact moment he knew for certain that
something had to be done about trolls: when he logged onto Yahoo! Answers to see
the following question highlighted on the home page: “What is the best sauce to eat
with my fried dead baby?” (And, yes, we apologize for the citation—but it certainly
illustrates the distasteful effects of letting trolls go unchallenged in your community.)

That question got through the Junk Detector easily. Even though it’s an obviously
unwelcome contribution, on the surface, to a machine, it looked like a perfectly legit-
imate question: grammatically well formed, no SHOUTING, i.e., ALL CAPS. So abu-
sive content could sit on the site with impunity for hours before the staff could respond
to abuse reports.

Time was a factor

Because the currency of Yahoo! Answers is the free exchange of opinions,
a critical component of “free” in this context is timely. Yahoo! Answers functions best
as a near-real-time communication system, and—as a design principle—erred on the
side of timely delivery of users’ questions and answers. User contributions are not sub-
ject to any type of editorial approval before being pushed to the site.
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Early on, the Yahoo! Answers product plan did call for editor approval
of all questions before publishing. This was an early attempt to influence
the content quality level by modeling good user behavior. The almost
immediate, skyrocketing popularity of the site quickly rendered that
part of the plan moot. There simply was no way that any team of Yahoo!
content moderators was going to keep up with the levels of use on
Yahoo! Answers.

Location, location, location

One particular area of the site became a highly sought-after target for abusers: the high-
profile front page of Yahoo! Answers. (See Figure 10-2.)

Figure 10-2. Because questions on Yahoo! Answers could appear on the front page of the site with no
verification that the content was appropriate, spammers and trolls flocked to this high-value real
estate.

Any newly asked question could potentially appear in highly trafficked areas, including
the following:

• The index of open (answerable) questions (http://answers.yahoo.com/dir/index)

• The index of the category in which a question was listed

• Communities such as Yahoo! Groups, Sports, or Music, where Yahoo! Answers
content was syndicated

Built with Reputation
Yahoo! Answers, somewhat famously, already featured a reputation system—a very
visible one, designed to encourage and reward ever-greater levels of user participation.
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On Yahoo! Answers, user activity is rewarded with a detailed point system. (See “Points
and Accumulators” on page 182.)

We say “famously” because the Yahoo! Answers point system is some-
what notorious in reputation system circles, and debate continues to
rage over its effectiveness.

At the heart of the debate is this question: does the existence of these
points—and the incentive of rewarding people for participation—
actually improve the experience of using Yahoo! Answers? Does it make
the site a better source of information? Or are the system’s game-like
elements promoted too heavily, turning what could be a valuable, in-
formative site into a game for the easily distracted?

We’re mostly steering clear of that discussion here. (We touched on
aspects of it in Chapter 7.) This case study deals only with combating
obviously abusive content, not with judging good content from bad.

Yahoo! Answers decided to solve the problem through community moderation based
on a reputation system that would be completely separate from the existing public
participation point system. However, it would have been foolish to ignore the point
system; it was a potentially rich source of inputs into any additional system. The new
system clearly would have to be influenced by the existence of the point system, but it
would have to use the point system input in very specific ways, while the point system
continued to function.

Avengers Assemble!
The crew fielded to tackle this problem was a combination of two teams.

The Yahoo! Answers product team had ultimate responsibility for the application. It
was made up of domain experts on questions and answers, from the rationale behind
the service, to the smallest details of user experience, to building the high-volume scal-
able systems that supported it. These were the folks who best understood the service,
and they were held accountable for preserving the integrity of the user experience. Ori
Zaltzman was the engineering manager, Quy Le was product manager, Anirudh Koul
was the engineer leading the troll hunt and optimizing the model, and Micah Alpern
was the lead user experience designer.

The members of the product team were the primary customers for the technology and
advice of another team at Yahoo!, the reputation platform team. The reputation plat-
form was a tier of technology (detailed in Appendix A) that was the basis for many of
the concepts and models we have discussed in this book (this book is largely
documentation of that experience). Yvonne French was the product manager for the
reputation platform, and Randy Farmer, coauthor of this book, was the platform’s
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primary designer and advised on reputation model and system deployment. A small
engineering team built the platform and implemented the reputation models.

Yahoo! enjoyed an advantage in this situation that many organizations
may not: considerable resources and, perhaps more important, special-
ized resources. For example, it is unlikely that your organization will
feature an engineering team specifically dedicated to architecting a rep-
utation platform. However, you might consider drafting one or more
members of your team to develop deep knowledge in that area.

Here’s how these combined teams tackled the problem of taming abuse on Yahoo!
Answers.

Initial Project Planning
As you’ll recall from Chapter 5, we recommend starting any reputation system project
by asking these fundamental questions:

1. What are your goals for your application?

2. What is your content control pattern?

3. Given your goals and the content models, what types of incentives are likely to
work well for you?

Setting Goals
As is often the case on community-driven websites, what is good for the community—
good content and the freedom to have meaningful, interruption-free exchanges—also
just happens to make for good business value for the site owners. This project was no
different, but it’s worth discussing the project’s specific goals.

Cutting costs

The first motivation for cleaning up abuse on Yahoo! Answers was cost. The existing
system for dealing with abuse was expensive, relying as it did on heavy human-operator
intervention. Each and every report of abuse had to be verified by a human operator
before action could be taken on it.

Randy Farmer, at the time the community strategy analyst for Yahoo!, pointed out the
financial foolhardiness of continuing down the path where the system was leading: “the
cost of generating abuse is zero, while we’re spending a million dollars a year on cus-
tomer care to combat it—and it isn’t even working.” Any new system would have to
fight abuse at a cost that was orders of magnitude lower than that of the manual-
intervention approach.
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Cleaning up the neighborhood

The monetary cost of dealing with abuse on Yahoo! Answers was considerable, but the
community cost of not dealing with it would have been far higher. Bad behavior begets
bad behavior, and leaving obviously abusive content in high-profile locations on the
site would over time absolutely erode the perceived value of social interactions on Ya-
hoo! Answers. (For more, see the sidebar “Broken Windows and Online Behav-
ior” on page 205.)

Of course, Yahoo! hoped that the inverse would also prove true: if Yahoo! Answers
addressed the problem forcefully and with great vigor, the community would notice
the effort and respond in kind. (See the sidebar “Beware Excessive Tuning: The Haw-
thorne Effect” on page 233.)

The goals for content quality were twofold:

• Reduce the overall amount of abusive content on the site.

• Reduce the amount of time it took for content reported as abusive to be pulled
down.

Who Controls the Content?
In Chapter 5, we proposed a number of content control patterns as useful models for
thinking about the ways in which your content is created, disseminated, and moder-
ated. Let’s revisit those patterns briefly for this project.

Before the community content moderation project, Yahoo! Answers fit nicely in the
basic social media pattern. (See “Basic social media: Users create and evaluate, staff
removes” on page 109.) While users were given responsibility of creating and editing
(voting for or reporting as abusive) questions and answers, final determination for re-
moving content was left up to the staff.

The team’s goal was to move Yahoo! Answers closer to The Full Monty (see “The Full
Monty: Users create, evaluate, and remove” on page 110) and put the responsibility of
removing or hiding content right into the hands of the community. That responsibility
would be mediated by the reputation system, but staff intervention in content quality
issues would be necessary only in cases where content contributors appealed the sys-
tems’ decisions.

Incentives
We discussed some ways to think about the incentives that could drive community
participation on your site in the section “Incentives for User Participation, Quality, and
Moderation” on page 111. For Yahoo! Answers, the team decided to devise incentives
that took into account a couple of primary motivations:
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• Some community members would report abuse for altruistic reasons: out of a
desire to keep the community clean. (See the section “Altruistic or sharing incen-
tives” on page 113.) Downplaying the contributions of such users would be critical;
the more public their deeds became, the less likely they would continue acting out
of sheer altruism.

• Some community members had egocentric motivations for reporting abuse. The
team appealed to those motivations by giving those users an increasingly greater
voice in the community.

The High-Level Project Model
The team devised this plan for the new model: a reputation model would sit between
the two existing systems—a report mechanism that permitted any user on Yahoo! An-
swers to flag any other user’s contribution and the (human) customer care system that
acted on those reports. (See Figure 10-3.)

This approach was based on two insights:

1. Customer care could be removed from the loop—in most cases—by shifting the
content removal process into the application and giving it to the users, who were
already the source of the abuse reports, and then optimizing it to cut the amount
of time and offensive posting by 90%.

2. Customer care could then handle just the exceptions—undoing the removal of
content mistakenly identified as abusive. At the time, such false positives made up
10% of all content removal. Even if the exception rate stayed the same, customer
care costs would decrease by 90%.

The team would accomplish item 1, removing customer care from the loop, by imple-
menting a new way to remove content from the site—“hiding.” Hiding involved trust-
ing the community members themselves to vote to hide the abusive content. The
reputation platform would manage the details of the voting mechanism and any related
karma. Because this design required no external authority to remove abusive content
from view, it was probably the fastest way to cut display time for abusive content.

As for item 2, dealing with exceptions, the team devised an ingenious mechanism—an
appeals process. In the new system, when the community voted to hide a user’s content,
the system sent the author an email explaining why, with an invitation to appeal the
decision. Customer care would get involved only if the user appealed. The team pre-
dicted that this process would limit abuse of the ability to hide content; it would provide
an opportunity to inform users about how to use the feature; and, because trolls often
don’t give valid email addresses when registering an account, they would simply be
unable to appeal because they’d never receive the notices.
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Figure 10-3. The system would use reputation as a basis for hiding abusive content, leaving staff to
handle only appeals.

Most of the rest of this chapter details the reputation model designated by the Hide
Content? diamond in Figure 10-3. See the patent application for more details about the
other (nonreputation) portions of the diagram, such as the Notify Author and Appeals
process boxes.

Yahoo! has applied for a patent on this reputation model, and that ap-
plication has been published: Trust Based Moderation—Inventors: Ori
Zaltzman and Quy Dinh Le. Please consider the patent if you are even
thinking about copying this design.

We are grateful to both the Yahoo! Answers and the reputation product
teams for sharing their design insights and their continued assistance in
preparing this case study.

Objects, Inputs, Scope, and Mechanism
Yahoo! Answers was already a well-established service at the time that the community
content moderation model was being designed, with all of the objects and most of the
available inputs already well defined. The final model includes dozens of inputs to more
than a dozen processes. Out of respect for intellectual property and the need for brevity,
we have not detailed every object and input here. But, thanks to the Yahoo! Answers
team’s willingness to share, we’re able to provide an accurate overall picture of the
reputation system and its application.

The Objects
Here are the objects of interest for designing a community-powered content moderation
system:
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User contributions
User contributions are the objects that users make by either adding or evaluating
content:

Questions
Arriving at a rate of almost 100 per minute, questions are the starting point of
all Yahoo! Answers activity. New questions are displayed on the home page
and on category pages.

Answers
Answers arrive 6 to 10 times faster than questions and make up the bulk of the
reputable entities in the application. All answers are associated with a single
question and are displayed in chronological order, oldest first.

Ratings
After a user makes several contributions, the application encourages the user
to rate answers with a simple thumb-up or thumb-down vote. The author of
the question is also allowed to select the best answer and give it a rating on a
5-star scale. If the question author does not select a best answer in the allotted
time, the community vote is used to determine the best answer.

Users may also mark a question with a star, indicating that the question is a
favorite.

Each of these rating schemes already existed at the time the community content
moderation system was designed, so for each scheme, the inputs and outputs
were both available for the designers’ consideration.

Users
All users in this application have two data records that can hold and supply infor-
mation for reputation calculations: an all-Yahoo! global user record, which in-
cludes fields for items such as registration data and connection information, and
a record for Yahoo! Answers, which stores only application-specific fields.

Developing this model required considering at least two different classifications of
users:

Authors
Authors create the items (questions and answers) that the community can
moderate.

Reporters
Reporters determine that an item (a question or an answer) breaks the rules
and should be removed.

Customer care staff
The customer care staff is the target of the model. The goal is to reduce the staff’s
participation in the content moderation process as much as possible but not to
zero. Any community content moderation process can be abused: trusted users
may decide to abuse their power, or they may simply make a mistake. Customer
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care would still evaluate appeals in those cases, but the number of such cases would
be far less than the total number of abuses.

Customer care agents also have a reputation—for accuracy—though it isn’t cal-
culated by this model. At the start of the Yahoo! Answers community content
moderation project, the accuracy of a customer care agent’s evaluation of questions
was about 90%. That rate meant that 1 in 10 submissions was either incorrectly
deleted or incorrectly allowed to remain on the site. An important measure of the
model’s effectiveness was whether users’ evaluations were more accurate than the
staff’s.

The design included two noteworthy documents, though they were not formal objects
(that is, they neither provided input nor were reputable entities). The Yahoo! Terms of
Service and the Yahoo! Answers Community Guidelines (Figure 10-4) are the written
standards for questions and answers. Users are supposed to apply these rules in eval-
uating content.

Figure 10-4. Yahoo! Answers Community Guidelines.

Limiting Scope
When a reputation model is introduced, users often are confused at first about what
the reputation score means. The design of the community content moderation model
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for Yahoo! Answers is only intended to identify abusive content, not abusive users.
Remember that many reasons exist for removing content, and some content items are
removed as a result of behaviors that authors are willing to change, if gently instructed
to do so.

The inclusion of an appeals process in the application not only provides a way to catch
false-positive classification by reporters, it also gives Yahoo! a chance to inform authors
of the requirements for participating in Yahoo! Answers, allowing users to learn more
about expected behavior.

An Evolving Model
Ideally, in designing a reputation system, you’d start with as comprehensive a list of
potential inputs as possible. In practice, when the Yahoo! Answers team was designing
the community content moderation model, they used a more incremental approach.
As the model evolved, the designers added more subtle objects and inputs. Next, to
illustrate an actual model development process, we’ll roughly follow the historical path
of the Yahoo! Answers design.

Iteration 1: Abuse reporting

When you develop a reputation model, it’s good practice to start simple; focus only on
the main objects, inputs, decisions, and uses. Assume a universe in which the model
works exactly as intended. Don’t focus too much on performance or abuse at first;
you’ll get to those issues in later iterations. Trying to solve this kind of complex equation
in all dimensions simultaneously will just lead to confusion and impede your progress.

For the Yahoo! Answers community content moderation system, the designers started
with a very basic model: abuse reports would accumulate against a content item, and
when some threshold was reached, the item would be hidden. This model, sometimes
called “X-strikes-and-you’re-out,” is quite common in social web applications.
Craigslist is a well-known example.

Despite the apparent complexity of the final application, the model’s simple core design
remained unchanged: accumulated abuse reports automatically hide content. Having
that core design to keep in mind as the key goal helped eliminate complications in the
design.

From the beginning, the team planned for the primary input to the model to be
a user-generated abuse report explicitly about a content item (a question or an answer).
This user interface device was the same one already in place for alerting customer care
to abuse. Though many other inputs were possible, initially the team considered a
model with abuse reports as the only input.

Abuse reports (user input)
Users could report content that violated the community guidelines or the terms of
service. The user interface consisted of a button next to all questions and answers.

Inputs.
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The button was labeled with a flag icon, and sometimes the action of clicking the
button was referred to as “flagging an item.” In the case of questions, the button
label also included the phrase “Report Abuse.” The interface then led the user
through a short series of pages to explain the process and narrow down the reason
for the report.

The abuse report was the only input in the first iteration of the model.

At the core of the model was a simple, binary decision: should a
content item that has just been reported as abusive be hidden? How does the model
make the decision, and, if the result is positive, how should the application be notified?

In the first iteration, the model for this decision was “three strikes and you’re out.” (See
Figure 10-5.) Abuse reports fed into a simple accumulator (see “Simple Accumula-
tor” on page 48). Each report about a content item was given equal weight; all reports
were added together and stored as AbusiveScore. That score was sent on to a simple
evaluator, which tested it against a threshold (3) and either terminated it (if the thresh-
old had not been reached) or alerted the application to hide the item.

Given that performance was a key requirement for this model, the abuse reports were
delivered asynchronously, and the outgoing alert to the application used an application-
level messaging system.

This iteration of the model did not include karma.

Figure 10-5. Iteration 1: A not-very-forgiving model. Three strikes and your content is out!

This very simple model didn’t really meet the minimum requirement for the
application—the fastest possible removal of abusive content. Three strikes is often too
many, but one or two is sometimes too few, giving too much power to bad actors.

The model’s main weakness was to give every abuse report equal weight. By giving
trusted users more power to hide content and giving unknown users or bad actors less
power, the model could improve the speed and accuracy with which abusive content
was removed.

Mechanism and diagram.

Analysis.
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The next iteration of the model introduced karma for reporters of abuse.

Iteration 2: Karma for abuse reporters

Ideally, the more abuse a user reports accurately, the greater the trust the system should
place in that user’s reports. In the second iteration of the model, shown in Fig-
ure 10-6, when a trusted reporter flagged an item, it was hidden immediately. Trusted
reporters had proven, over time, that their motivations were pure, their comprehension
of community standards was good, and their word could be taken at face value.

Reports by users who had never previously reported an item, with unknown reputation,
were all given equal weight, but it was significantly lower than reports by users with a
positive history. In this model, individual unknown reporters had less influence on any
one content item, but the votes of different individuals could accrue quickly. (At the
same time, the individuals accrued their own reporting histories, so unknown reporters
didn’t stay unknown for long.)

Though you might think that “bad” reporters (those whose reports were later over-
turned on appeal) should have less say than unknown users, the model gave equal
weight to reports from bad reporters and unknown reporters. (See “Practitioner’s Tips:
Negative Public Karma” on page 161.)

To the inputs from the previous iteration, the designers added three events re-
lated to flagging questions and answers accurately:

Item hidden (moderation model feedback)
The system sent this input message when the reputation process determined that
a question or answer should be hidden, which represented that all users who re-
ported the content item agreed that the item was in violation of either the TOS or
the community guidelines.

Appeal Result: Upheld (customer care input)
After the system hid an item, it contacted the content author via email and enabled
the author to start an appeal process, requesting customer care staff to review the
decision. If a customer care agent determined that the content was appropriately
hidden, the system sent the event Appeal Result: Upheld to the reputation model.

Appeal Result: Overturned (customer care input)
If a customer care agent determined that the content was inappropriately
hidden, the system displayed the content again and sent the event
Appeal Result: Overturned to the reputation model for corrective adjustments.

The designers transformed the overly simple “strikes”-based
model to account for a user’s abuse report history.

The goals were to decrease the time required to hide abusive content, and reduce the
risk of inexperienced or bad actors hiding content inappropriately.

Inputs.

Mechanism and diagram.
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The solution was to add AbuseReporter karma to record the user’s accuracy in hiding
abusive content. Use AbuseReporter to give greater weight to reports by users with a
history of accurate abuse reporting.

To accommodate the varying weight of abuse reports, the designers changed the cal-
culation of AbusiveScore from strikes to a normalized value, where 0.0 represented no
abuse information known and 1.0 represented the maximum abuse value. The eval-
uator now compared the AbusiveScore to a normalized value representing the certainty
required before hiding an item.

The designers added an AbuseReporter reputation claim, a normalized value, where 0.0
represented a user with no history of abuse reporting and 1.0 represented a user with
a completely accurate abuse reporting history. A user with a perfect score of 1.0 could
hide any item immediately.

Figure 10-6. Iteration 2: A reporter’s record of good and bad reports now influences the weight of his
opinion on other content items.
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The inputs that increased AbuseReporter were Item Hidden and Appeal Result:
Upheld. The input Abuse Result: Overturned had a disproportionately large negative
effect on AbuseReporter, providing an incentive for reporters not to use their power
indiscriminately.

Unlike the first process, the new version of the Content Item Abuse process did not
treat each input the same way. It read the reporter’s AbuseReporter karma, added a
small constant to AbusiveScore (so that users with no karma made at least a small
contribution to the result), and capped the result at the maximum. If the result was 1.0,
the system hid the item but, in addition to alerting the application, it updated the
AbuseReporter karma for each user that flagged the item. This reflected community
consensus and, since the vast majority of hidden items would never be reviewed by
customer care, was often the only opportunity the system had to reinforce the karma
of those users. Very few appeals were anticipated given that trolls were known to give
bogus email addresses when registering. The incentives for both the legitimate authors
and good abuse reporters discourage abusing the community moderation model.

The system sent appeal results messages asynchronously as part of the customer care
application; the messages could come in at anytime. After AbuseReporter was adjusted,
the system did not attempt to update other AbusiveScores the reporter may have con-
tributed to.

The second iteration of the model did exactly what it was supposed to do: it
allowed trusted reporters to hide abusive content immediately. However, it ignored the
value of contributions by authors who might themselves be established, trusted mem-
bers of the community. As a result, a single mistaken abuse report against a top con-
tributor led to a higher appeal rate, which not only increased costs but generated bad
feelings about the site. Furthermore, even before the first iteration of the model had
been implemented, trolls already had been using the abuse reporting mechanism to
harass top contributors. So in the second iteration, treating all authors equally allowed
malicious users (trolls or even just rivals of top contributors) to take down the content
of top contributors with just a few puppet accounts.

The designers found that the model needed to account for the understanding that in
cases of alleged abuse, some authors always deserve a second opinion. In addition, the
designers knew that to hide content posted by casual regular users, the AbusiveScore
required by the model should be lower—and for content by unknown authors, lower
still.

In other words, the model needed karma for author contributions.

Iteration 3: Karma for authors

The third iteration of the model introduced QuestionAuthor karma and AnswerAuthor
karma, which reflected the quality and quantity of author contributions. The system
compared AbusiveScore to those two reputations instead of a constant. This change
raised the threshold for hiding content for active, trusted authors and lowered the

Analysis.
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threshold for unknown authors and authors known to have contributed abusive
content.

The new inputs to the model fell into two groups: inputs that indicated the
quantity and community reputation of the questions and answers contributed by an
author and evidence of any previous abusive contributions.

Inputs contributing to positive reputation for a question
Numerous events could indicate that a question was valuable to the community.
When a reader took any of the following actions on a question, the author’s
QuestionQuality reputation score increased:

• Added the question to his watch list

• Shared the question with a friend

• Gave the question a star (marked it as a favorite)

Inputs contributing to negative reputation for a question
When customer care staff deleted a question, the system set the author’s Question
Quality reputation score to 0.0 and adjusted the author’s karma appropriately.

Another negative input was the Junk Detector score, which acted as an initial guess
about the level of abusive content in the question. Note that a high Junk Detector
score would have prevented the question from ever being displayed at all.

Inputs related to content creation
When an author posted a question, the system increased the total number of ques-
tions submitted by that author by 1 (QuestionsAskedCount). This configuration
allowed new contributors to start with a reputation score based on the average
quality of all previous contributions to the site, by all authors (AuthorAverageQues
tionQuality).

When other users answered the question, the question itself inherited the
AverageAnswererQuality reputation score for all users who answered it. (If a lot of
good people answer your question, it must be a good question.)

Inputs contributing to positive reputation for an answer
As with a question, several events could indicate that an answer was valuable to
the community. When a reader took any of the following actions on an answer,
the author’s AnswerQuality reputation score increased:

• The author of the original question selected the answer as Best Answer

• The community voted the answer Best Answer

• The average community rating given for the answer

Inputs contributing to negative reputation for an answer
If the number of negative ratings of an answer rose significantly higher than the
number of positive ratings, the system hid the answer from display, except to users
who asked to see all items regardless of rating. The system lowered the AnswerQual
ity reputation score of answers that fell below this display threshold. This choked

Inputs.
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off further negative ratings simply because the item was no longer displayed to
most users.

When customer care staff deleted an answer, the system reset the AnswerQuality
reputation to 0.0 and adjusted the author’s karma appropriately.

Another negative input was the Junk Detector rating, which acted as a rough guess
at the level of abusive content in the answer. Note that if the Junk Detector rating
was high, the system would already have hidden the answer before even sending
it through the reputation process.

New-answer input
When a user posted an answer, the system increased the total number of answers
submitted by that user by 1 (QuestionsAnsweredCount). In that configuration, each
time an author posted a new answer, the system assigned a starting reputation
based on the average quality of all answers previously submitted by that author
(AuthorAverageAnswerQuality).

Previous abusive history
As part of the revisions accounting for the content author’s reputation when de-
termining whether to hide a flagged contribution, the model needed to calculate
and consider the history of previously hidden items (AbusiveContent karma). All
previously hidden questions or answers had a negative effect on all contributor
karmas.

In the third iteration of the model, the designers created several
new reputation scores for questions and answers and a new user role with a karma—
that of author of the flagged content. Those additions more than doubled the com-
plexity compared to the previous iteration, as illustrated in Figure 10-7. But if you
consider each iteration as a separate reputation model (which is logical because each
addition stands alone), each one is simple. By integrating separable small models, the
combination made up a full-blown reputation system. For example, the karmas intro-
duced by the new models—QuestionAuthor karma, AnswerAuthor karma, and Abusive
Content karma—could find uses in contexts other than hiding abusive content.

In this iteration the designers added two new main karma tracks, represented by the
parallel messaging tracks for question karma and answer karma. The calculations are
so similar that we present the description only once, using item to represent either
answer or question.

The system gave each item a quality reputation [QuestionQuality | AnswerQuality],
which started as the average of the quality reputations of the previously contributed
items [AuthorAverageQuestionQuality | AuthorAverageAnswerQuality] and a bit of the
Junk Detector score. As either positive (stars, ratings, shares) or negative inputs (items
hidden by customer care staff) changed, the scores, the averages, and karmas in turn
were immediately affected. Each positive input was restricted by weights and limits;
for example, only the first 10 users marking an item as a favorite were considered, and

Mechanism and diagram.
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each could contribute a maximum of 0.5 to the final quality score. This meant that
increasing the item quality reputation required many different types of positive inputs.

Once the system had assigned a new quality score to an item and then calculated and
stored the item’s overall average quality score, it sent the process a message with the
average score to calculate the individual item’s quality karma [QuestionAuthor | Answer
Author], subtracting the user’s overall AbusiveContent karma to generate the final result.

The system then combined the QuestionAuthor and AnswerAuthor karmas into
ContentAuthor karma, using the best (the larger) of the two values. That approach re-
flected the insight of Yahoo! Answers staff that people who ask good questions are not
the same as people who give good answers.

Figure 10-7. Iteration 3: This improved iteration of the model now also accounts for the history of a
content author. When users flag a question or answer, the system gives extra consideration to authors
with a history of posting good content.
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The designers once again changed the Hide Content? process, now comparing
AbusiveScore to the new ContentContributor karma to determine whether the content
should be hidden. When an item was hidden, that information was sent as an input
into a new process that updated the AbusiveContent karma.

The new process for updating AbusiveContent karma also incorporated the inputs from
customer care staff that were included in iteration 2—appeal results and content
removals—which affected the karma either positively or negatively, as appropriate.
Whenever an input entered that process, the system sent a message with the updated
score to each of the processes for updating question and answer karma.

By adding positive and negative karma scores for authors and effectively re-
quiring a second or third opinion before hiding their content, the designers added pro-
tection for established, trusted authors. It also shortened the amount of time that bad
content from historically abusive users would appear on the site by allowing single-
strike hiding by only lightly experienced abuse reporters. The team was very close to
finished.

But it still had a cold-start problem. How could the model protect authors who weren’t
abusive but didn’t have a strong history of posting contributions or reporting abuse?
They were still too vulnerable to flagging by other users—especially inexperienced or
malicious reporters.

The team needed as much outside information as it could get its hands on to provide
some protection to new users who deserved it and to expose malicious users from the
start.

Final design: Adding inferred karma

The team could have stopped here, but it wanted the system to be as effective as possible
as soon as it was deployed. Even before abuse reporters can build up a history of ac-
curately reporting abuse, the team wanted to give the best users a leg up over trolls and
spammers, who almost always create accounts solely for the purpose of manipulating
content for profit or malice.

In other words, the team wanted to magnify any reasons for trusting or being suspicious
of a user from the very beginning, before the user started to develop a history with the
reputation system.

To that end, the designers added a model of inferred karma (see “Generating inferred
karma” on page 159).

Fortunately, Yahoo! Answers had access to a wealth of data—inferred karma inputs—
about users from other contexts.

Many of the inferred inputs came from Yahoo! site security features. To maintain
that security, some of the inputs have been omitted, and the descriptions of others have
been altered to protect proprietary features.

Analysis.
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IP is suspect
More objects are accessible to web applications at the system level. One available
object is the IP address for the user’s current connection. Yahoo!, like many large
sites, keeps a list of addresses that it doesn’t trust for various reasons. Obviously,
any user connected through one of those addresses is suspect.

Browser cookie is suspect
Yahoo! maintains security information in browser cookies. Cookies may raise sus-
picion for several reasons—for example, when the same cookie is reused by mul-
tiple IP addresses in different ranges in a short period of time.

Browser cookie age
A new browser cookie reveals nothing, but a valid, long-lived cookie that isn’t
suspect may slightly boost trust of a user.

Junk detector score (for rejected content)
In the final iteration of the model, the model captures the history of Junk Detector
scores that caused an item to be automatically hidden as soon as a user posted it.
In earlier iterations, only questions and answers that passed the detector were in-
cluded in reputation calculations.

Negative evaluations by others
The final iteration of the model included several different evaluations of a user’s
content in calculations of inferred karma: poor ratings, abuse reports, and the
number of times a user was blocked by others.

Best-answer percentage
On the positive side, the model included inputs such as the average number of best
answers that a user submitted (subject to liquidity limits). See “Liquidity: You
Won’t Get Enough Input” on page 58.

User points level
The level of a user’s participation in Yahoo! provided a significant indicator of the
user’s investment in the community. Yahoo! Answers already displayed user par-
ticipation on the site—a public karma for every user.

User longevity
Absent any previous participation in Yahoo!, a user’s Yahoo! account registration
date provided a minimum indicator of community investment, along with the date
of a user’s first interaction with Yahoo! Answers.

Customer care action
Finally, certain events were a sure sign of abusive behavior. When customer care
staff removed content or suspended accounts, those events were tracked as strongly
negative inputs to bootstrap karma.

Appeal results upheld
Whenever an appeal to hide content was upheld, that event was tracked as an
additional indicator of possible abuse.
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In the final iteration of the model, shown in Figure 10-8, the de-
signers implemented this simple idea: until the user had a detailed history in the rep-
utation model, use a TrustBootstrap reputation as reasonably trustworthy placeholder.
As the number of a user’s abuse reports increased, the share of TrustBootstrap used in
calculating the user’s reporter and author karmas was decreased. Over time, the user’s
bootstrap reputation faded in significance until it became computationally irrelevant.

The scores for AbusiveContent karma and AbuseReporter karma now took the various
inferred karma inputs into account.

AbusiveContent karma was calculated by mixing what we knew about a user’s karma
reporting history (ConfirmedRerporterKarma) with what could be inferred about the
user’s behavior from other inputs (TrustBootstrap).

TrustBootstrap was itself made up of three other new reputations: SuspectedAbuser
karma, which reflected any evidence of abusive behavior; CommunityInvestment karma,
which represented the user’s contributions to Yahoo! Answers and other communities;
and AbusiveContent karma, which held an author’s record of submitting abusive
content.

There were risks in getting the constants wrong—too much power too early could lead
to abuse. Depending on the bootstrap too long could lead to distrust when reporters
don’t see the effects of their reputation quickly enough.

We detail each new process:

Process: Calculate Suspicious Connection
When a user takes an action of value, such as asking a question, giving an answer,
or evaluating content on the site, the application stores the user’s connection in-
formation. If the user’s IP address or browser cookie differed from the one used in
a previous session, the application activates this process by sending it the IP and/
or browser cookie related inputs. The system updated the SuspectedAbuser karma
using those values and the history of previous values for the user. Then it sent the
value in a message to the Abuse Reporter Bootstrap process.

Process: Calculate User Community Investment
Three different application events triggered this process:

• A change (usually upward) in the user’s points

• Selection of a best answer to a question—whether or not the user wrote the
answer that was selected

• The first time the user flags any item as abusive content

This process generated CommunityInvestment karma by accounting for the longevity
of the user’s participation in Yahoo! Answers and the age of the user’s Yahoo!
account, along with a simple participation value calculation (the user’s level) and
an approximation of answer quality—the best answer percentage. Each time this
value was changed, the system sent the new value to the Abuse Reporter Bootstrap
process.

Mechanism and diagram.
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Figure 10-8. Final model: Eliminating the cold-start problem by giving good users an upfront
advantage as abuse reporters.
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Process: Is Author Abusive?
The inputs and calculations for this process were the same as in the third iteration
of the model—the process remained a repository for all confirmed and nonap-
pealed user content violations. The only difference was that every time the system
executed the process and updated AbusiveContent karma, it now sent an additional
message to the Abuse Reporter Bootstrap process.

Process: Abuse Reporter Bootstrap
This process was the centerpiece of the final iteration of the model. The TrustBoot
strap reputation represented the system’s best guess at the reputation of users
without a long history of transactions with the service. It was a weighted mixer
process, taking positive input from CommunityInvestment karma and weighing that
against two negative scores: the weaker score was the connection-based Suspecte
dAbuser karma, and the stronger score was the user history–based AbusiveCon
tent karma. Even though a high value for the TrustBootstrap reputation implied
a high level of certainty that a user would violate the rules, AbusiveContent karma
made up only a share of the bootstrap and not all of it. The reason was that the
context for the score was content quality, and the context of the bootstrap was
reporter reliability; someone who is great at evaluating content might suck at cre-
ating it. Each time the bootstrap process was updated, it was passed along to the
final process in the model: Update Abuse Reporter Karma.

Process: Valued Contributor?
The input and calculations for this process were the same as in the second iteration
of the model—the process updated ConfirmedRerporter karma to reflect the accu-
racy of the user’s abuse reports. The only difference was that the system now sent
a message for each reporter to the Update Abuse Reporter Karma process, where
the claim value was incorporated into the bootstrap reputation.

Process: Update Abuse Reporter Karma
This process calculated AbuseReporter karma, which was used to weight the value
of a user’s abuse reports. To determine the value, it combined TrustBootstrap in-
ferred karma with a verified abuse report accuracy rate as represented by Confir
medRerporter. As a user reported more items, the share of TrustBootstrap in the
calculation decreased. Eventually, AbuseReporter karma became equal to Confir
medRerporter karma. Once the calculations were complete, the reputation state-
ment was updated and the model was terminated.

With the final iteration, the designers had incorporated all the desired features,
giving historically trusted users the power to hide spam and troll-generated content
almost instantly while preventing abusive users from hiding content posted by legiti-
mate users. This model was projected to reduce the load on customer care by at least
90% and maybe even as much as 99%. There was little doubt that the worst content
would be removed from the site significantly faster than the typical 12+ hour response
time. How much faster was difficult to estimate.

Analysis.
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In a system with over a dozen processes, more than 20 unproven formulas, and about
50 best-guess constant values, a lot could go wrong. But iteration provided a roadmap
for implementation and testing. The team started with one model, developed test data
and testing suites for it, made sure it worked as planned, and then built outward from
there—one iteration at a time.

Displaying Reputation
The Yahoo! Answers example provides clear answers to many of the questions raised
in Chapter 7, where we discussed the visible display of reputation.

Who Will See the Reputation?
All interested parties (content authors, abuse reporters, and other users) certainly could
see the effects of the reputations generated by the system at work: content was hidden
or reappeared, and appeals and their results generated email notifications. But the de-
signers made no attempt to roll up the reputations and display them back to the com-
munity. The reputations definitely were not public reputations.

In fact, even showing the reputations only to the interested parties as personal reputa-
tions likely would only have given actual those intending harm more information about
how to assault the system. These reputations were best reserved for use as corporate
reputations only.

How Will the Reputation Be Used to Modify Your Site’s Output?
The Yahoo! Answers system used the reputation information that it gathered for one
purpose only: to make a decision about whether to hide or show content. Some of the
other purposes discussed in “How Will You Use Reputation to Modify Your Site’s
Output?” on page 172 do not apply to this example. Yahoo! Answers already used
other, application-specific methods for ordering and promoting content, and the com-
munity content moderation system was not intended to interfere with those aspects of
the application.

Is This Reputation for a Content Item or a Person?
This question has a simple answer, with a somewhat more complicated clarification.
As we mentioned earlier in “Limiting Scope” on page 254, the ultimate target for rep-
utations in this system is content: questions and answers.

It just so happened that in targeting those objects, the model resulted in generation of
a number of proven and assumed reputations that pertained to people: the authors of
the content in question, and the reporters who flagged it. But judging the character the
users of Yahoo! Answers was not the purpose of the moderation system, and the data
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on those users should never be extended in that way without careful deliberation and
design.

Using Reputation: The…Ugly
In Chapter 8, we detailed three main uses for reputation (other than displaying scores
directly to users). We only half-jokingly referred to them as the good, the bad, and the
ugly. Since the Yahoo! Answers community content moderation model says nothing
about the quality of the content itself—only about the users who generate and interact
with it—it can’t really rank content from best to worst. These first two use
categories—the good and the bad—don’t apply to this moderation model.

The Yahoo! Answers system dealt exclusively with the last category—the ugly—by
allowing users to rid the site of content that violated the terms of service or the com-
munity guidelines.

The primary result of this system was to hide content as rapidly as possible so that
customer support staff could focus on the exceptions (borderline cases and bad calls).
After all, at the start of the project, even customer care staff had an error rate as high
as 10%.

This single use of the model, if effective, would save the company over $1 million in
customer care costs per year. That savings alone made the investment profitable in the
first few months after deployment, so any additional uses for the other reputations in
the model would be an added bonus.

For example, when a user was confirmed as a content abuser, with a high value for
AbusiveContent karma, Yahoo! Answers could share that information with the Yahoo!
systems that maintained the trustworthiness of IP addresses and browser cookies, rais-
ing the SuspectedAbuser karma score for that user’s IP address and browser. That ex-
change of data made it harder for a spammer or a troll to create a new account. Users
who are technically sophisticated can circumvent such measures, but the measures have
been very effective against those who aren’t—and who make up the vast majority of
Yahoo! users.

When customer care agents reviewed appeals, the system displayed ConfirmedRe
porter karma for each abuse reporter, which acted as a set of confidence values. An
agent could see that several reports from low-karma users were less reliable than one
or two reports from abuse reporters with higher karma scores. A large enough army of
sock puppets, with no reputation to lose, could still get a nonabusive item hidden, even
if only briefly.
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Application Integration, Testing, and Tuning
The approach to rolling out a new reputation-enabled application detailed in Chap-
ter 9 is derived from the one used to deploy all reputation systems at Yahoo!, including
the community content moderation system. No matter how many times reputation
models had been successfully integrated into applications, the product teams were al-
ways nervous about the possible effects of such sweeping changes on their communi-
ties, product, and ultimately the bottom line. Given the size of the Yahoo! Answers
community, and earlier interactions with community members, the team was even
more cautious than most others at Yahoo!. Whereas we’ve previously warned about
the danger of over-compressing the integration, testing, and tuning stages to meet a
tight deadline, the product team didn’t have that problem. Quite the reverse—they
spent more time in testing than was required, which created some challenges with
interpreting reputation testing results, and which we will cover in detail.

Application Integration
The full model as shown in Figure 10-8 has dozens of possible inputs, and many dif-
ferent programmers managed the different sections of the application. The designers
had to perform a comprehensive review of all of the pages to determine where the new
“Report Abuse” buttons should appear. More important, the application had to ac-
count for a new internal database status—“hidden”—for every question and answer
on every page that displayed content. Hiding an item had important side effects on the
application: it had to adjust total counts and revoke points granted, and a policy had
to be devised and followed on handling any answers (and associated points) attached
to any hidden questions.

Integrating the new model required entirely new flows on the site for reporting abuse
and handling appeals. The appeals part of the model required that the application send
email to users, functionality previously reserved for opt-in watch lists and marketing-
related mailings—appeals mailings were neither. Last, the customer care management
application would need to be altered.

Application integration was a very large task that would have to take place in parallel
with the testing of the reputation model. Reputation inputs and outputs would need
to be completed or at least simulated early on. Some project tasks didn’t generate rep-
utation input and therefore didn’t conflict with testing—for example, functions in the
new abuse reporting flows such as informing users about how a new system worked
and screens confirming receipt of an abuse report.

Testing Is Harder Than You Think
Just as the design was iterative, so too were the implementation and testing. In “Testing
Your System” on page 227, we suggested building and testing a model in pieces. The
Yahoo! Answers team did just that, using constant values for the missing processes and
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inputs. The most important thing to get working was the basic input flow: when a user
clicked Report Abuse, that action was tested against a threshold (initially a constant),
and when it was exceeded, the reputation system sent a message back to the application
to hide the item—effectively removing it from the site.

Once the basic input flow had been stabilized, the engineers added other features and
connected additional inputs.

The engineers bench tested the model by inserting a logical test probe into the existing
abuse reporting flow and using those reports to feed the reputation system, which they
ran in parallel. The system wouldn’t take any action that users would see just yet, but
the model would be put through its paces as each change was made to the application.

But the iterative bench-testing approach had a weakness that the team didn’t under-
stand clearly until much later: the output of the reputation process—the hiding of
content posted by other users—had a huge and critical influence on the effectiveness
of the model. The rapid disappearance of content items changed the site completely,
so real-time abuse reporting data from the current application turned out to be nearly
useless for drawing conclusions about the behavior of the model.

In the existing application, several users would click on an abusive question in the first
few minutes after it appeared on the home page. But once the reputation system was
working, few, if any, users would ever even see the item before it was hidden. The shape
of inputs to the system was radically altered by the system’s very operation.

Whenever a reputation system is designed to change user behavior sig-
nificantly, any simulated input should be based on the assumption that
the model accomplishes its goal; in other words, the team should use
simulated input, not input from the existing application (in the Yahoo!
Answers case, the live event stream from the prereputation version of
the application).

The best testing it was possible to perform before the actual integration of the reputation
model was stress testing the messaging channels and update rates, and testing using
handmade simulated input that approximated the team’s best guess at possible sce-
narios, legitimate and abusive.

Lessons in Tuning: Users Protecting Their Power
Still unaware that the source of abuse reports was inappropriate, the team inferred from
early calculations that the reputation system would be significantly faster and at least
as accurate as customer care staff had been to date. It became clear that the nature of
the application precluded any significant tuning before release—so release required a
significant leap of faith. The code was solid, the performance was good, and the web
side of the application was finally ready—but the keys to the kingdom were about to
be turned over to the users.
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The model was turned on provisionally, but every single abuse report was still sent on
to customer care staff to be reviewed, just in case.

I couldn’t sleep the first few nights. I was so afraid that I would come in the next morning
to find all of the questions and answers gone, hidden by rogue users! It was like giving
the readers of the New York Times the power to delete news stories.

—Ori Zaltzman, Yahoo! community content moderation architect

Ori watched the numbers closely and made numerous adjustments to the various
weights in the model. Inputs were added, revised, even eliminated.

For example, the model registered the act of “starring” (marking an item as a favorite)
as a positive indicator of content quality. Seems natural, no? It turned out that a high
correlation existed between an item being “starred” by a user and that same item even-
tually being hidden. Digging further, Ori found that many reporters of hidden items
also “starred” an item soon before or after reporting it as abuse! Reporters were using
the favorites feature to track when an item that they reported was hidden, and conse-
quently they were abusing the favorites feature. As a result, “starring” was removed
from the model.

At this time, the folly of evaluating the effectiveness of the model during the testing
phase became clear. The results were striking and obvious. Users were much more ef-
fective than customer care staff at identifying inappropriate content; not only were they
faster, they were more accurate! Having customer care double-check every report was
actually decreasing the accuracy rate because they were introducing error by reversing
user reports inappropriately.

Users definitely were hiding the worst of the worst content. All the content that violated
the terms of service was getting hidden (along with quite a bit of the backlog of older
items). But not all the content that violated the community guidelines was getting re-
ported. It seemed that users weren’t reporting items that might be considered border-
line violations or disputable. For example, answers with no content related to the
question, such as chatty messages or jokes, were not being reported. No matter how
Ori tweaked the model, that didn’t change.

In hindsight, the situation is easy to understand. The reputation model penalized dis-
putes (in the form of appeals): if a user hid an item but the decision was overturned on
appeal, the user would lose more reputation than he’d gained by hiding the item. That
was the correct design, but it had the side effect of nurturing risk avoidance in abuse
reporters. Another lesson in the difference between the bad (low-quality content) and
the ugly (content that violates the rules)—they each require different tools to
mitigate.
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Deployment and Results
The final phase of testing and tuning of the Yahoo! Answers community content mod-
eration system was itself a partial deployment—all abuse reports were temporarily
verified post-reputation by customer care agents. Full deployment consisted mostly of
shutting off the customer care verification feed and completing the few missing pieces
of the appeals system. This was all completed within a few weeks of the initial beta-
test release.

While the beta-test results were positive, in full deployment the system exceeded all
expectations.

Note that we’ve omitted the technical performance metrics in Table 10-1. Without
meeting those requirements, the system would never have left the testing phase.

Table 10-1. Yahoo! Answers community content moderation system results

Metric Baseline Goal Result Improvement

Average time before repor-
ted content is removed

18 hours 1 hour 30 seconds 120 times the goal

>2000 times the baseline

Abuse report evaluation er-
ror rate

10% 10% <0.1%

(appeal result:
overturned)

100× the goal or baseline

Customer care costs 100%

$1 million per
year

10%

$100,000 per
year

<0.1%

<$10,000 per year

10 times the goal

100 times the baseline

Saved >$990,000 per year

Every goal was shattered, and over time the results improved even further. As Yahoo!
Answers product designer Micah Alpern put it: “Things got better because things were
getting better!”

That phenomenon was perhaps best illustrated by another unexpected result about a
month after the full system was deployed: both the number of abuse reports and re-
quests for appeal dropped drastically over a few weeks. At first the team wondered if
something was broken—but it didn’t appear so, since a recent quality audit of the
service showed that overall quality was still on the rise. User abuse reports resulted in
hiding hundreds of items each day, but the total appeals dropped to a single-digit
number, usually just 1 or 2, per day. What had happened?

The trolls and many spammers had left. They had simply given up and moved on.

The broken windows theory (see the sidebar “Broken Windows and Online Behav-
ior” on page 205) clearly applied in this context—trolls found that the questions and
answers they placed on the service were removed by vigilant reporters faster than they
could create the content. Just as graffiti artists in New York stopped vandalizing trains
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because no one saw their handiwork, the Yahoo! Answers trolls either reformed or
moved on to some other social media neighborhood to find their jollies.

Another important characteristic of the design was that, except for a small amount of
localized text, the model was not language-dependent. The product team was able to
deploy the moderation system to dozens of countries in only a few months, with similar
results.

Reputation models fundamentally change the applications into which they’re integra-
ted. You might think of them as coevolving with the needs and community of your site.
They may drive some users away. Often, that is exactly what you want.

Operational and Community Adjustments
This system required major adjustments to the Yahoo! Answers operational model,
including the following:

• The customer care workload for reviewing Yahoo! Answers abuse reports de-
creased by 99%, resulting in significant staff resource reallocations to other Yahoo!
products and some staff reductions. The workload dropped so low that Yahoo!
Answers no longer required even a single full-time employee for customer care.
(Good thing the customer care tool measured productivity in terms of events pro-
cessed, not person-days.)

• The team changed the customer care tool to provide access to reputation scores
for all of the users and items involved in an appeal. The tool can unhide content,
and it always sends a message to the reputation model when the agent determines
the appeal result. The reputation system was so effective at finding and hiding
abusive content that agents had to go through a special training program to learn
how to handle appeals, because the items in the Yahoo! Answers customer care
event queues were qualitatively so different from those in other Yahoo! services.
They were much more likely to be borderline cases requiring a subtle understand-
ing of the terms of service and community guidelines.

• Before the reputation system was introduced, the report abuse rate had been used
as a crude approximation of the quality of content on the site. With the reputation
system in place and the worst of the worst not a factor, that rate was no longer a
very strong indicator of quality, and the team had to devise other metrics.

There was little doubt that driving spammers and trolls from the site had a significantly
positive effect on the community at large. Again, abuse reporters became very protective
of their reputations so that they could instantly take down abusive content. But it took
users some time to understand the new model and adapt their behavior. The following
are a few best practices for facilitating the transformation from a company-moderated
site to full user moderation:
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• Explain what abuse means in your application.

In the case of Yahoo! Answers, content must obey two different sets of rules: the
Terms of Service and the Community Guidelines. Clearly describing each category
and teaching the community what is (and isn’t) reportable is critical to getting users
to succeed as reporters as well as content creators (see Figure 10-9).

Figure 10-9. Reporting abuse: distinguish the Terms of Service from the Community Guidelines.

• Explain the reputation effects of an abuse report.

Abuse reporter reputation was not displayed. Reporters didn’t even know their
own reputation score. But active users knew the effects of having a good abuse
reporter reputation—most content that they reported was hidden instantly. What
they didn’t understand was what specific actions would increase or decrease it. As
shown in Figure 10-10, the Yahoo! Answers site clearly explained that the site

Operational and Community Adjustments | 275



rewarded accuracy of reports, not volume. That was an important distinction be-
cause Yahoo! Answers points (and levels) were based mostly on participation
karma—where doing more things gets you more karma. Active users understood
that relationship. The new abuse reporter karma didn’t work that way. In fact,
reporting abuse was one of the few actions the user could take on the site that
didn’t generate Yahoo! Answers points.

Figure 10-10. Reporting abuse: explain reputation effects to abuse reporters.

Adieu
We’ve arrived at the end of the Yahoo! Answers tale and the end of Building Web
Reputation Systems. With this case study and with this book we’ve tried to paint as
complete and real-world a picture as possible of the process of designing, architecting,
and implementing a reputation system.
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We covered the real and practical questions that you’re likely to face as you add
reputation-enhanced decision making to your own product. We showed you a graph-
ical grammar for representing entities and reputation processes in your own models.
Our hope is that you now have a whole new way to think about reputation on the Web.

We encourage you to continue the conversation with us at this book’s companion
website.
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APPENDIX A

The Reputation Framework

The reputation framework is the software that forms the execution environment for
reputation models. This appendix takes a deeper and much more technical look at the
framework. The first section is intended for software architects and technically minded
product managers to generate appropriate requirements for implementation and pos-
sible reuse by other applications.

The second section of this appendix describes two different reputation frameworks
with very different sets of requirements in detail: the Invisible Reputation Framework
and the Yahoo! Reputation Platform.

This appendix talks about messaging systems, databases, performance, scale, reliabil-
ity, etc., and you can safely skip it if you are not interested in such gory internals.

Reputation Framework Requirements
This section helps you identify the requirements for your reputation framework. As
with all projects, the toughest requirements can be stated as a series of trade-offs. When
selecting the requirements for your framework, be certain that they consider its total
lifetime, meeting the needs at the beginning of your project and going forward, as your
application grows and becomes successful.

Keep in mind that your first reputation model may be just one of several to utilize your
reputation framework. Also, your reputation system is only a small part of an applica-
tion…it shouldn’t be the only part.

• Are your reputation calculations static or dynamic? Static means that you can com-
pute your claim values on a go-forward basis, without having to access all previous
inputs. Dynamic means the opposite…that each input and/or each query will re-
generate the values from scratch.

• What is the scale of your reputation system…small or huge? What is the rate of
inputs per minute? How many times will reputation scores be accessed for display
or use by your application?
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• How reliable must the reputation scores be…transactional or best-effort?

• How portable is the data? Should the scores be shared with other applications or
integrated with their native application only?

• How complex is the reputation model…complicated or simple? If it is currently
simple, will it stay that way?

• Which is more important, getting the best possible response immediately, or a
perfectly accurate response as soon as possible? Or, more technically phrased:
What is the most appropriate messaging method…Optimistic/Fire-and-Forget or
Request-Response/Call-Return?

Calculations: Static Versus Dynamic
There are significant trade-offs in the domain of performance and accuracy when con-
sidering how to record, calculate, store, and retrieve reputation events and scores. Some
static models have scores that need to be continuous and real-time; they need to be as
accurate as possible at any given moment. An example would be spammer IP reputation
for industrial and scale email providers. Others may be calculated in batch-mode, be-
cause a large amount of data will be consulted for each score calculation.

Dynamic reputation models have constantly changing constraints:

Variable contexts
The data considered for each calculation is constrained differently for each display
context. This use is common in social applications, such as Zynga’s popular Texas
HoldEmPoker, which displays friends-only leaderboards.

Complex multielement relationships
The data calculations affect one another in a nonlinear way, such as search rele-
vance calculations like Google’s PageRank. Recommender systems are also dy-
namic data models…typically a large portion of the data set is considered to put
every element in a multidimensional space for nearest-neighbor determination.
This allows the display of “People like you also bought…” entities.

Static: Performance, performance, performance

Very large applications require up-to-the-second reputation statements available to any
reading applications at incredibly high rates. For example, a top email provider might
need to know a spammer reputation for every IP address for email messages entering
the service in real time! Even if that’s cached in memory, when that reputation changes
state, say from nonspammer to spammer, instant notification is crucial. There’s just no
time to use the traditional database method of recalculating the reputation over and
over again from mostly unchanged data. By static we mean roll-forward calculations,
in which every reputation input modifies the roll-ups in such a way that they contain
the correct value at the moment and contain enough state to continue the process for
the next input.
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Dynamic: Reputation within social networks

Given the description of static, you might be tempted to select the dynamic requirement
for a framework because it provides the greatest range of reputation models possible.
There is a serious cost to this option…it increases the cost of implementing, testing,
and most importantly scaling your framework. Static reputations are easier to under-
stand, implement, and test, and they scale better. Look at the history of Twitter.com’s
Fail Whale, a direct result of the requirement for a dynamic custom display of tweets
for each and every user. Dynanism is costing them a fortune.

When possible, find ways to simplify your model, either by adding more specific con-
texts or by reducing dimensions through some clever math. This book won’t cover the
many forms of dynamic systems in any depth, as many of the algorithms are well cov-
ered in academic literature. See Appendix B for pointers to various document
archives.

Scale: Large Versus Small
Scale—or the number of inputs (and the database writes they ultimately generate) and
reputation claim value reads—is probably the most important factor when considering
any reputation system implementation.

Small scale is any transaction rate such that a single instance of a database can handle
all reputation-related reads and writes without becoming overloaded and falling
behind.

Large scale requires additional software services to support reading and storing repu-
tation statements. At the point where your reputation system grows large enough to
require multiple databases (or distributing the processing of inputs to multiple ma-
chines), then you probably need a distinct reputation framework. It becomes just too
complicated for the high-level application to manage the reputation data model.

At a low enough volume, say less than thousands of reads per minute and only hundreds
of writes, it is easy to think that simple database API calls mixed directly into the ap-
plication code as needed would be the best approach for speed of development. Why
bother adding a layer to isolate the reputation system access to the database? Consider
that your application may not always stay small. What if it is a hit and suddenly you
need multiple databases or more reputation frameworks to process all the inputs? This
has happened to more than a few web databases over the years, and on occasion—such
as when Ma.gnolia ended up losing all its users’ data—it can be fatal to the business.

So, even for small-scale applications, we recommend a clean, modular boundary be-
tween the application and the reputation system: all inputs should use a class or call a
library that encapsulates the reputation process code and the database operations. That
way, the calculations are centralized and the framework can be incrementally scaled.
See the section “The Invisible Reputation Framework: Fast, Cheap, and Out of Con-
trol” on page 287 for a specific example of this practice.
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Reliability: Transactional Versus Best-Effort
Reputation claims are often critical to the success of an application, commercial or
otherwise. So it would seem to follow naturally that it should be a requirement that the
value of the claims should be 100% reliable. This means that every input’s effect on the
reputation model should be reflected in the calculations. There’s nothing more valuable
than the application’s contributions to the bottom line, right?

There’s another reason you’d like reputation roll-ups to be reliable, especially when
users provide the claims that are combined to create them: sometimes users abuse the
system, and often this abuse comes in great volume if the scores have financial value
to the end users themselves. (See “eBay Seller Feedback Karma” on page 78.) If scores
are reliable and tracked on a transactional basis, the effects of the abuse can be reversed.
If a user is determined to abuse the reputation system, often the correct action is to
reverse all of his inputs on every target that he ever evaluated. This is the Undo anything
feature and requires a reputation framework that is optimized to support reversible
inputs and a database that is indelible by source identifier only.

So, if it’s good for business and it’s good for abuse mitigation, why shouldn’t my
reputation system require transactional-style reliability throughout? The answer:
performance.

Every reversible input adds at least one additional database read-modify-write to store
the event. If the database is locked for each input, high-transaction rate systems can
create a severe bottleneck waiting for resources to become available. Not only that, it
at least doubles the size of the database and messaging network load, and depending
on the input-to-output ratio, may increase it by an order magnitude or more.

For some applications, say Ratings and Reviews (see the section “User Reviews with
Karma” on page 75 ), storing all the inputs is already a part of the application design,
so these costs must be met. But when you look at top-100 website or online game
transaction rates, you see that it quickly becomes cost-prohibitive to store everything
everyone does in an indexed database. As Mammad Zadeh, chief architect of Yahoo!’s
Reputation Platform, said about best-effort volume data inputs for spammer
reputation:

Approximate can be good enough!

For applications that have continuous input, the reputation model can be designed to
deal with best-effort message delivery. Yahoo!’s reputation model for identifying spam-
mer IP addresses takes user inputs in the form of “This Is Spam” votes and also receives
a continuous stream of volume data: the total email received per IP address per minute.
There are hundreds of thousands of mail server IP addresses, and at any moment tens
of thousands of them are sending mail to Yahoo! mailboxes. The user inputs are several
orders of magnitude less common than the incoming traffic data.

It was clear immediately that the internal messaging infrastructure would quickly get
overwhelmed if every reputation input message had to be sent with guaranteed delivery.
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Instead, the much lighter overhead and much quicker protocol was selected to make
best-effort delivery for these messages, while the user actions were sent using a slower
but more reliable channel. The model was designed so that it would keep a windowed
history of traffic data for each target IP address and a floating average volume for cal-
culations. This allowed the model to have a sense of time as well as make it insensitive
to the occasional dropout of traffic data. Likewise, the inputs never had to be reversed,
so were never stored in deployment. During the testing, tuning, and debugging phase,
the traffic data was stored in order to verify the model’s results.

Why not just design all of the models to be compatible with best-effort delivery then?
Because it becomes a much more difficult task with user inputs. In many applications,
the user evaluations took considerable effort to construct (i.e., Reviews) or are a part
of the user’s identity (i.e., Favorites) and can’t just disappear; if this ever approaches
becoming a common occurrence, you risk driving the customer away. This is also true
for roll-up reputation that is attached to users’ objects: their karma scores or ratings
for their eBay shop or reviews of their favorite objects. People track their scores like
hawks and get upset if ratings are incorrectly calculated.

Best-effort message delivery also makes reversible reputation math very messy…be-
cause of lost messages, counters can go negative; go out of range; and scores can get
stuck with inappropriate values given the number of reported inputs, for example, “0
users say this movie is 5-stars!”

Finally, losing inputs in a time-critical application, such as the one described in Chap-
ter 10, could increase operational costs.

There is a compromise: if you build a reputation framework that supports reversible
transactions, and use that feature only judiciously in your models, you can have the best
of both worlds.

Model Complexity: Complex Versus Simple
Reputation models often start out very simple: store a number, starting at 0, and peri-
odically add 1 to it and update the record. It seems there is no need for a reputation
framework in this case beyond that provided by the current application environment
and that of the database.

In practice, however, reputation systems either evolve or fail. Reputation is used to
increase the value of your entities. So, either the model succeeds at increasing value or
it needs to be abandoned or changed to reflect the actual use pattern that will achieve
this goal. This usually involves making the system more complex, for example, tweak-
ing it to include a more subtle set of inputs. On the other hand, if it is successful, it may
well become the target of manipulation by those who directly benefit from such actions.
For instance, the business owners on Yelp formed collectives to cross-review each
other’s businesses and increase their rankings (see “Merchants angry over getting
yanked by Yelp” by Ellen Lee and Anastasia Ustinova in the July 4, 2008, edition of the
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San Francisco Chronicle). Even when successful, reputation models must constantly
evolve.

So, whether a reputation model starts as complex or succeeds sufficiently to become
complex, the reputation framework should be designed to assume that models may
contain several, perhaps dozens of reputation processes—and more importantly that
the model will change over time. This suggests that version control for both the frame-
work and the models that execute within.

As the number of processes in a model increases, there are performance trade-offs based
on other requirements on the framework. If the entire framework is transactional—say
by wrapping a complex process chain with a database lock—though reliable, this will
lead to increased lock contention and may significantly decrease throughput.

It may also be possible to do static graph analysis of reputation models to combine
processes and parallelize execution, in effect reducing the complexity before execution
to improve performance.

Data Portability: Shared Versus Integrated
Should reputation statements be kept separate on a per-application or per-context basis
or be made more available for other uses? Intuitively, from both a simplified security
view and an incremental development approach, the answer would be yes: isolate the
data and integrate the reputation framework in-line with the application code, which
has appropriate access to the database as well has a code-level understanding of the
source and target objects. For single-application environments, data portability seems
like a nice-to-have feature, something that the team will get to in version 1.x.

Although it is true that reputation claims are always most valuable in the context in
which they were generated, sometimes the context stretches across multiple applica-
tions. For example, Yahoo! Shopping and Yahoo! Music both benefit from users eval-
uating new music releases, either at the time of purchase or even when listening to them
via real-time stream.

Shared context is the primary reason reputation frameworks should treat targets as
foreign keys: identifiers in an external database. But it also means that the reputation
statement store should be accessible by multiple applications. This exact situation
comes up more often than you might think, and one-off solutions for sharing or du-
plicating data across applications quickly become cost prohibitive. When Yahoo! Local
and Yahoo! Travel decided that they should share their hotel and restaurant reviews
between the applications, they incurred a large cost to merge the data, since they each
used different target identifiers for the same real-world business.
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Even if you don’t yet have multiple applications in development, plan
for success. Create sharable object identifiers that new applications can
use, and make the schema portable. It doesn’t take any longer and keeps
your options open.

Even with shared source and target identifiers, you might be tempted to think that the
reputation framework should be developed all in-line with the initial application. For
example, you might presume that a master application would be the only one that
would want to calculate the reputations and store them; all ancillary apps would be
read-only. Many systems are structured this way. This sounds great, but it creates a
dependency on the master application development team whenever the reputation
model needs to change to accommodate a new input or new interim score or to retune
based on anomalous behavior perhaps introduced as the result of a new use pattern.

In the section “Generating inferred karma” on page 159, we discussed the pattern of
inferred karma, where reputation is borrowed from other contexts to create an interim
reputation that can be used in the case where no context-specific claim is available or
yet trustworthy. As detailed in Chapter 10, when Yahoo! Answers borrowed member-
ship reputation, IP reputation, and browser cookie reputation to use as a reason to trust
someone’s report of abusive content, the creators of those component reputations had
no inkling that they’d be used this way.

This mixing of external scores may seem to be a contradiction of the “reputation is
always in context” rule, but it doesn’t have to be, as long as each reuse maintains all,
or most, of the original context’s meaning. The fact that a Yahoo! account is months
or years old has more reputation value when compared to one created today. The same
thing goes for the age of a browser cookie, or abuse history on an IP address. None of
these components is reliable alone, nor should any of them be used to make serious
decisions about the reliability of a user, but combined they might just give you enough
information to make the user’s experience a little better.

A reputation framework that allows multiple applications to read and
write reputation statements to each other’s contexts can lead to serious
data problems; a bug in one model can damage the execution of another.
For such environments, a security model and/or a disciplined develop-
ment process is strongly suggested.

See the detailed example in “The Yahoo! Reputation Platform: Shared,
Reliable Reputation at Scale” on page 289 for a description of a specific
implementation.

Optimistic Messaging Versus Request-Reply
The reputation framework really has only two interfaces to the application environ-
ment: a channel for routing inputs to an executing model and a method for sending a
signal that something interesting happened in the model. In the vast majority of cases,
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reputation scores are not output in the classical sense, but they are stored for the ap-
plication code to retrieve later.

This approach means that the reputation framework can be isolated from the applica-
tion for performance and security reasons. One way to think of it is like a special
database preprocessor for turning inputs into database records.

Given the narrow input channel, the framework implementor may choose between
several messaging models. Certainly programmers are most familiar with request-reply
messaging—most everything works that way: programs call functions that return re-
sults when complete, and even the Web can make your computer wait up to a minute
for the server to reply to a HTTP GET request. It seems logical for an application to
send a reputation input, such as a star-rating for a movie to the reputation model, and
wait for confirmation of the new average score to return. Why bother with any other
messaging model?

Performance at scale

Many inputs, especially those that are not reflected back to the user, should be sent
without waiting for acknowledgment. This is called optimistic (or asynchronous) mes-
saging, colloquially known as fire-and-forget. This makes the application much faster,
as the application no longer has to wait for network round trip plus all of the database
accesses required by the reputation model. The load instead shifts the burden to the
messaging infrastructure and the machines that process the messages. This is how large-
scale applications work: send messages into a cloud of computers that can be expanded
and reconfigured to handle increasing traffic.

Note that request-reply can be added as a lightweight library on top of an optimistic
messaging service: pass a callback handle to the model, which will get triggered when
the result is complete. Application developers would use this wrapper sparingly, only
when they needed an immediate new result. Generally, this is rare. For example, when
a user writes a review for a hair dryer, he doesn’t see the effects on the roll-up score
immediately; instead he’s looking at the review he just submitted. In fact, delaying the
display of the roll-up might be a good idea for abuse mitigation reasons.

Even if it seems that you will never need optimistic messaging because you’ll never have
that many inputs, we urge that your reputation framework (even if it is just a local
library) provide the semantics of messaging (i.e., SendReputationEvent() and
SendReputationEventAndWait()), even if it is implemented as a straightforward function
call underneath. This is low cost and will allow your applications to run even if you
significantly change the operational characteristics of your framework.

Framework Designs
Each trade-off made when selecting framework design requirements has implementa-
tion impacts for the framework itself and constrains the reputation models and
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applications that utilize it. In order to more clearly illustrate the costs and benefits of
various configurations, we now present two reputation sandbox designs: the minimalist
Invisible Framework and the full-scalable Yahoo! Reputation Platform. Table A-1 shows
the framework requirements for each.

Table A-1. Example reputation framework requirements

Framework
design

Calculations Scale Reliability Portability Messaging Model
complexity

Invisible Repu-
tation Frame-
work

Dynamic (option) Small Best-effort Embedded Request-
reply

Simple

Yahoo! Reputa-
tion Platform

Static Huge Transactional
(option)

Shared Optimistic Complex

The Invisible Reputation Framework: Fast, Cheap, and Out of Control
When most applications start implementing social media, including the gathering of
user evaluations or reputation, they just place all input, processing, and output as code
in-line with their application. Need a thumbs-up? Just add it to the page, create a votes
table to store an entry for everyone who votes, and do a database query to count the
number of entries at display time. It is quick and easy. Then they start using a score
like this for ranking search results, and they quickly realize that they can’t afford to do
that many queries dynamically, so they create a background or timed process to recal-
culate the reputation for each entity and attach it to that entities record.

And so it goes, feature after feature, one new-use optimization after another, until either
the application becomes too successful and scaling breaks or the cost-benefit of another
integration exceeds the business pain threshold.

Everyone starts this way. It is completely normal.

Requirements

“Time to market is everything…we need reputation (ratings, reviews, or karma) and
we need it now. We can fix it later.” This summarizes the typical implementation plan
for legions of application developers. Get something—anything—working, ship alpha-
quality code, and promise yourself you will fix it later. This is a surprisingly tight
constraint on the design of the invisible reputation framework, which is actually no
framework at all!

Mostly dynamic calculations with static results cache as optimization
When first implementing a reputation system, it seems obvious and trivial: store
some ratings and when you need to display the roll-up, do a database query to
calculate the average just in time. This is the dynamic calculation method, and it
allows for some interesting reputation scores, such as Your Friends Rated this 4.5
Stars. When reputation gets used for things such as influencing the search rank of
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entities, this approach becomes too expensive. Running hundreds of just-in-time
averages against the database when only the top 10 results are going to be displayed
90% of the time is cost-prohibitive. The typical approach is a dynamic-static hy-
brid: at a fixed interval, say daily, calculate a dynamic database average for each
and every entity and store the roll-up value in a search index for speedy searches
tomorrow. When you need a new index for some new calculation, repeat the proc-
ess. Clearly this can quickly become unwieldy.

Small Scale: 100 transactions/minute or less
At a small scale, no more than one transaction per second or so, the database is
not a bottleneck, and even if it becomes one, many commercial scaling solutions
are available.

Best-effort reliability with ad-hoc cleanup
Reliability is a secondary consideration when time to market is the main driver.
Code developed in Internet time will be buggy and revised often. It’s simply im-
practical to consider that reputation would be completely accurate. This requires
that reputation models themselves will be built to auto-correct obvious errors, such
as a roll-up going negative or out-of range, since it will happen.

Application bound reputation data
The temptation will be to store reputation statements as claim values as closely
bound to the target data records as possible. After all, it will make it easier for
search ranking and other similar uses. Only one application will read and write the
reputation, so there is no need to be worried about future uses, right?

Request-reply messaging direct to database
When coding in a hurry, why introduce a new and potentially unfamiliar optimistic
messaging system? It adds cognitive, implementation, and messaging overhead.
The invisible reputation framework trusts the engineer to code up the database
action in-line in the application: the SQL Query requests are sent using the vendor-
supplied interface, and the application waits dutifully for the reply. This is most
familiar and easiest to understand, even if it is the has poor performance
characteristics.

Simple or ad-hoc model support
Model? What model? There is no execution environment for the reputation model,
which is broken into little pieces and spread throughout the application. Of course,
this makes the model code much harder to maintain because future coders will
have to search through the source to find all the places the model is implemented.
If the programmers think ahead, they might break the common functions out into
a library for reuse, but only if time allows.

Implementation details

A typical invisible reputation framework is implemented as in-line code. Taking a typ-
ical LAMP (Linux, Apache, MySQL, PHP/Perl/Python) installation as an example, this
means that the data schema in the reputable entities tables are extended to include
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reputation claim values, such as average rating or karma points, and a new table is set
up to contain any stored/reversible user created reputation statements. The database
calls are made directly by the application through a standard PHP MySQL library, such
as the MySQLi class.

With this approach, simple ratings and review systems can be created and deployed in
a few days, if not hours. It doesn’t get any quicker than that.

Lessons learned

Assuming your application succeeds and grows, taking the absolutely quickest and
cheapest route to reputation will always come back to bite you in the end.

Most likely, the first thing to cause trouble will be the database; as the transaction rate
increases, there will be lock contention on writes and general traffic jams on reads. For
a while the commercial solutions will help, but ultimately decoupling the application
code from the reputation framework functionality will be required, both for reading
and for writing statements.

Another set of challenges—tuning the model, adding more reputation uses, and at-
tendant debugging—become cost-prohibitive as your application grows, causing time
to market to suffer significantly. Not planning ahead will make you slower than your
competition. Again, a little investment in compartmentalizing the reputation frame-
work, such isolating the execution of the model into a library, ends up being a great
cost-benefit trade-off in the medium- to long-term.

Whatever you do, compartmentalize!

If the development time budget allows only one best-practice recom-
mendation to be applied to the implementation of a reputation frame-
work, we recommend this above all others: compartmentalize the
framework! By that we mean the reputation model, the database code,
and the data tables. Yes, you can count that as three things if you must.
They are listed in priority order.

The Yahoo! Reputation Platform: Shared, Reliable Reputation at Scale
Yahoo! is a collection of diverse web applications that make it collectively the website
with the largest audience in the world. Over a half-billion different people use a Yahoo!
application each month. In a single day, Yahoo! gathers millions of user evaluations,
explicit and implicit, of reputable entities spread over dozens of topic areas and hun-
dreds of applications. And almost none of it is shared across similar topics or applica-
tions. We’ve already mentioned that it was only a few years ago that Yahoo! Travel and
Yahoo! Local started to share hotel and restaurant reviews, and that one-off integration
provided no technical or operational assistance to Yahoo! Music and Yahoo! Shopping
when they similarly wanted to share information about user DVD ratings.
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Yahoo! requirements

Outrageously large scaling requirements and sharing were the driving requirements for
the Yahoo! Reputation Platform. The following are Yahoo! Reputation Platform re-
quirements in force-ranked order:

Huge scale: 10,000,000,000 transactions/year
When Yahoo! started its efforts at building a common reputation infrastructure in
the form of a standard platform, the current rate of user ratings entering the Yahoo!
Music Experience, their real-time music streaming service, had reached one billion
ratings per year. This was more than half of the total explicit user ratings it was
gathering at the time across all of its sites. The executives were excited by the
possibility of this project and how it might be used in the future, when cellphones
would become the predominant device for accessing social data, and therefore
suggested that the minimum input rate should exceed that seen by Yahoo ! Music
by at least a factor of 10×—or ten billion transactions per year. That’s an average
of about 350 transactions per second, but traffic is never that smooth…common
peaks would exceed 1,000 per second.

That may seem huge, but consider how the database transaction rate might become
inflated by another factor of 2× to 10×, depending on the nature of the reputation
model’s complexity. Each stored roll-up could add a (lock)-read-modify-write-
(unlock) cycle. Also, using and/or displaying reputation (aka capturing the value)
multiplies the number of reads by a significant amount, say 5× in lieu of a concrete
example. So by the time things get down to the database, for a typical model, we
could see 100 billion reads and 20 or 30 billion writes!

Clearly scale is the requirement that will impose the most challenges on the frame-
work implementation team.

Reputation events sharable across applications and contexts
Why bother building a gigantic reputation platform? One of the driving require-
ments was that reputation information be shared across applications and Yahoo!
sites. Travel, Local, Maps, and other sites should be able to access and contribute
user evaluations to the reputable entities—businesses and services—they all have
in common. Shopping, Tech, Coupons, and others all have users interacting with
products and merchants.

It was clear that the segmentation of Yahoo! applications and sites were not the
best contexts for reputation. The properties of the entities themselves—what kind
of thing they were, where they were located, and who was interacting with them—
these are the real reputation contexts. A common platform was a great way to create
a neutral, shared environment for collecting and distributing the users’
contributions.
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Transaction-level reliability used by most models
Reputation is a critical component of Yahoo!’s overall value and is used throughout
the service: from web search to finding a good hotel to identifying the songs you
never want to hear on your personal web-radio station.

This value is so important that it creates the incentive for significant reputation
abuse. For example, there is a billion-dollar industry, complete with an acronym,
for capitalizing on design flaws in search algorithms: SEO, or search engine opti-
mization. Likewise, the reputation models that execute in this framework are sub-
ject to similar abuse. In fact, for many applications, there are so many targets that
the number of user evaluations for each is very small, making the abusive manip-
ulation of roll-ups accessible to small groups or even dedicated individuals (see
“Commercial incentives” on page 115).

Generally, it is not technically possible for software to detect small-scale reputation
abuse. Instead, social mechanisms are used, typically in the form of a Report Abuse
button. The community polices reputation in these cases. Unfortunately, this
method can be very expensive, as each report requires a formal review by customer
care staff to decide whether the reputation has been manipulated. And each abuser
typically generates dozens if not hundreds of abusive reputation contributions. The
math is pretty straightforward: even if abuse is reported for 1 in a 100 product
reviews, at Yahoo! scale it is not cost-efficient to have humans screen everything.

After identifying a user account or browser cookie or IP address that is abusing the
reputation system, there is a requirement that customer care can remove all of the
related reputation created by the user. Nothing they created can be trusted and
everything is presumed to be damaging, perhaps event multiple entities.

This adds a transactional requirement to the framework: every explicit user input
and its roll-ups that were also affected must be reversible. It is not enough to just
delete the user and the specific event; the reputation model must be executed to
undo the damage.

Note that this requirement is very expensive and is used only on reputation models
that require it. For example, in tracking the user’s personal ratings for songs,
Yahoo! Music Engine may not require reversibility, because charging a subscription
fee is considered sufficient deterrent to reputation abuse.

Also, large-volume models that do not surface roll-up reputation to the users may
not be transactional. A good example is the Yahoo! Mail IP Spammer reputation
model, as described in the patent application, which does not keep a transactional
history of individual IP address but does keep the This Is (Not) Spam votes on a
per-user basis for abuse management as described earlier.

Complex and interconnected model support
Between Yahoo!’s existing understanding of reputation abuse in its current systems
as well as the strong requirement to share data between applications, it was clear
that the reputation models that would execute on this platform would be more
complex than simply counting and averaging a bunch of numeric scores.
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There was also an original requirement for modular reuse of hypothetical reputa-
tion model components in order to speed up the development and deployment of
new applications integrating reputation.

Static calculations
As a result of the performance constraints imposed by the scaling requirements, it
was immediately clear that models running in the framework should execute with
linear, O(n), performance characteristics, which precluded considering dynamic
computation. There is no time to grab multiple items from the database to recal-
culate a custom value for every model execution. All calculations would be limited
to roll-forward computation: a roll-up must be updatable using a fixed number of
repository reads, usually exactly one. This means that the platform will not support
per-user reputation contexts, such as Your Friends Rated This Entity 4.5. Time-
limited contexts, such as Last Year, Last Month, etc., could still be implemented
as specific static reputation calculations. (See the discussion of windowing decay
systems in “Freshness and decay” on page 63.)

Optimistic messaging system
Given that we can anticipate that the database is going to be the choke point for
this platform, a request-reply protocol to the reputation system would be unable
to deliver on a reliable service level. There are just too many inputs coming into
too many complex model instances to be sure how long it will take for the model
to run.

Performance demands an asynchronous, optimistic messaging backbone, where
messages are delivered by a load-balancing queue manager to multiple reputation
framework instances to be processed on a first-come, first-served basis.

Applications that read reputation claim values directly from the database, not via
the framework, will always get the best result possible at that moment.

The application developer that is collecting explicit user reputation events, such
as ratings, is offered several choices to deal with the immediate-reply nature of the
optimistic messaging system:

• If possible (not displaying a roll-up) assume success and echo the user’s input
directly back to him as though it had been returned by the platform.

• Implement a callback in the reputation model, and wrap the asynchronous call
with one that waits. Don’t forget a timeout in best-effort message delivery
environments.

• Get whatever the current result is from the database and explain to the
user, if needed, that it might take a bit longer for his result to be reflected in the
roll-up.

Yahoo! implementation details

The architecture of the Yahoo! Reputation Platform is detailed in two recently pub-
lished patent applications:
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• U.S. Patent Application 11/774,460:“Detecting Spam Messages Using Rapid
Sender Reputation Feedback Analysis,” Libbey, Miles; Farmer, F. Randall;
Mohsenzadeh, Mohammad; Morningstar, Chip; Sample, Neal

• U.S. Patent Application 11/945,911:“Real-Time Asynchronous Event Aggregation
Systems,” Farmer, F. Randall; Mohsenzadeh, Mohammad; Morningstar, Chip;
Sample, Neal

The implementation details we describe here for the platform are derived primarily
from these documents, interviews with the development teams, and our personal ex-
perience setting the platform’s design requirements.

Figure A-1 renders the Yahoo! reputation framework architectural
stack using a traditional layer cake model. Though the onerous scaling requirements
make the specifics of this implementation very specialized, at this level of abstraction,
most reputation framework models are the same: they each need message dispatching
services; a reputation model execution engine with an interface reputation statement
relational database service; a method to activate or signal external processes; and a
separate high-performance, query-only interface to the data for application display and
other uses, such as search result ranking.

Figure A-1. Yahoo! Reputation Platform layers.

High-level architecture.
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The following sections describe in detail the specific choices that the Yahoo! Reputation
Platform team made for implementing each layer.

Figure A-2 shows the top architectural layer of the framework, a
message dispatcher whose job it is to accept inputs, usually in the form of reputation
statements (source, claim, and target), transform them to standard-format messages
and sending them on to one of many model execution engines to be processed.

Figure A-2. Yahoo! Reputation Platform message dispatcher.

There are three main components of this subsystem: a set of input listeners, a single
message event queue, and message consumers, of which there are two subtypes—
dispatch consumers and relay consumers.

Input listeners
This is the compatibility layer for messaging. Different listeners can have different
semantics. For example, some listeners can be implemented to understand asyn-

Messaging dispatcher.
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chronous messages of different data formats, such as XML or JSON. They may be
hand-coded function calls to do last-moment data transformations, such as turning
a source or target identifier from one context into an identifier from another
context. Another common listener enhancement is to add a timestamp to, and/or
to write a log of, each message to aide in abuse mitigation or model testing and
tuning.

It is important to note that when reputation models interact with
one another across contexts, as is often the case with karma sys-
tems, the first model will send a message via this message dis-
patching service instead of making a direct call to a hardcoded entry
point in the second model.

Once normalized into a common format, the messages are then handed off to the
message event queue for first-in, first-in processing.

Message event queue
The message event queue holds all of the input messages waiting for processing.
This process is tightly optimized and can do load-balancing and other throughput
optimizations, not detailed here. There are many books and papers on these
methods.

Message consumers
Each message will be fetched by a consumer process, typically to be forwarded
somewhere else. There can be several types, each with its own semantics, but the
main two kinds are:

Dispatch consumer
The dispatch consumer delivers messages to the model execution engines.
Typically there is one dispatch consumer for every known model execution
engine. In self-scaling systems, where more resources are brought online au-
tomatically, when a new model execution engine starts up, it might register
with a dispatcher, which would start a dispatch consumer to start forwarding
messages.

Relay consumer
When more than one message dispatcher is running, it is often desirable to
separate message traffic, and by extension the ability to modify reputation, by
context. This provides data modification isolation, limiting possible damage
from context-external applications. But, there are specific cases where cross-
context modification is desirable, with karma being the typical example: mul-
tiple contexts contribute reputation to the user-profile context.

In order to allow this cross-context, cross-model, and cross-dispatcher
messaging, certain predetermined messages are consumed by the relay con-
sumer and passed onto other dispatchers, in effect stacking dispatchers as
needed. This way the Yahoo! Movies ratings and review system can send a
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message to the Yahoo! Profiles karma model without knowing the address for
the dispatcher; it can just send a message to the one for its own framework
and know that the message will get relayed to the appropriate servers.

Note that a registration service, such as the one described for the dispatch
consumer, is required to support this functionality.

There can be many message dispatchers deployed, and this layer is a natural location
to provide any context-based security that may be required. Since changes to the rep-
utation database come only by sending messages to the reputation framework, limiting
application access to the dispatcher that knows the names and addresses of the context-
specific models makes sense. As a concrete example, only Yahoo! Travel and Local had
the keys needed to contact, and therefore make changes to, the reputation framework
that ran their shared model, but any other company property could read their ratings
and reviews using the separate reputation query layer (see “Reputation query inter-
face” on page 298).

The Yahoo! Reputation Platform’s dispatcher implementation was optimistic: all
application API calls return immediately without waiting for model execution. The
messages were stored with the dispatcher until they could be forwarded to a model
execution engine.

The transport services used to move messages to the dispatcher varied by application,
but most were proprietary high-performance services. A few models, such as Yahoo!
Mail’s Spam IP reputation, accepted inputs on a best-effort basis, which uses the fastest
available transport service.

The Yahoo! Reputation Platform high-level architectural layer cake
shown in Figure A-1 contains all the required elements of a typical rep-
utation framework. New framework designers would do well to start
with that design and design/select implementations for each component
to meet their requirements.

Figure A-3 shows the heart of the reputation framework, the
model execution engine, which manages the reputation model processes and their state.
Messages from the dispatcher layer are passed into the appropriate model code for
immediate execution. The model execution engine reads and writes its state, usually
in the form of reputation statements via the reputation database layer. (See “Reputation
repository” on page 298.) Model processes run to completion, and if cross-model
execution or optimism is desired, may send messages to the dispatcher for future
processing.

The diagram also shows that models may use the external event signaling system to
notify applications of changes in state. See the section “External signaling inter-
face” on page 297.

Model execution engine.
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This platform gets much of its performance from parallel processing, and the Yahoo!
Reputation Platform uses this approach by implementing an Engine Proxy that routes
all incoming message traffic to the engine that is currently running the appropriate
model in a concurrent process. This proxy is also in charge of loading and initializing
any model that is not currently loaded or executing.

The Yahoo! Reputation Platform implemented models in PHP with many of the mes-
saging lines within the model diagram implemented as function calls instead of higher-
overhead messages. See “Your Mileage May Vary” on page 300 for a discussion of the
rationale. The team chose PHP mostly due to its members’ personal expertise and tastes
(there was no particular technical requirement that drove this choice).

In optimistic systems, such as the Yahoo! reputation platform,
output happens passively: the application has no idea when a change happened or what
the results were of any input event. Some unknown time after the input, a query to the
database may or may not reflect a change. In high-volume applications, this is a very
good thing because it is just impractical to wait for every side effect of every input to

External signaling interface.

Figure A-3. Yahoo! Reputation Platform model engine.
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propagate across dozens of servers. But when something important (read valuable)
happens, such as an IP address switching from good-actor to spammer, the application
needs to be informed ASAP.

This is accomplished by using an external signaling interface. For smaller systems, this
can just be hardcoded calls in the reputation model implementation. But larger envi-
ronments normally have signalling services in place that typically log signal details and
have mechanisms for executing processes that take actions, such as changing user ac-
cess or contacting supervisory personnel.

Another kind of signaling interface can be used to provide a layer of request-reply se-
mantics to an optimistic system: when the model is about to complete, a signal gets
sent to a waiting thread that was created when the input was sent. The thread identifier
is sent along as a parameter throughout the model as it executes.

On the surface, the reputation repository layer looks like any other
high-performance, partitioned, and redundant database. The specific features for the
repository in the Yahoo! reputation platform are:

• Like the other layers, the repositories may themselves be managed by a proxy
manager for performance.

• The reputation claim values may be normalized by the repository layer so that those
reading the values via the query interface don’t have to know the input scale.

To improve performance, many read-modify-write operations, such as increment and
addToSum, are implemented as stored procedures at the database level, instead of being
code-level mathematic operations at the model execution layer. This significantly re-
duces interprocess message time as well as the duration of any lock contention on highly
modified reputation statements.

The Yahoo! Reputation Platform also contains features to dynamically scale up by
adding new repository partitions (nodes) and cope gracefully with data migrations.
Though those solutions are proprietary, we mention them here for completeness and
so that anyone contemplating such a framework can consider them.

The main purpose for all of this infrastructure is to provide
speedy access to the best possible reputation statements for diverse display and other
corporate use patterns. The reputation query interface provides this service. It is sepa-
rated from the repository service because it provides read-only access, and the data
access model is presumed to be less restrictive. For example, every Yahoo! application
could read user karma scores, even if they could only modify it via their own context-
restricted reputation model. Large-scale database query service architectures are well
understood and well documented on the Web and in many books. Framework design-
ers are reminded that the number of reputation queries in most applications is one or
two orders of magnitude larger than the number of changes. Our short treatment of
the subject here does not reflect the relative scale of the service.

Reputation repository.

Reputation query interface.
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Yahoo! used context-specific entity identifiers (often in the form of database foreign
keys) as source and target IDs. So, even though Yahoo! Movies might have permission
to ask the reputation query service for a user’s restaurant reviews, it might do them no
good without a separate service from Yahoo! Local to map the reviews’ local-specific
target ID back to a data record describing the eatery. The format used is context.for
eignKeyValue; the reason for the context. is to allow for context-specific wildcard search
(described later). There is always at least one special context: user., which holds karma.
In practice, there is also a source-only context, roll-up., used for claims that aggregate
the input of many sources.

Claim type identifiers are of a specific format—context.application.claim. An exam-
ple is YMovies.MovieReviews.OverallRating to hold the claim value for a user’s overall
rating for a movie.

Queries are of the form: Source: [SourceIDs], Claim: [ClaimIDs], Target: [Targe
tIDs]. Besides the obvious use of retrieving a specific reputation statement, the iden-
tifier design used in this platform supports wildcard queries (*) to support various mul-
tiple return results:

Source:*, Claim: [ClaimID], Target: [TargetID]
Returns all of a specific type of claim for a particular target. e.g., all of the reviews
for the movie Aliens.

Source: [SourceID], Claim: context.application.*, Target: *
Returns all of the application-specific reputation statements for any targets by a
source, e.g., all of Randy’s ratings, reviews, and helpful votes on other user reviews.

Source: *, Claim: [ClaimID], Target: [TargetID, TargetID, ...]
Returns all reputation statements with a certain claim type of multiple targets. The
application is the source of the list of targets, such as a list of otherwise qualified
search results, e.g., What have users given as overall ratings for the movies that are
currently in theaters near my house?

There are many more query patterns possible, and framework designers will need to
predetermine exactly which wildcard searches will be supported, as appropriate in-
dexes may need to be created and/or other optimizations might be required.

Yahoo! supports both RESTful interfaces and JSON protocol requests, but any reliable
protocol would do. It also supports returning a paged window of results, reducing
interprocess messaging to just the number of statements required.

Yahoo! lessons learned

During the development of the Yahoo! Reputation Platform, the team wandered down
many dark alleys and false paths. Presented next are some of warning signs and insights
gained. They aren’t intended as hard-and-fast rules, just friendly advice:

• It is not practical to use prebuilt code blocks to build reputation models, because
every context is different, so every model is also significantly different. Don’t try
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to create a reputation scripting language. Certainly there are common abstractions,
as represented in the graphical grammar, but those should not be confused with
actual executing code. To get the desired customization, scale, and performance,
the reputation processes should be expressed directly in native code. The Yahoo!
Reputation Platform expressed the reputation models directly in PHP. After the
first few models were complete, common patterns were packaged and released as
code libraries, which decreased the implementation time for each model.

• Focus on building only on the core reputation framework itself, and use existing
toolkits for messaging, resource management, and databases. No need to reinvent
the wheel.

• Go for the performance over slavishly copying the diagrams’ inferred modularity.
For example, even the Simple Accumulator process is probably best implemented
primarily in the database process as a stored procedure. Many of the patterns work
out to be read-modify-write, so the main alternatives are stored procedures or
deferring the database modifications as long as possible given your reliability
requirements.

• Creating a common platform is necessary, but not sufficient, to get applications to
share data. In practice, it turned out that the problem of reconciling the entity
identifiers between sites was a time-intensive task that often was deprioritized.
Often merging two previously existing entity databases was not 100% automatic
and required manual supervision. Even when the data was merged, it typically
required each sharing application to modify existing user-facing application code,
another expense. This latter problem can be somewhat mitigated in the short-term
by writing backward-compatible interfaces for legacy application code.

Your Mileage May Vary
Given the number of variations on reputation framework requirements and your ap-
plication’s technical environment, the two examples just presented represent extremes
that don’t exactly apply to your situation. Our advice is to design in favor of adapta-
bility, a constraint we intentionally left off the choice list.

It took three separate tries to implement the Yahoo! Reputation Platform.

Yahoo! first tried to do it on the cheap, with a database vendor creating a request-reply,
all database-procedure-based implementation. That attempt surfaced an unacceptable
performance/reliability trade-off and was abandoned.

The second attempt taught us about premature reputation model compilation and
optimization and that we could loosen the strongly typed and compiled language re-
quirement in order to make reputation model implementation more flexible and
accessable to more programmers.

The third platform finally made it to deployment, and the lessons are reflected in the
previous section. It is worth noting that though the platform delivers on the original
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requirements, the sharing requirement—listed as a primary driver for the project—is
not yet in extensive use. Despite the repeated assertions by senior product management,
the applications designers end up requiring orientation in the benefits of sharing their
data as well as leveraging the shared reputations of other applications. Presently, only
customer care looks at cross-property karma scores to help determine whether an ac-
count that might otherwise be automatically suspended should get additional, high-
touch support instead.

Recommendations for All Reputation Frameworks
Reputation is a database. Reputation statements should be stored and indexed sepa-
rately so that applications can continue to evolve new uses for the claims.

Though it is tempting to mix the reputation process code in with your application,
don’t do it! You will be changing the model over time to either fix bugs, achieve the
results you were originally looking for, or to mitigate abuse, and this will be all but
impossible unless reputation remains a distinct module.

Sources and targets are foreign keys, and generally the reputation framework has little
to no specific knowledge of the data objects indexed by those keys. Everything the
reputation model needs to compute the claims should be passed in messages or remain
directly accessible to each reputation process.

Discipline! The reputation framework manages nothing less than the code that sets the
valuation of all user-generated and user-evaluated content in your application. As such,
it deserves the effort of regular critical design and code reviews and full testing suites.
Log and audit every input that is interesting, especially any claim overrides that are
logged during operations. There have been many examples of employees manipulating
reputation scores in return for status or favors.
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APPENDIX B

Related Resources

There are many readings on the broad topic of reputation systems. We list a few here
and encourage readers who have additional resources to contribute or want to read the
most up-to-date list to visit this book’s website at http://buildingreputation.com.

Further Reading
The Web contains thousands of white papers and blog postings related to specific
reputation issues, such as ratings bias and abusing karma. The list here is a represen-
tative sample. We maintain an updated, comprehensive list on their Delicious book-
marks: http://delicious.com/frandallfarmer/reputation and http://delicious.com/soldier
ant/reputation.

A Framework for Building Reputation Systems, by Phillip J. Windley, Ph.D., Kevin Tew,
Devlin Daley, dept. of computer science Brigham Young University. One of the few
papers that proposes a platform approach to reputation systems.

Designing Social Interfaces, by Christian Crumlish and Erin Malone from O’Reilly and
Yahoo! Press. It covers not only the reputation patterns, but social patterns of all types
—a definite companion for our book.

“Designing Your Reputation System,” a slideshow presentation by Bryce Glass, initially
presented before we started on this: book.

“Reputation As Property in Virtual Economies,” by Joseph Blocher, discusses the idea
that online reputation may become real-world property.

The Reputation Pattern Library at the Yahoo! Developer Network, where some of our
thoughts were first refined into clear patterns.

The Reputation Research Network, a clearinghouse for some older reputation systems
research papers.

“Who Is Grady Harp? Amazon’s Top Reviewers and the fate of the literary amateur,”
by Garth Risk Hallberg. One of many articles talking about the side effects of having
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karma associated with commercial gain. See our Delicious bookmarks for similar arti-
cles about YouTube, Yelp, SlashDot, and more.

Recommender Systems
Though only briefly mentioned in this book, recommender systems are an important
form of web reputations, especially for entities. There are extensive libraries of research
papers available on the Web. In particular, you should check out the following
resources:

Visit http://presnick.people.si.umich.edu/. The site is maintained by Paul Resnick, pro-
fessor at the University of Michigan School of Information. He is one of the lead re-
searchers in reputation and recommender systems and is a prolific author of relevant
works.

GroupLens is a research lab at the University of Minnesota with a focus in recommender
systems.

Robert E. Kraut is another important researcher who focuses on recommender and
collaboration systems. Visit his site at http://www.cs.cmu.edu/~kraut/RKraut.site.files/
research/research.html.

The ACM Recommender Systems conference site contains some great links to support
materials, including slide decks.

Social Incentives
The “Broken Windows” effect is cited in this book in several chapters. There is some
popular debate about its effect on human behavior, highlighted in two popular books:

Gladwell, Malcolm. The Tipping Point: How Little Things Can Make a Big Difference.
MA: Back Bay Books, 2002.

Levitt, Steven D., and Stephen J. Dubner. Freakonomics: A Rogue Economist Explores
the Explores the Hidden Side of Everything. NY: Harper Perennial, 2009.

They focus on the question of the effects (or lack thereof) on crime based on the New
York Police Department’s strict enforcement. Though we don’t take a position on that
specific example, we want to point out a few additional references that support the
broken windows effect in other contexts:

Johnson, Carolyn Y. “Breakthrough on Broken Windows.” The Boston Globe, February
8, 2009.

“The Broken Windows Theory of Crime is Correct.” The Economist, November 20,
2008.
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The emerging field of behavioral economics is deeply relevant to using reputation as
user incentive. Papers and books are starting to emerge, but we recommend this primer
for all readers:

Ariely, Dan. Predictably Irrational. NY: Harper Perennial, 2010.

Howe, Jeff. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Busi-
ness. NY: Three Rivers Press, 2009. This book provides some useful insight into group
motivation.

Patents
Several patent applications were cited in this book, and we’ve gathered their references
here for convenience. Contributors to this section are encouraged to include other
relevant intellectual property for consideration by their peers.

U.S. Patent Application 11/774,460:Detecting Spam Messages Using Rapid Sender Rep-
utation Feedback Analysis, Miles Libbey, F. Randall Farmer, Mohammad Mohsenza-
deh, Chip Morningstar, Neal Sample

U.S. Patent Application 11/945,911:Real-Time Asynchronous Event Aggregation Sys-
tems, F. Randall Farmer, Mohammad Mohsenzadeh, Chip Morningstar, Neal J. Sample

U.S. Patent Application 11/350,981:Interestingness ranking of media objects, Daniel S.
Butterfield, Caterina Fake, Callum James Henderson-Begg, Serguei Mourachov

U.S. Patent Application 11/941,009:Trust Based Moderation, Ori Zaltzman and Quy
Dinh Le
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A
abuse

of karma models, 77
unacceptable user submissions, 14

abuse reporting, 207
on Flickr, 85
report abuse model, 69
simple system, 33
watching the watchers, 209
Yahoo! Answers, 235, 251

accumulators
display of, 182
reversible, 49
simple, 48

achievements of users, 218
adding to collections, 144
advertisers, attracting, 101
affiliations and reputation, 216
agents content control pattern, 108
aggregate source, 23
aggregated community ratings, 153
alpha testing reputation models, 229
altruistic motivation, 113
altruistic or sharing incentives, 113–115

friendship, 114
know-it-all, crusader, and opinionated,

114
tit-for-tat and pay-it-forward, 113

Amazon
karma example, top reviewer rankings, 192
top reviewers, 219
user reviews, 142

application integration, 223–227
avoiding feedback loops, 226

implementing reputation model, 224
inputs, 225
planning for change, 227
Yahoo! Answers system, 270

application optimization, 231
application tuning, 234, 235

(see also tuning reputation systems)
Ariely, Dan, 111, 116, 198
asynchronous activations, 134
attention and massive scale of web content, 13
audits of reputation system applications, 127
averages

problems with simple averages, 59
reversible, 50
simple, 50

B
basic social media (content control pattern),

109
best-effort reliability, 282

invisible reputation framework, 288
beta testing reputation models, 230
bias, 60–63

first-mover effects, 63
ratings bias effects, 61

branding, 117
broken windows theory

online behavior and, 205
Yahoo! Answers and, 274

browser cookies, input from, 134
bug reports (content control pattern), 105
building blocks, 39–57

claim types, 39
computing reputation, 46–54
routers, 54–57

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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C
changes in reputation systems, 94

planning for, 227
cheap versus free, 116
Child Online Protection Act (COPA), 109
Children’s Online Privacy and Protection Act

(COPPA), 109
claims, 24, 39–46

explicit, from user actions, 131
generating compound community claims,

157
implicit, from user actions, 133
qualitative, 40

media uploads, 42
text comments, 40

quantitative, 44
normalized value, 44
rank value, 45
scalar value, 45

reliability of, 282
target or focus of, 25
types of, 39

collections, adding to, 144
commercial incentives, 115–117

branding and professional promotion, 117
direct revenue, 116

commercial motivation, 113
community, 121–123

competitive spectrum, 122
engagement, metrics for, 99
new or established, 121
purpose of, 121

community interest rank, 30
community ratings, aggregated, 153
competitive spectrum, 122
computation accuracy, testing, 231
computing reputation, 46–54

accumulators, 48
averages, 50
counters, 47
mixers, 51
ratios, 52
roll-ups, 46
static versus dynamic, 280
transformers and data normalization, 53

conjoint message delivery, 55
Consumer Reports, example of compound

community ratings and reviews, 159
consumers, 15

containers, 31
content control patterns, 102–111

agents, 108
basic social media, 109
bug reports, 105
Full Monty, 110
reviews, 105
submit-publish, 107
surveys, 107
Web 1.0, 104

content quality, 13, 15
(see also quality)
configurable thresholds for, 205
improving, 102

content reputation, 176
normalized percentages with summary

count (example), 180
content showcases, 200

safeguards for, 203
content, users’ expression of opinions about,

207
contexts of reputation, 4, 8, 26

constraining scope, 146
data portability and, 284
dynamic reputation models, 280
FICO and the Web, 12
importance of, 146
limiting for karma, 177
reputation generation and, 151
thumb voting, 141
using to guide ratings scale used, 136

corporate reputations, 172
counters, 47

reversible, 47
Craigslist

abuse reporting, 69
creators, honoring, 15
credit scores

creating feedback loop, 226
FICO, 10

cron jobs, 134
crusader incentives, 114
currency, reputation points as, 156
customer care corrections and operator

overrides, 134

D
data normalization (see normalization)
decay (time-based) in reputation models, 93
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decaying reputation scores, 64
decisions

based on reputation, 174
high investment in, 129
process patterns (routers), 54

Delicious
lists on, 237

denormalization, 53, 58
scalar, 54

Digg
accumulators display, 182
benefit to user, 132
design and voting behavior, 237
display of reputation scores, 167
vote-to-promote model, 26, 29, 141

Digital Copyright Millennium Act (DCMA),
109

direct revenue incentives, 116
displaying reputation, 165–196

corporate reputations, 172
formats, 178
harmful effects of leaderboards, 194–196
patterns, 180–194

levels, 185–189
normalized score to percentage, 180
points and accumulators, 182
statistical evidence, 183

personal and public reputations combined,
171

personal reputations, 169
questions on, 165
ranked lists, 189
to show or not to show, 166
Yahoo! Answers community content

moderation, 268
dollhouse mafia, 162
drop-shippers (on eBay), 90
dynamic calculations, 280

invisible reputation framework, 288

E
eBay

drop-shippers on, 90
seller feedback model, 73, 78–82
sellers, negative public karma and, 162

egocentric incentives, 118–120
fulfillment, 119
quest for mastery, 119
recognition, 119

egocentric motivation, 113
email rule, for reputation input, 148
emergent defects, 236

defending against, 238
emergent effects, 236
entities (see reputable entities)
explicit claims, 131
explicit inputs, 136–143

interface design of inputs, 137
problems with star ratings, 138
ratings life cycle, 137
ratings mechanisms, 138
user reviews, 142
vote-to-promote, 141

explicit reputation statements, 6
external data transform, 54
external objects, claims based on, 44
external signaling interface, 298
external trust databases, input from, 134

F
Facebook, 114

I like this link feature, 141
favorites-and-flags model, 68

favorites, 69, 144
vote-to-promote variant, 68

feedback
educating users to become good

contributors, 213
evaluating customer satisfaction, 231
immediate, 133

feedback loops, 226
FICO credit score, global reputation study, 10
filtering (reputation), 173
fire-and-forget messaging, 286
first-mover effects, 63
firsts, rewarding, 135
flagging

abusive content, 69
on Flickr, 85
on Yahoo! Answers, 256

flexibility in reputation systems, 94
Flickr

feedback to contributors, 213
interestingness algorithm, 41
interestingness score for content quality,

82–89
reputation display and, 167

forwarding, 144
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frameworks (see reputation frameworks)
free versus cheap, 116
freeform content, 179
freshness and decay, 63
friendship incentives, 114
fulfillment incentives, 119
Full Monty (content control pattern), 110

G
game currencies, reputation points as, 156
global reputation, 9

FICO, 10
goals, defining for reputation system, 98–102
Google

Analytics, use of personal reputations, 170
Answers, direct revenue incentives, 116
Orkut, 169, 195

greater disclosure (adding information), 145

H
Hawthorne effect, 233
histories, reputation and, 214

user profiles, 218

I
iconic numbered levels, 186
identity spoofing, 215
identity, reputation as, 214–221

contributor ranks in listings, 220
user profiles, 216
user reputation in context of contribution,

219
implicit claims, 133
implicit inputs, 143–146

adding to collection, 144
favorites, 144
forwarding, 144
greater disclosure (adding information),

145
reactions to reputable entities, 145

implicit reputation statements, 6
imprinting, 198
incentives, 111–120

altruistic or sharing incentives, 113–115
categories of, 112
commercial, 115–117

branding or professional promotion,
117

direct revenue, 116
determining type for your system, 98
egocentric, 118–120

fulfillment, 119
mastery incentives, 119
recognition, 119

social incentives, information resources,
304

social versus market exchanges, 111
for user engagement, 99, 106

inferred karma, 285
generating, 159
in Yahoo! Answers reputation model, 263

inferred reputation, 210
just-in-time reputation calculation, 211

input, 56, 131–146
automating simulated inputs, 229
best practices for good inputs, 135
common explicit inputs, 136–143
common implicit inputs, 143–146
constraining scope, 146–150
implementing inputs, 225
items to be used as, 128
reversible, 282
from sources other than user actions, 134
user actions, 131

explicit claims, 131
implicit claims, 133

Yahoo! Answers community content
moderation model, 255, 257, 260,
263

input events (reputation message), 27
integration, application (see application

integration)
interest, 30

measured by response to an entity, 145
interestingness scores (Flickr), 82–89
interface design of inputs, 137
invisible reputation framework, 287–289

implementation details, 289
lessons from, 289
requirements, 287

iTunes rating system, 132

J
J-curves, 62
just-in-time inputs, 134
just-in-time reputation calculation, 211
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K
karma, ix, 176

abuse reporters on Yahoo! Answers, 257
authors on Yahoo! Answers, 260
caveats, 177
complexity of, 176
display examples, 180–192
displaying sparingly, 177
eBay seller feedback karma, 78–82
generating inferred karma, 159–161
inferred karma in Yahoo! Answers, 263
negative public karma, 161
rating the content, not the person, 135
Slashdot, 177
user as target, 25

karma models, 72
abuse of, 77
participation karma, 73
participation points, 155
quality karma, 73
ratings-and-reviews with karma, 75–78
robust karma, 74

know-it-all incentives, 114

L
leaderboards, 190

content showcases and, 201
discouraging new contributors, 63
harmful effects of, 194–196
top-X, 192
use with egocentric incentives, 119

legal issues and content removal by staff, 109
Level of Activity, 30
levels in reputation display, 185–189

named levels, 188
numbered levels, 186

LinkedIn
completeness of profiles, 212
user profile with group affiliations, 216

liquidity compensation algorithm, 59
lists, 200

(see also ranked lists)
emergent effect on Delicious, 237
rank-order items in, 199

local reputation, 8
logging, 57
loyalty, establishing, 100

M
market norms, incentives and, 111
mastery incentives, 119
media uploads, 42
messages, 46

routing, 54–55
messaging

invisible reputation framework, 288
optimistic versus request-reply, 286
Yahoo! Reputation Platform, 292

messaging dispatcher, Yahoo! Reputation
Platform, 294

metadata, 179
mixers, 51
models (see reputation models)
moderation, incentives for (see incentives)
motivation (see incentives)

N
named levels in reputation display, 188
negative public karma, 161

Sims Online game, 162
negative reputation systems, 17
normalization, 53

power and costs of, 57
normalized scores, 25, 178

display as percentages, 180
normalized values, 44
numbered levels in reputation display, 186

O
objects in reputation systems, 125–131

application architecture, 125–129
performing application audit, 127
reputable entities, 129–131
what the application does, 126

Yahoo! Answers community content
moderation, 252

operator overrides, 134
opinionated incentives, 114
optimistic messaging, 286

Yahoo! Reputation Platform, 292
Orkut, 195

reputation display, 169
output, 56

automating simulated reputation output
events, 229

implementing, 226
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P
participation incentives (see incentives)
participation karma model, 73
participation points, 182

generating, 155
patents, 305
pay-it-forward incentives, 114
people showcases, 202
percentages

normalized scores displayed as, 180
performance

stress testing of, 229
testing for scale, 230

personal or private egocentric incentives, 119
personal reputations, 169, 212
personalization reputation, generating, 152
points

as currency, 156
display of, 182
generating participation points, 155
simple model, 71
in Yahoo! Answers, 248

portability of data, 284
positive reputations, 17
practitioner's tips

bias, freshness, and decay, 61–64
harmful effects of leaderboards, 194–196
implementation notes, 65
liquidity and input, 59
negative public karma, 161
normalization, 57

practitioner’s tips, 57–65
predeployment (beta) testing reputation

models, 230
Predictably Irrational, 111, 116, 198
preference ordering, 154
primary value for contributions, 132
problem users, excluding, 16
professional promotion, 117
public reputations, 171

Q
qualitative claims, 24, 40

media uploads, 42
relevant external objects, 44
text comments, 40

quality
configurable thresholds, 205

of content, 13
emphasizing over simple activity, 135
enforcing minimum editorial quality, 109
Flickr interestingness scores for, 82–89
improving content quality, 102
incentives for (see incentives)
measurement of, leaderboards and, 194
simple karma model, 73

quantitative claims, 24
normalized value, 44
rank value, 45
raw scores, 25
scalar value, 45

quest for mastery, 119

R
rank values, 45
ranked lists, 189, 199

leaderboards, 190
harmful effects of, 194–196

top-X, 192
rankings, 173

leaderboard, 190
preference ordering, 154
top-X, 192

ratings
aggregated community ratings, 153
differing interpretations of, 139
entering versus displaying, 138
freshness and decay, 63
life cycle of, 137
rating the content, not the person, 135
simple model, 70
star ratings, 138
two-state votes (thumbs ratings), 140
using right scale, 136

ratings bias effects, 61
ratings-and-reviews reputation models, 26

compound community claims mechanisms
and, 158

input events, 27
reviews that others can rate, 30
Was this helpful? feedback mechanism, 75

ratings-and-reviews with karma model, 75–78
ratios

reversible, 52
simple, 52

raw scores, 25, 179
raw sum of votes, 28, 30
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reactions to an entity, 145
recognition incentives, 119
recommender systems, 20

resources for information, 304
reliability in reputation frameworks

invisible reputation framework, 288
transactional versus best-effort, 282
Yahoo! Reputation Platform, 291

repetition, limiting, 135
report abuse model, 69

Yahoo! Answers community content
moderation, 255, 274

republishing actions (on Flickr), 86
reputable entities, 5, 23

as targets of claims, 25
characteristics of, 129–131

high-investment decision, 129
interest to users, 129
intrinsic value worth enhancing, 130
persistence over time, 130

reactions to, 145
reputation

as identity, 214–221
context for, 4
defined, ix
displaying (see displaying reputation)
incentives and, 112
of people and things, 4
resources for information, 303
use in decision making, 5
on the Web, 12

reputation context (see contexts of reputation)
reputation frameworks, 33, 279–301

designs, 287–300
invisible framework, 287–289
Yahoo! Reputation Platform, 289–300

recommendations for all, 301
requirements, 279–286

calculations, static or dynamic, 280
model complexity, 283
optimistic or request-reply messaging,

286
portability of data, 284
reliability, 282
scale, 281

reputation generation mechanisms and
patterns, 150–161

aggregated community ratings, 153
compound community claims, 157

context of reputation, 151
inferred karma, 159–161
participation points, 155
personalization reputation, 152
points as currency, 156
preference ordering, 154

reputation messages, 27
reputation models, 26–30

bench testing, 228
building on simplest model, 29
combining simple models, 74–89

eBay seller feedback karma, 78–82
user reviews with karma, 75–78

complex versus simple, 283
dynamic and static, 280
environmental (alpha) testing, 229
execution engine, Yahoo! platform, 296
failures of simple models, 89–94

disclosure of details about system, 91
masking workings of algorithms, 93
party crashers, 90

favorites and flags, 68
implementing, 224
karma, 72
messages and processes, 27
mixing to make systems, 33
points, 71
predeployment (beta) testing, 230
ratings, 70
reviews, 70
this-or-that voting, 69
tuning, 233
vote-to-promote, 28
Yahoo! Answers, community content

moderation, 251
reputation processes, 28

abuse reporting system, 35
calculate helpful score, 32
computing reputation, 46–54
Yahoo! Answers community content

moderation, 265
reputation query interface, 298
reputation repository (Yahoo! platform), 298
reputation statements, 5, 22

claims, 24
explicit, 6
implicit, 6
as input, 56
shared versus integrated, 284
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source, target, and claim, 7
sources, 23

aggregate, 23
user as, 23

targets, 25
as targets of other reputation statements,

25
reputation systems

attention and massive scale of web content,
13

challenges in building, 19
conceptualizing, 20
context and, 12
defined, 33
designing, 97–123

asking right questions and defining
goals, 97–102

considering your community, 121–123
content control patterns, 102–111
incentives for user participation, quality,

and moderation, 111–120
global reputation, 9

FICO, 10
local reputation, 8
mixing models to make, 33
objects in (see objects in reputation systems)
project planning for Yahoo! Answers, 249
prominent consumer websites using, x
related subjects, 20
reputation statement and its components,

22
understanding your users, 15
use on top websites, 18
virtuous circle from quality contributions,

16
Yahoo! Answers (see Yahoo! Answers)

request-reply messaging, 286
invisible reputation framework, 288

resources for further information, 303
return values, 56
revenue exposure, 109
reversible accumulator, 49
reversible average, 50
reversible counter, 47
reversible ratio, 52
reviews, 25

(see also ratings-and-reviews reputation
models)
Amazon as example (see Amazon)

content control pattern, 105
simple model, 70
staff creating and removing, users

evaluating, 105
user reviews as explicit input, 142
user reviews with karma, 75–78

robust karma model, 74
ROI

measuring in predeployment testing, 232
tuning for, metrics, 232–236

roll-ups, 28, 46–52
accumulators, 48
averages, 50
counters, 47
mixers, 51
ratios, 52

routers, 54–57
decision process patterns, 54
input, 56
output, 56

S
scalar values, 45

combining normalized, 58
denormalization, 54
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